Properties

Label 169.4.b.d.168.2
Level $169$
Weight $4$
Character 169.168
Analytic conductor $9.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.4.b.d.168.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{2} +2.00000 q^{3} +5.00000 q^{4} +1.73205i q^{5} +3.46410i q^{6} +13.8564i q^{7} +22.5167i q^{8} -23.0000 q^{9} -3.00000 q^{10} +13.8564i q^{11} +10.0000 q^{12} -24.0000 q^{14} +3.46410i q^{15} +1.00000 q^{16} +117.000 q^{17} -39.8372i q^{18} +114.315i q^{19} +8.66025i q^{20} +27.7128i q^{21} -24.0000 q^{22} -78.0000 q^{23} +45.0333i q^{24} +122.000 q^{25} -100.000 q^{27} +69.2820i q^{28} -141.000 q^{29} -6.00000 q^{30} -155.885i q^{31} +181.865i q^{32} +27.7128i q^{33} +202.650i q^{34} -24.0000 q^{35} -115.000 q^{36} -143.760i q^{37} -198.000 q^{38} -39.0000 q^{40} +271.932i q^{41} -48.0000 q^{42} +104.000 q^{43} +69.2820i q^{44} -39.8372i q^{45} -135.100i q^{46} -301.377i q^{47} +2.00000 q^{48} +151.000 q^{49} +211.310i q^{50} +234.000 q^{51} +93.0000 q^{53} -173.205i q^{54} -24.0000 q^{55} -312.000 q^{56} +228.631i q^{57} -244.219i q^{58} +284.056i q^{59} +17.3205i q^{60} +145.000 q^{61} +270.000 q^{62} -318.697i q^{63} -307.000 q^{64} -48.0000 q^{66} -786.351i q^{67} +585.000 q^{68} -156.000 q^{69} -41.5692i q^{70} -1056.55i q^{71} -517.883i q^{72} -458.993i q^{73} +249.000 q^{74} +244.000 q^{75} +571.577i q^{76} -192.000 q^{77} +1276.00 q^{79} +1.73205i q^{80} +421.000 q^{81} -471.000 q^{82} +789.815i q^{83} +138.564i q^{84} +202.650i q^{85} +180.133i q^{86} -282.000 q^{87} -312.000 q^{88} -976.877i q^{89} +69.0000 q^{90} -390.000 q^{92} -311.769i q^{93} +522.000 q^{94} -198.000 q^{95} +363.731i q^{96} -200.918i q^{97} +261.540i q^{98} -318.697i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 10 q^{4} - 46 q^{9} - 6 q^{10} + 20 q^{12} - 48 q^{14} + 2 q^{16} + 234 q^{17} - 48 q^{22} - 156 q^{23} + 244 q^{25} - 200 q^{27} - 282 q^{29} - 12 q^{30} - 48 q^{35} - 230 q^{36} - 396 q^{38}+ \cdots - 396 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205i 0.612372i 0.951972 + 0.306186i \(0.0990530\pi\)
−0.951972 + 0.306186i \(0.900947\pi\)
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 5.00000 0.625000
\(5\) 1.73205i 0.154919i 0.996995 + 0.0774597i \(0.0246809\pi\)
−0.996995 + 0.0774597i \(0.975319\pi\)
\(6\) 3.46410i 0.235702i
\(7\) 13.8564i 0.748176i 0.927393 + 0.374088i \(0.122044\pi\)
−0.927393 + 0.374088i \(0.877956\pi\)
\(8\) 22.5167i 0.995105i
\(9\) −23.0000 −0.851852
\(10\) −3.00000 −0.0948683
\(11\) 13.8564i 0.379806i 0.981803 + 0.189903i \(0.0608173\pi\)
−0.981803 + 0.189903i \(0.939183\pi\)
\(12\) 10.0000 0.240563
\(13\) 0 0
\(14\) −24.0000 −0.458162
\(15\) 3.46410i 0.0596285i
\(16\) 1.00000 0.0156250
\(17\) 117.000 1.66922 0.834608 0.550845i \(-0.185694\pi\)
0.834608 + 0.550845i \(0.185694\pi\)
\(18\) − 39.8372i − 0.521651i
\(19\) 114.315i 1.38030i 0.723665 + 0.690151i \(0.242456\pi\)
−0.723665 + 0.690151i \(0.757544\pi\)
\(20\) 8.66025i 0.0968246i
\(21\) 27.7128i 0.287973i
\(22\) −24.0000 −0.232583
\(23\) −78.0000 −0.707136 −0.353568 0.935409i \(-0.615032\pi\)
−0.353568 + 0.935409i \(0.615032\pi\)
\(24\) 45.0333i 0.383016i
\(25\) 122.000 0.976000
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 69.2820i 0.467610i
\(29\) −141.000 −0.902864 −0.451432 0.892306i \(-0.649087\pi\)
−0.451432 + 0.892306i \(0.649087\pi\)
\(30\) −6.00000 −0.0365148
\(31\) − 155.885i − 0.903151i −0.892233 0.451576i \(-0.850862\pi\)
0.892233 0.451576i \(-0.149138\pi\)
\(32\) 181.865i 1.00467i
\(33\) 27.7128i 0.146187i
\(34\) 202.650i 1.02218i
\(35\) −24.0000 −0.115907
\(36\) −115.000 −0.532407
\(37\) − 143.760i − 0.638758i −0.947627 0.319379i \(-0.896526\pi\)
0.947627 0.319379i \(-0.103474\pi\)
\(38\) −198.000 −0.845259
\(39\) 0 0
\(40\) −39.0000 −0.154161
\(41\) 271.932i 1.03582i 0.855435 + 0.517910i \(0.173290\pi\)
−0.855435 + 0.517910i \(0.826710\pi\)
\(42\) −48.0000 −0.176347
\(43\) 104.000 0.368834 0.184417 0.982848i \(-0.440960\pi\)
0.184417 + 0.982848i \(0.440960\pi\)
