Properties

Label 169.4.a.j
Level $169$
Weight $4$
Character orbit 169.a
Self dual yes
Analytic conductor $9.971$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 3) q^{2} + ( - 3 \beta + 4) q^{3} + ( - 5 \beta + 5) q^{4} + (5 \beta + 5) q^{5} + ( - 10 \beta + 24) q^{6} + (\beta - 8) q^{7} + ( - 7 \beta + 11) q^{8} + ( - 15 \beta + 25) q^{9} + (5 \beta - 5) q^{10}+ \cdots + (390 \beta - 1300) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 5 q^{3} + 5 q^{4} + 15 q^{5} + 38 q^{6} - 15 q^{7} + 15 q^{8} + 35 q^{9} - 5 q^{10} - 17 q^{11} + 140 q^{12} - 46 q^{14} - 90 q^{15} + 57 q^{16} + 70 q^{17} + 215 q^{18} + 141 q^{19} - 175 q^{20}+ \cdots - 2210 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0.438447 −3.68466 −7.80776 17.8078 −1.61553 −5.43845 −6.93087 −13.4233 7.80776
1.2 4.56155 8.68466 12.8078 −2.80776 39.6155 −9.56155 21.9309 48.4233 −12.8078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.4.a.j 2
3.b odd 2 1 1521.4.a.l 2
13.b even 2 1 169.4.a.f 2
13.c even 3 2 169.4.c.f 4
13.d odd 4 2 169.4.b.e 4
13.e even 6 2 13.4.c.b 4
13.f odd 12 4 169.4.e.g 8
39.d odd 2 1 1521.4.a.t 2
39.h odd 6 2 117.4.g.d 4
52.i odd 6 2 208.4.i.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.c.b 4 13.e even 6 2
117.4.g.d 4 39.h odd 6 2
169.4.a.f 2 13.b even 2 1
169.4.a.j 2 1.a even 1 1 trivial
169.4.b.e 4 13.d odd 4 2
169.4.c.f 4 13.c even 3 2
169.4.e.g 8 13.f odd 12 4
208.4.i.e 4 52.i odd 6 2
1521.4.a.l 2 3.b odd 2 1
1521.4.a.t 2 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 5T_{2} + 2 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(169))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} - 5T - 32 \) Copy content Toggle raw display
$5$ \( T^{2} - 15T - 50 \) Copy content Toggle raw display
$7$ \( T^{2} + 15T + 52 \) Copy content Toggle raw display
$11$ \( T^{2} + 17T - 884 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 70T + 137 \) Copy content Toggle raw display
$19$ \( T^{2} - 141T + 4864 \) Copy content Toggle raw display
$23$ \( T^{2} - 145T + 628 \) Copy content Toggle raw display
$29$ \( T^{2} - 34T - 15011 \) Copy content Toggle raw display
$31$ \( T^{2} - 140T - 37600 \) Copy content Toggle raw display
$37$ \( T^{2} - 190T + 797 \) Copy content Toggle raw display
$41$ \( T^{2} + 538T + 70661 \) Copy content Toggle raw display
$43$ \( T^{2} - 455T + 11768 \) Copy content Toggle raw display
$47$ \( T^{2} + 60T - 82400 \) Copy content Toggle raw display
$53$ \( T^{2} - 545T - 41450 \) Copy content Toggle raw display
$59$ \( T^{2} - 809T + 150764 \) Copy content Toggle raw display
$61$ \( T^{2} - 502T - 106999 \) Copy content Toggle raw display
$67$ \( T^{2} - 475T + 21212 \) Copy content Toggle raw display
$71$ \( T^{2} + 127T - 42824 \) Copy content Toggle raw display
$73$ \( T^{2} + 585T + 54850 \) Copy content Toggle raw display
$79$ \( T^{2} - 240T + 7600 \) Copy content Toggle raw display
$83$ \( T^{2} + 260T - 25600 \) Copy content Toggle raw display
$89$ \( T^{2} + 921T + 145654 \) Copy content Toggle raw display
$97$ \( T^{2} - 415T - 891778 \) Copy content Toggle raw display
show more
show less