\(44\) 69.2820i 0.237379i
\(45\) − 39.8372i − 0.131968i
\(46\) − 135.100i − 0.433030i
\(47\) − 301.377i − 0.935326i −0.883907 0.467663i \(-0.845096\pi\)
0.883907 0.467663i \(-0.154904\pi\)
\(48\) 2.00000 0.00601407
\(49\) 151.000 0.440233
\(50\) 211.310i 0.597675i
\(51\) 234.000 0.642481
\(52\) 0 0
\(53\) 93.0000 0.241029 0.120514 0.992712i \(-0.461546\pi\)
0.120514 + 0.992712i \(0.461546\pi\)
\(54\) − 173.205i − 0.436486i
\(55\) −24.0000 −0.0588393
\(56\) −312.000 −0.744513
\(57\) 228.631i 0.531279i
\(58\) − 244.219i − 0.552889i
\(59\) 284.056i 0.626796i 0.949622 + 0.313398i \(0.101467\pi\)
−0.949622 + 0.313398i \(0.898533\pi\)
\(60\) 17.3205i 0.0372678i
\(61\) 145.000 0.304350 0.152175 0.988354i \(-0.451372\pi\)
0.152175 + 0.988354i \(0.451372\pi\)
\(62\) 270.000 0.553065
\(63\) − 318.697i − 0.637335i
\(64\) −307.000 −0.599609
\(65\) 0 0
\(66\) −48.0000 −0.0895211
\(67\) − 786.351i − 1.43385i −0.697149 0.716926i \(-0.745549\pi\)
0.697149 0.716926i \(-0.254451\pi\)
\(68\) 585.000 1.04326
\(69\) −156.000 −0.272177
\(70\) − 41.5692i − 0.0709782i
\(71\) − 1056.55i − 1.76605i −0.469326 0.883025i \(-0.655503\pi\)
0.469326 0.883025i \(-0.344497\pi\)
\(72\) − 517.883i − 0.847682i
\(73\) − 458.993i − 0.735906i −0.929844 0.367953i \(-0.880059\pi\)
0.929844 0.367953i \(-0.119941\pi\)
\(74\) 249.000 0.391158
\(75\) 244.000 0.375663
\(76\) 571.577i 0.862689i
\(77\) −192.000 −0.284161
\(78\) 0 0
\(79\) 1276.00 1.81723 0.908615 0.417634i \(-0.137141\pi\)
0.908615 + 0.417634i \(0.137141\pi\)
\(80\) 1.73205i 0.00242061i
\(81\) 421.000 0.577503
\(82\) −471.000 −0.634308
\(83\) 789.815i 1.04450i 0.852793 + 0.522250i \(0.174907\pi\)
−0.852793 + 0.522250i \(0.825093\pi\)
\(84\) 138.564i 0.179983i
\(85\) 202.650i 0.258594i
\(86\) 180.133i 0.225864i
\(87\) −282.000 −0.347512
\(88\) −312.000 −0.377947
\(89\) − 976.877i − 1.16347i −0.813379 0.581734i \(-0.802374\pi\)
0.813379 0.581734i \(-0.197626\pi\)
\(90\) 69.0000 0.0808138
\(91\) 0 0
\(92\) −390.000 −0.441960
\(93\) − 311.769i − 0.347623i
\(94\) 522.000 0.572768
\(95\) −198.000 −0.213835
\(96\) 363.731i 0.386699i
\(97\) − 200.918i − 0.210311i −0.994456 0.105155i \(-0.966466\pi\)
0.994456 0.105155i \(-0.0335340\pi\)
\(98\) 261.540i 0.269587i
\(99\) − 318.697i − 0.323538i
\(100\) 610.000 0.610000
\(101\) 429.000 0.422645 0.211322 0.977416i \(-0.432223\pi\)
0.211322 + 0.977416i \(0.432223\pi\)
\(102\) 405.300i 0.393438i
\(103\) 182.000 0.174107 0.0870534 0.996204i \(-0.472255\pi\)
0.0870534 + 0.996204i \(0.472255\pi\)
\(104\) 0 0
\(105\) −48.0000 −0.0446126
\(106\) 161.081i 0.147599i
\(107\) −1506.00 −1.36066 −0.680330 0.732906i \(-0.738163\pi\)
−0.680330 + 0.732906i \(0.738163\pi\)
\(108\) −500.000 −0.445486
\(109\) − 1551.92i − 1.36373i −0.731477 0.681866i \(-0.761169\pi\)
0.731477 0.681866i \(-0.238831\pi\)
\(110\) − 41.5692i − 0.0360315i
\(111\) − 287.520i − 0.245858i
\(112\) 13.8564i 0.0116902i
\(113\) −687.000 −0.571925 −0.285962 0.958241i \(-0.592313\pi\)
−0.285962 + 0.958241i \(0.592313\pi\)
\(114\) −396.000 −0.325340
\(115\) − 135.100i − 0.109549i
\(116\) −705.000 −0.564290
\(117\) 0 0
\(118\) −492.000 −0.383833
\(119\) 1621.20i 1.24887i
\(120\) −78.0000 −0.0593366
\(121\) 1139.00 0.855748
\(122\) 251.147i 0.186376i
\(123\) 543.864i 0.398687i
\(124\) − 779.423i − 0.564470i
\(125\) 427.817i 0.306121i
\(126\) 552.000 0.390286
\(127\) 286.000 0.199830 0.0999149 0.994996i \(-0.468143\pi\)
0.0999149 + 0.994996i \(0.468143\pi\)
\(128\) 923.183i 0.637489i
\(129\) 208.000 0.141964
\(130\) 0 0
\(131\) −1974.00 −1.31656 −0.658279 0.752774i \(-0.728715\pi\)
−0.658279 + 0.752774i \(0.728715\pi\)
\(132\) 138.564i 0.0913671i
\(133\) −1584.00 −1.03271
\(134\) 1362.00 0.878051
\(135\) − 173.205i − 0.110423i
\(136\) 2634.45i 1.66105i
\(137\) 846.973i 0.528188i 0.964497 + 0.264094i \(0.0850729\pi\)
−0.964497 + 0.264094i \(0.914927\pi\)
\(138\) − 270.200i − 0.166674i
\(139\) 236.000 0.144009 0.0720045 0.997404i \(-0.477060\pi\)
0.0720045 + 0.997404i \(0.477060\pi\)
\(140\) −120.000 −0.0724418
\(141\) − 602.754i − 0.360007i
\(142\) 1830.00 1.08148
\(143\) 0 0
\(144\) −23.0000 −0.0133102
\(145\) − 244.219i − 0.139871i
\(146\) 795.000 0.450648
\(147\) 302.000 0.169446
\(148\) − 718.801i − 0.399224i
\(149\) 46.7654i 0.0257125i 0.999917 + 0.0128563i \(0.00409239\pi\)
−0.999917 + 0.0128563i \(0.995908\pi\)
\(150\) 422.620i 0.230045i
\(151\) 1770.16i 0.953995i 0.878905 + 0.476998i \(0.158275\pi\)
−0.878905 + 0.476998i \(0.841725\pi\)
\(152\) −2574.00 −1.37355
\(153\) −2691.00 −1.42192
\(154\) − 332.554i − 0.174013i
\(155\) 270.000 0.139916
\(156\) 0 0
\(157\) 1211.00 0.615594 0.307797 0.951452i \(-0.400408\pi\)
0.307797 + 0.951452i \(0.400408\pi\)
\(158\) 2210.10i 1.11282i
\(159\) 186.000 0.0927721
\(160\) −315.000 −0.155643
\(161\) − 1080.80i − 0.529062i
\(162\) 729.193i 0.353647i
\(163\) 1004.59i 0.482733i 0.970434 + 0.241367i \(0.0775956\pi\)
−0.970434 + 0.241367i \(0.922404\pi\)
\(164\) 1359.66i 0.647388i
\(165\) −48.0000 −0.0226472
\(166\) −1368.00 −0.639623
\(167\) 914.523i 0.423760i 0.977296 + 0.211880i \(0.0679586\pi\)
−0.977296 + 0.211880i \(0.932041\pi\)
\(168\) −624.000 −0.286563
\(169\) 0 0
\(170\) −351.000 −0.158356
\(171\) − 2629.25i − 1.17581i
\(172\) 520.000 0.230521
\(173\) 2574.00 1.13120 0.565600 0.824680i \(-0.308645\pi\)
0.565600 + 0.824680i \(0.308645\pi\)
\(174\) − 488.438i − 0.212807i
\(175\) 1690.48i 0.730219i
\(176\) 13.8564i 0.00593447i
\(177\) 568.113i 0.241254i
\(178\) 1692.00 0.712476
\(179\) 3744.00 1.56335 0.781675 0.623686i \(-0.214366\pi\)
0.781675 + 0.623686i \(0.214366\pi\)
\(180\) − 199.186i − 0.0824802i
\(181\) −637.000 −0.261590 −0.130795 0.991409i \(-0.541753\pi\)
−0.130795 + 0.991409i \(0.541753\pi\)
\(182\) 0 0
\(183\) 290.000 0.117144
\(184\) − 1756.30i − 0.703675i
\(185\) 249.000 0.0989559
\(186\) 540.000 0.212875
\(187\) 1621.20i 0.633978i
\(188\) − 1506.88i − 0.584579i
\(189\) − 1385.64i − 0.533283i
\(190\) − 342.946i − 0.130947i
\(191\) −2598.00 −0.984213 −0.492106 0.870535i \(-0.663773\pi\)
−0.492106 + 0.870535i \(0.663773\pi\)
\(192\) −614.000 −0.230790
\(193\) 1117.17i 0.416662i 0.978058 + 0.208331i \(0.0668032\pi\)
−0.978058 + 0.208331i \(0.933197\pi\)
\(194\) 348.000 0.128788
\(195\) 0 0
\(196\) 755.000 0.275146
\(197\) 2050.75i 0.741674i 0.928698 + 0.370837i \(0.120929\pi\)
−0.928698 + 0.370837i \(0.879071\pi\)
\(198\) 552.000 0.198126
\(199\) −2522.00 −0.898391 −0.449196 0.893433i \(-0.648289\pi\)
−0.449196 + 0.893433i \(0.648289\pi\)
\(200\) 2747.03i 0.971223i
\(201\) − 1572.70i − 0.551890i
\(202\) 743.050i 0.258816i
\(203\) − 1953.75i − 0.675500i
\(204\) 1170.00 0.401551
\(205\) −471.000 −0.160469
\(206\) 315.233i 0.106618i
\(207\) 1794.00 0.602375
\(208\) 0 0
\(209\) −1584.00 −0.524247
\(210\) − 83.1384i − 0.0273195i
\(211\) 1042.00 0.339973 0.169986 0.985446i \(-0.445628\pi\)
0.169986 + 0.985446i \(0.445628\pi\)
\(212\) 465.000 0.150643
\(213\) − 2113.10i − 0.679753i
\(214\) − 2608.47i − 0.833230i
\(215\) 180.133i 0.0571395i
\(216\) − 2251.67i − 0.709289i
\(217\) 2160.00 0.675716
\(218\) 2688.00 0.835112
\(219\) − 917.987i − 0.283250i
\(220\) −120.000 −0.0367745
\(221\) 0 0
\(222\) 498.000 0.150557
\(223\) − 2407.55i − 0.722966i −0.932379 0.361483i \(-0.882270\pi\)
0.932379 0.361483i \(-0.117730\pi\)
\(224\) −2520.00 −0.751672
\(225\) −2806.00 −0.831407
\(226\) − 1189.92i − 0.350231i
\(227\) − 2407.55i − 0.703942i −0.936011 0.351971i \(-0.885512\pi\)
0.936011 0.351971i \(-0.114488\pi\)
\(228\) 1143.15i 0.332049i
\(229\) − 2508.01i − 0.723729i −0.932231 0.361864i \(-0.882140\pi\)
0.932231 0.361864i \(-0.117860\pi\)
\(230\) 234.000 0.0670848
\(231\) −384.000 −0.109374
\(232\) − 3174.85i − 0.898444i
\(233\) −5850.00 −1.64483 −0.822417 0.568885i \(-0.807375\pi\)
−0.822417 + 0.568885i \(0.807375\pi\)
\(234\) 0 0
\(235\) 522.000 0.144900
\(236\) 1420.28i 0.391748i
\(237\) 2552.00 0.699452
\(238\) −2808.00 −0.764771
\(239\) 5383.21i 1.45695i 0.685072 + 0.728475i \(0.259771\pi\)
−0.685072 + 0.728475i \(0.740229\pi\)
\(240\) 3.46410i 0 0.000931695i
\(241\) − 4917.29i − 1.31432i −0.753752 0.657159i \(-0.771758\pi\)
0.753752 0.657159i \(-0.228242\pi\)
\(242\) 1972.81i 0.524036i
\(243\) 3542.00 0.935059
\(244\) 725.000 0.190219
\(245\) 261.540i 0.0682006i
\(246\) −942.000 −0.244145
\(247\) 0 0
\(248\) 3510.00 0.898731
\(249\) 1579.63i 0.402028i
\(250\) −741.000 −0.187460
\(251\) −3978.00 −1.00036 −0.500178 0.865923i \(-0.666732\pi\)
−0.500178 + 0.865923i \(0.666732\pi\)
\(252\) − 1593.49i − 0.398334i
\(253\) − 1080.80i − 0.268574i
\(254\) 495.367i 0.122370i
\(255\) 405.300i 0.0995328i
\(256\) −4055.00 −0.989990
\(257\) 2067.00 0.501696 0.250848 0.968026i \(-0.419291\pi\)
0.250848 + 0.968026i \(0.419291\pi\)
\(258\) 360.267i 0.0869349i
\(259\) 1992.00 0.477903
\(260\) 0 0
\(261\) 3243.00 0.769106
\(262\) − 3419.07i − 0.806224i
\(263\) −2052.00 −0.481109 −0.240555 0.970636i \(-0.577329\pi\)
−0.240555 + 0.970636i \(0.577329\pi\)
\(264\) −624.000 −0.145472
\(265\) 161.081i 0.0373400i
\(266\) − 2743.57i − 0.632402i
\(267\) − 1953.75i − 0.447819i
\(268\) − 3931.76i − 0.896157i
\(269\) 3330.00 0.754772 0.377386 0.926056i \(-0.376823\pi\)
0.377386 + 0.926056i \(0.376823\pi\)
\(270\) 300.000 0.0676201
\(271\) 2805.92i 0.628958i 0.949264 + 0.314479i \(0.101830\pi\)
−0.949264 + 0.314479i \(0.898170\pi\)
\(272\) 117.000 0.0260815
\(273\) 0 0
\(274\) −1467.00 −0.323448
\(275\) 1690.48i 0.370690i
\(276\) −780.000 −0.170110
\(277\) 377.000 0.0817752 0.0408876 0.999164i \(-0.486981\pi\)
0.0408876 + 0.999164i \(0.486981\pi\)
\(278\) 408.764i 0.0881872i
\(279\) 3585.35i 0.769351i
\(280\) − 540.400i − 0.115340i
\(281\) 36.3731i 0.00772183i 0.999993 + 0.00386092i \(0.00122897\pi\)
−0.999993 + 0.00386092i \(0.998771\pi\)
\(282\) 1044.00 0.220458
\(283\) −7124.00 −1.49639 −0.748194 0.663480i \(-0.769079\pi\)
−0.748194 + 0.663480i \(0.769079\pi\)
\(284\) − 5282.75i − 1.10378i
\(285\) −396.000 −0.0823053
\(286\) 0 0
\(287\) −3768.00 −0.774976
\(288\) − 4182.90i − 0.855833i
\(289\) 8776.00 1.78628
\(290\) 423.000 0.0856532
\(291\) − 401.836i − 0.0809486i
\(292\) − 2294.97i − 0.459941i
\(293\) 8322.50i 1.65941i 0.558205 + 0.829703i \(0.311490\pi\)
−0.558205 + 0.829703i \(0.688510\pi\)
\(294\) 523.079i 0.103764i
\(295\) −492.000 −0.0971029
\(296\) 3237.00 0.635631
\(297\) − 1385.64i − 0.270717i
\(298\) −81.0000 −0.0157457
\(299\) 0 0
\(300\) 1220.00 0.234789
\(301\) 1441.07i 0.275952i
\(302\) −3066.00 −0.584200
\(303\) 858.000 0.162676
\(304\) 114.315i 0.0215672i
\(305\) 251.147i 0.0471497i
\(306\) − 4660.95i − 0.870747i
\(307\) 2220.49i 0.412801i 0.978468 + 0.206401i \(0.0661750\pi\)
−0.978468 + 0.206401i \(0.933825\pi\)
\(308\) −960.000 −0.177601
\(309\) 364.000 0.0670137
\(310\) 467.654i 0.0856805i
\(311\) 4914.00 0.895972 0.447986 0.894041i \(-0.352141\pi\)
0.447986 + 0.894041i \(0.352141\pi\)
\(312\) 0 0
\(313\) −518.000 −0.0935434 −0.0467717 0.998906i \(-0.514893\pi\)
−0.0467717 + 0.998906i \(0.514893\pi\)
\(314\) 2097.51i 0.376973i
\(315\) 552.000 0.0987355
\(316\) 6380.00 1.13577
\(317\) − 3916.17i − 0.693861i −0.937891 0.346930i \(-0.887224\pi\)
0.937891 0.346930i \(-0.112776\pi\)
\(318\) 322.161i 0.0568111i
\(319\) − 1953.75i − 0.342913i
\(320\) − 531.740i − 0.0928911i
\(321\) −3012.00 −0.523718
\(322\) 1872.00 0.323983
\(323\) 13374.9i 2.30402i
\(324\) 2105.00 0.360940
\(325\) 0 0
\(326\) −1740.00 −0.295613
\(327\) − 3103.84i − 0.524901i
\(328\) −6123.00 −1.03075
\(329\) 4176.00 0.699788
\(330\) − 83.1384i − 0.0138685i
\(331\) 7454.75i 1.23792i 0.785424 + 0.618958i \(0.212445\pi\)
−0.785424 + 0.618958i \(0.787555\pi\)
\(332\) 3949.08i 0.652812i
\(333\) 3306.48i 0.544127i
\(334\) −1584.00 −0.259499
\(335\) 1362.00 0.222131
\(336\) 27.7128i 0.00449958i
\(337\) −3575.00 −0.577871 −0.288936 0.957349i \(-0.593301\pi\)
−0.288936 + 0.957349i \(0.593301\pi\)
\(338\) 0 0
\(339\) −1374.00 −0.220134
\(340\) 1013.25i 0.161621i
\(341\) 2160.00 0.343022
\(342\) 4554.00 0.720035
\(343\) 6845.06i 1.07755i
\(344\) 2341.73i 0.367028i
\(345\) − 270.200i − 0.0421654i
\(346\) 4458.30i 0.692716i
\(347\) −6966.00 −1.07768 −0.538839 0.842409i \(-0.681137\pi\)
−0.538839 + 0.842409i \(0.681137\pi\)
\(348\) −1410.00 −0.217195
\(349\) − 6651.08i − 1.02013i −0.860137 0.510063i \(-0.829622\pi\)
0.860137 0.510063i \(-0.170378\pi\)
\(350\) −2928.00 −0.447166
\(351\) 0 0
\(352\) −2520.00 −0.381581
\(353\) 5630.90i 0.849015i 0.905424 + 0.424508i \(0.139553\pi\)
−0.905424 + 0.424508i \(0.860447\pi\)
\(354\) −984.000 −0.147737
\(355\) 1830.00 0.273595
\(356\) − 4884.38i − 0.727168i
\(357\) 3242.40i 0.480689i
\(358\) 6484.80i 0.957353i
\(359\) 7129.12i 1.04808i 0.851694 + 0.524040i \(0.175576\pi\)
−0.851694 + 0.524040i \(0.824424\pi\)
\(360\) 897.000 0.131322
\(361\) −6209.00 −0.905234
\(362\) − 1103.32i − 0.160191i
\(363\) 2278.00 0.329377
\(364\) 0 0
\(365\) 795.000 0.114006
\(366\) 502.295i 0.0717360i
\(367\) 2.00000 0.000284466 0 0.000142233 1.00000i \(-0.499955\pi\)
0.000142233 1.00000i \(0.499955\pi\)
\(368\) −78.0000 −0.0110490
\(369\) − 6254.44i − 0.882366i
\(370\) 431.281i 0.0605979i
\(371\) 1288.65i 0.180332i
\(372\) − 1558.85i − 0.217264i
\(373\) 3499.00 0.485714 0.242857 0.970062i \(-0.421915\pi\)
0.242857 + 0.970062i \(0.421915\pi\)
\(374\) −2808.00 −0.388231
\(375\) 855.633i 0.117826i
\(376\) 6786.00 0.930748
\(377\) 0 0
\(378\) 2400.00 0.326568
\(379\) 5518.31i 0.747907i 0.927447 + 0.373953i \(0.121998\pi\)
−0.927447 + 0.373953i \(0.878002\pi\)
\(380\) −990.000 −0.133647
\(381\) 572.000 0.0769146
\(382\) − 4499.87i − 0.602705i
\(383\) 7364.68i 0.982552i 0.871004 + 0.491276i \(0.163469\pi\)
−0.871004 + 0.491276i \(0.836531\pi\)
\(384\) 1846.37i 0.245370i
\(385\) − 332.554i − 0.0440221i
\(386\) −1935.00 −0.255153
\(387\) −2392.00 −0.314192
\(388\) − 1004.59i − 0.131444i
\(389\) −1209.00 −0.157580 −0.0787901 0.996891i \(-0.525106\pi\)
−0.0787901 + 0.996891i \(0.525106\pi\)
\(390\) 0 0
\(391\) −9126.00 −1.18036
\(392\) 3400.02i 0.438078i
\(393\) −3948.00 −0.506744
\(394\) −3552.00 −0.454181
\(395\) 2210.10i 0.281524i
\(396\) − 1593.49i − 0.202211i
\(397\) − 11694.8i − 1.47845i −0.673457 0.739226i \(-0.735191\pi\)
0.673457 0.739226i \(-0.264809\pi\)
\(398\) − 4368.23i − 0.550150i
\(399\) −3168.00 −0.397490
\(400\) 122.000 0.0152500
\(401\) − 2980.86i − 0.371215i −0.982624 0.185607i \(-0.940575\pi\)
0.982624 0.185607i \(-0.0594252\pi\)
\(402\) 2724.00 0.337962
\(403\) 0 0
\(404\) 2145.00 0.264153
\(405\) 729.193i 0.0894664i
\(406\) 3384.00 0.413658
\(407\) 1992.00 0.242604
\(408\) 5268.90i 0.639337i
\(409\) − 43.3013i − 0.00523499i −0.999997 0.00261749i \(-0.999167\pi\)
0.999997 0.00261749i \(-0.000833175\pi\)
\(410\) − 815.796i − 0.0982666i
\(411\) 1693.95i 0.203300i
\(412\) 910.000 0.108817
\(413\) −3936.00 −0.468954
\(414\) 3107.30i 0.368878i
\(415\) −1368.00 −0.161813
\(416\) 0 0
\(417\) 472.000 0.0554291
\(418\) − 2743.57i − 0.321034i
\(419\) −9462.00 −1.10322 −0.551610 0.834102i \(-0.685986\pi\)
−0.551610 + 0.834102i \(0.685986\pi\)
\(420\) −240.000 −0.0278829
\(421\) − 7068.50i − 0.818284i −0.912471 0.409142i \(-0.865828\pi\)
0.912471 0.409142i \(-0.134172\pi\)
\(422\) 1804.80i 0.208190i
\(423\) 6931.67i 0.796759i
\(424\) 2094.05i 0.239849i
\(425\) 14274.0 1.62915
\(426\) 3660.00 0.416262
\(427\) 2009.18i 0.227707i
\(428\) −7530.00 −0.850412
\(429\) 0 0
\(430\) −312.000 −0.0349906
\(431\) − 9928.12i − 1.10956i −0.831997 0.554780i \(-0.812802\pi\)
0.831997 0.554780i \(-0.187198\pi\)
\(432\) −100.000 −0.0111372
\(433\) −6617.00 −0.734394 −0.367197 0.930143i \(-0.619683\pi\)
−0.367197 + 0.930143i \(0.619683\pi\)
\(434\) 3741.23i 0.413790i
\(435\) − 488.438i − 0.0538364i
\(436\) − 7759.59i − 0.852332i
\(437\) − 8916.60i − 0.976061i
\(438\) 1590.00 0.173455
\(439\) 13988.0 1.52075 0.760377 0.649482i \(-0.225014\pi\)
0.760377 + 0.649482i \(0.225014\pi\)
\(440\) − 540.400i − 0.0585513i
\(441\) −3473.00 −0.375013
\(442\) 0 0
\(443\) 2004.00 0.214928 0.107464 0.994209i \(-0.465727\pi\)
0.107464 + 0.994209i \(0.465727\pi\)
\(444\) − 1437.60i − 0.153661i
\(445\) 1692.00 0.180244
\(446\) 4170.00 0.442725
\(447\) 93.5307i 0.00989676i
\(448\) − 4253.92i − 0.448613i
\(449\) − 9082.87i − 0.954671i −0.878721 0.477336i \(-0.841603\pi\)
0.878721 0.477336i \(-0.158397\pi\)
\(450\) − 4860.13i − 0.509131i
\(451\) −3768.00 −0.393411
\(452\) −3435.00 −0.357453
\(453\) 3540.31i 0.367193i
\(454\) 4170.00 0.431074
\(455\) 0 0
\(456\) −5148.00 −0.528678
\(457\) 2523.60i 0.258313i 0.991624 + 0.129156i \(0.0412269\pi\)
−0.991624 + 0.129156i \(0.958773\pi\)
\(458\) 4344.00 0.443192
\(459\) −11700.0 −1.18978
\(460\) − 675.500i − 0.0684681i
\(461\) − 19587.8i − 1.97894i −0.144725 0.989472i \(-0.546230\pi\)
0.144725 0.989472i \(-0.453770\pi\)
\(462\) − 665.108i − 0.0669775i
\(463\) − 8632.54i − 0.866497i −0.901274 0.433249i \(-0.857367\pi\)
0.901274 0.433249i \(-0.142633\pi\)
\(464\) −141.000 −0.0141072
\(465\) 540.000 0.0538535
\(466\) − 10132.5i − 1.00725i
\(467\) 5460.00 0.541025 0.270512 0.962716i \(-0.412807\pi\)
0.270512 + 0.962716i \(0.412807\pi\)
\(468\) 0 0
\(469\) 10896.0 1.07277
\(470\) 904.131i 0.0887328i
\(471\) 2422.00 0.236942
\(472\) −6396.00 −0.623728
\(473\) 1441.07i 0.140085i
\(474\) 4420.19i 0.428325i
\(475\) 13946.5i 1.34717i
\(476\) 8106.00i 0.780542i
\(477\) −2139.00 −0.205321
\(478\) −9324.00 −0.892196
\(479\) − 2553.04i − 0.243531i −0.992559 0.121766i \(-0.961144\pi\)
0.992559 0.121766i \(-0.0388556\pi\)
\(480\) −630.000 −0.0599072
\(481\) 0 0
\(482\) 8517.00 0.804852
\(483\) − 2161.60i − 0.203636i
\(484\) 5695.00 0.534842
\(485\) 348.000 0.0325812
\(486\) 6134.92i 0.572605i
\(487\) − 10828.8i − 1.00760i −0.863822 0.503798i \(-0.831936\pi\)
0.863822 0.503798i \(-0.168064\pi\)
\(488\) 3264.92i 0.302860i
\(489\) 2009.18i 0.185804i
\(490\) −453.000 −0.0417642
\(491\) 11388.0 1.04671 0.523354 0.852116i \(-0.324681\pi\)
0.523354 + 0.852116i \(0.324681\pi\)
\(492\) 2719.32i 0.249180i
\(493\) −16497.0 −1.50707
\(494\) 0 0
\(495\) 552.000 0.0501223
\(496\) − 155.885i − 0.0141117i
\(497\) 14640.0 1.32132
\(498\) −2736.00 −0.246191
\(499\) 17677.3i 1.58586i 0.609311 + 0.792931i \(0.291446\pi\)
−0.609311 + 0.792931i \(0.708554\pi\)
\(500\) 2139.08i 0.191325i
\(501\) 1829.05i 0.163105i
\(502\) − 6890.10i − 0.612590i
\(503\) 3876.00 0.343583 0.171792 0.985133i \(-0.445044\pi\)
0.171792 + 0.985133i \(0.445044\pi\)
\(504\) 7176.00 0.634215
\(505\) 743.050i 0.0654758i
\(506\) 1872.00 0.164467
\(507\) 0 0
\(508\) 1430.00 0.124894
\(509\) − 17065.9i − 1.48612i −0.669228 0.743058i \(-0.733375\pi\)
0.669228 0.743058i \(-0.266625\pi\)
\(510\) −702.000 −0.0609511
\(511\) 6360.00 0.550587
\(512\) 361.999i 0.0312465i
\(513\) − 11431.5i − 0.983849i
\(514\) 3580.15i 0.307225i
\(515\) 315.233i 0.0269725i
\(516\) 1040.00 0.0887276
\(517\) 4176.00 0.355242
\(518\) 3450.25i 0.292655i
\(519\) 5148.00 0.435399
\(520\) 0 0
\(521\) 2121.00 0.178355 0.0891773 0.996016i \(-0.471576\pi\)
0.0891773 + 0.996016i \(0.471576\pi\)
\(522\) 5617.04i 0.470979i
\(523\) −11464.0 −0.958481 −0.479241 0.877684i \(-0.659088\pi\)
−0.479241 + 0.877684i \(0.659088\pi\)
\(524\) −9870.00 −0.822849
\(525\) 3380.96i 0.281062i
\(526\) − 3554.17i − 0.294618i
\(527\) − 18238.5i − 1.50755i
\(528\) 27.7128i 0.00228418i
\(529\) −6083.00 −0.499959
\(530\) −279.000 −0.0228660
\(531\) − 6533.30i − 0.533938i
\(532\) −7920.00 −0.645443
\(533\) 0 0
\(534\) 3384.00 0.274232
\(535\) − 2608.47i − 0.210792i
\(536\) 17706.0 1.42683
\(537\) 7488.00 0.601734
\(538\) 5767.73i 0.462202i
\(539\) 2092.32i 0.167203i
\(540\) − 866.025i − 0.0690144i
\(541\) 4764.87i 0.378665i 0.981913 + 0.189333i \(0.0606324\pi\)
−0.981913 + 0.189333i \(0.939368\pi\)
\(542\) −4860.00 −0.385157
\(543\) −1274.00 −0.100686
\(544\) 21278.2i 1.67702i
\(545\) 2688.00 0.211268
\(546\) 0 0
\(547\) 6554.00 0.512301 0.256151 0.966637i \(-0.417546\pi\)
0.256151 + 0.966637i \(0.417546\pi\)
\(548\) 4234.86i 0.330118i
\(549\) −3335.00 −0.259261
\(550\) −2928.00 −0.227001
\(551\) − 16118.5i − 1.24622i
\(552\) − 3512.60i − 0.270844i
\(553\) 17680.8i 1.35961i
\(554\) 652.983i 0.0500769i
\(555\) 498.000 0.0380881
\(556\) 1180.00 0.0900057
\(557\) − 18112.1i − 1.37780i −0.724858 0.688898i \(-0.758095\pi\)
0.724858 0.688898i \(-0.241905\pi\)
\(558\) −6210.00 −0.471130
\(559\) 0 0
\(560\) −24.0000 −0.00181104
\(561\) 3242.40i 0.244018i
\(562\) −63.0000 −0.00472864
\(563\) −12168.0 −0.910870 −0.455435 0.890269i \(-0.650516\pi\)
−0.455435 + 0.890269i \(0.650516\pi\)
\(564\) − 3013.77i − 0.225005i
\(565\) − 1189.92i − 0.0886022i
\(566\) − 12339.1i − 0.916347i
\(567\) 5833.55i 0.432074i
\(568\) 23790.0 1.75741
\(569\) −7722.00 −0.568933 −0.284467 0.958686i \(-0.591817\pi\)
−0.284467 + 0.958686i \(0.591817\pi\)
\(570\) − 685.892i − 0.0504015i
\(571\) 11440.0 0.838440 0.419220 0.907885i \(-0.362304\pi\)
0.419220 + 0.907885i \(0.362304\pi\)
\(572\) 0 0
\(573\) −5196.00 −0.378824
\(574\) − 6526.37i − 0.474574i
\(575\) −9516.00 −0.690165
\(576\) 7061.00 0.510778
\(577\) − 15444.7i − 1.11433i −0.830400 0.557167i \(-0.811888\pi\)
0.830400 0.557167i \(-0.188112\pi\)
\(578\) 15200.5i 1.09387i
\(579\) 2234.35i 0.160373i
\(580\) − 1221.10i − 0.0874194i
\(581\) −10944.0 −0.781469
\(582\) 696.000 0.0495707
\(583\) 1288.65i 0.0915442i
\(584\) 10335.0 0.732304
\(585\) 0 0
\(586\) −14415.0 −1.01617
\(587\) − 14071.2i − 0.989403i −0.869063 0.494702i \(-0.835277\pi\)
0.869063 0.494702i \(-0.164723\pi\)
\(588\) 1510.00 0.105904
\(589\) 17820.0 1.24662
\(590\) − 852.169i − 0.0594631i
\(591\) 4101.50i 0.285470i
\(592\) − 143.760i − 0.00998059i
\(593\) − 26938.6i − 1.86549i −0.360538 0.932745i \(-0.617407\pi\)
0.360538 0.932745i \(-0.382593\pi\)
\(594\) 2400.00 0.165780
\(595\) −2808.00 −0.193474
\(596\) 233.827i 0.0160703i
\(597\) −5044.00 −0.345791
\(598\) 0 0
\(599\) −10554.0 −0.719908 −0.359954 0.932970i \(-0.617208\pi\)
−0.359954 + 0.932970i \(0.617208\pi\)
\(600\) 5494.07i 0.373824i
\(601\) −14831.0 −1.00660 −0.503302 0.864111i \(-0.667882\pi\)
−0.503302 + 0.864111i \(0.667882\pi\)
\(602\) −2496.00 −0.168986
\(603\) 18086.1i 1.22143i
\(604\) 8850.78i 0.596247i
\(605\) 1972.81i 0.132572i
\(606\) 1486.10i 0.0996183i
\(607\) −7954.00 −0.531866 −0.265933 0.963991i \(-0.585680\pi\)
−0.265933 + 0.963991i \(0.585680\pi\)
\(608\) −20790.0 −1.38675
\(609\) − 3907.51i − 0.260000i
\(610\) −435.000 −0.0288732
\(611\) 0 0
\(612\) −13455.0 −0.888703
\(613\) 25220.4i 1.66173i 0.556472 + 0.830866i \(0.312155\pi\)
−0.556472 + 0.830866i \(0.687845\pi\)
\(614\) −3846.00 −0.252788
\(615\) −942.000 −0.0617644
\(616\) − 4323.20i − 0.282771i
\(617\) 17384.6i 1.13432i 0.823607 + 0.567162i \(0.191959\pi\)
−0.823607 + 0.567162i \(0.808041\pi\)
\(618\) 630.466i 0.0410373i
\(619\) 8209.92i 0.533093i 0.963822 + 0.266547i \(0.0858826\pi\)
−0.963822 + 0.266547i \(0.914117\pi\)
\(620\) 1350.00 0.0874473
\(621\) 7800.00 0.504031
\(622\) 8511.30i 0.548669i
\(623\) 13536.0 0.870479
\(624\) 0 0
\(625\) 14509.0 0.928576
\(626\) − 897.202i − 0.0572834i
\(627\) −3168.00 −0.201783
\(628\) 6055.00 0.384747
\(629\) − 16819.9i − 1.06622i
\(630\) 956.092i 0.0604629i
\(631\) − 12865.7i − 0.811687i −0.913943 0.405843i \(-0.866978\pi\)
0.913943 0.405843i \(-0.133022\pi\)
\(632\) 28731.3i 1.80834i
\(633\) 2084.00 0.130856
\(634\) 6783.00 0.424901
\(635\) 495.367i 0.0309575i
\(636\) 930.000 0.0579825
\(637\) 0 0
\(638\) 3384.00 0.209990
\(639\) 24300.7i 1.50441i
\(640\) −1599.00 −0.0987594
\(641\) 6201.00 0.382098 0.191049 0.981581i \(-0.438811\pi\)
0.191049 + 0.981581i \(0.438811\pi\)
\(642\) − 5216.94i − 0.320710i
\(643\) 16821.7i 1.03170i 0.856679 + 0.515849i \(0.172524\pi\)
−0.856679 + 0.515849i \(0.827476\pi\)
\(644\) − 5404.00i − 0.330664i
\(645\) 360.267i 0.0219930i
\(646\) −23166.0 −1.41092
\(647\) −13494.0 −0.819944 −0.409972 0.912098i \(-0.634462\pi\)
−0.409972 + 0.912098i \(0.634462\pi\)
\(648\) 9479.51i 0.574677i
\(649\) −3936.00 −0.238061
\(650\) 0 0
\(651\) 4320.00 0.260083
\(652\) 5022.95i 0.301708i
\(653\) −11334.0 −0.679225 −0.339612 0.940566i \(-0.610296\pi\)
−0.339612 + 0.940566i \(0.610296\pi\)
\(654\) 5376.00 0.321435
\(655\) − 3419.07i − 0.203960i
\(656\) 271.932i 0.0161847i
\(657\) 10556.8i 0.626883i
\(658\) 7233.04i 0.428531i
\(659\) 13236.0 0.782400 0.391200 0.920306i \(-0.372060\pi\)
0.391200 + 0.920306i \(0.372060\pi\)
\(660\) −240.000 −0.0141545
\(661\) − 11852.4i − 0.697437i −0.937228 0.348718i \(-0.886617\pi\)
0.937228 0.348718i \(-0.113383\pi\)
\(662\) −12912.0 −0.758065
\(663\) 0 0
\(664\) −17784.0 −1.03939
\(665\) − 2743.57i − 0.159986i
\(666\) −5727.00 −0.333208
\(667\) 10998.0 0.638447
\(668\) 4572.61i 0.264850i
\(669\) − 4815.10i − 0.278270i
\(670\) 2359.05i 0.136027i
\(671\) 2009.18i 0.115594i
\(672\) −5040.00 −0.289319
\(673\) 8021.00 0.459416 0.229708 0.973260i \(-0.426223\pi\)
0.229708 + 0.973260i \(0.426223\pi\)
\(674\) − 6192.08i − 0.353873i
\(675\) −12200.0 −0.695671
\(676\) 0 0
\(677\) −21630.0 −1.22793 −0.613965 0.789333i \(-0.710426\pi\)
−0.613965 + 0.789333i \(0.710426\pi\)
\(678\) − 2379.84i − 0.134804i
\(679\) 2784.00 0.157349
\(680\) −4563.00 −0.257328
\(681\) − 4815.10i − 0.270947i
\(682\) 3741.23i 0.210057i
\(683\) 26538.5i 1.48677i 0.668861 + 0.743387i \(0.266782\pi\)
−0.668861 + 0.743387i \(0.733218\pi\)
\(684\) − 13146.3i − 0.734883i
\(685\) −1467.00 −0.0818266
\(686\) −11856.0 −0.659860
\(687\) − 5016.02i − 0.278563i
\(688\) 104.000 0.00576303
\(689\) 0 0
\(690\) 468.000 0.0258210
\(691\) − 831.384i − 0.0457704i −0.999738 0.0228852i \(-0.992715\pi\)
0.999738 0.0228852i \(-0.00728522\pi\)
\(692\) 12870.0 0.707000
\(693\) 4416.00 0.242063
\(694\) − 12065.5i − 0.659941i
\(695\) 408.764i 0.0223098i
\(696\) − 6349.70i − 0.345811i
\(697\) 31816.0i 1.72901i
\(698\) 11520.0 0.624697
\(699\) −11700.0 −0.633097
\(700\) 8452.41i 0.456387i
\(701\) 30186.0 1.62640 0.813202 0.581981i \(-0.197722\pi\)
0.813202 + 0.581981i \(0.197722\pi\)
\(702\) 0 0
\(703\) 16434.0 0.881679
\(704\) − 4253.92i − 0.227735i
\(705\) 1044.00 0.0557721
\(706\) −9753.00 −0.519914
\(707\) 5944.40i 0.316212i
\(708\) 2840.56i 0.150784i
\(709\) 11880.1i 0.629292i 0.949209 + 0.314646i \(0.101886\pi\)
−0.949209 + 0.314646i \(0.898114\pi\)
\(710\) 3169.65i 0.167542i
\(711\) −29348.0 −1.54801
\(712\) 21996.0 1.15777
\(713\) 12159.0i 0.638651i
\(714\) −5616.00 −0.294361
\(715\) 0 0
\(716\) 18720.0 0.977094
\(717\) 10766.4i 0.560780i
\(718\) −12348.0 −0.641815
\(719\) 18408.0 0.954802 0.477401 0.878686i \(-0.341579\pi\)
0.477401 + 0.878686i \(0.341579\pi\)
\(720\) − 39.8372i − 0.00206201i
\(721\) 2521.87i 0.130262i
\(722\) − 10754.3i − 0.554340i
\(723\) − 9834.58i − 0.505881i
\(724\) −3185.00 −0.163494
\(725\) −17202.0 −0.881195
\(726\) 3945.61i 0.201702i
\(727\) 21112.0 1.07703 0.538515 0.842616i \(-0.318986\pi\)
0.538515 + 0.842616i \(0.318986\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 1376.98i 0.0698142i
\(731\) 12168.0 0.615663
\(732\) 1450.00 0.0732152
\(733\) 23959.5i 1.20732i 0.797243 + 0.603658i \(0.206291\pi\)
−0.797243 + 0.603658i \(0.793709\pi\)
\(734\) 3.46410i 0 0.000174199i
\(735\) 523.079i 0.0262504i
\(736\) − 14185.5i − 0.710441i
\(737\) 10896.0 0.544585
\(738\) 10833.0 0.540336
\(739\) 3166.19i 0.157605i 0.996890 + 0.0788025i \(0.0251097\pi\)
−0.996890 + 0.0788025i \(0.974890\pi\)
\(740\) 1245.00 0.0618474
\(741\) 0 0
\(742\) −2232.00 −0.110430
\(743\) − 30103.0i − 1.48637i −0.669086 0.743185i \(-0.733314\pi\)
0.669086 0.743185i \(-0.266686\pi\)
\(744\) 7020.00 0.345922
\(745\) −81.0000 −0.00398337
\(746\) 6060.45i 0.297438i
\(747\) − 18165.7i − 0.889759i
\(748\) 8106.00i 0.396236i
\(749\) − 20867.7i − 1.01801i
\(750\) −1482.00 −0.0721533
\(751\) 28496.0 1.38460 0.692299 0.721610i \(-0.256598\pi\)
0.692299 + 0.721610i \(0.256598\pi\)
\(752\) − 301.377i − 0.0146145i
\(753\) −7956.00 −0.385037
\(754\) 0 0
\(755\) −3066.00 −0.147792
\(756\) − 6928.20i − 0.333302i
\(757\) 17422.0 0.836477 0.418239 0.908337i \(-0.362648\pi\)
0.418239 + 0.908337i \(0.362648\pi\)
\(758\) −9558.00 −0.457998
\(759\) − 2161.60i − 0.103374i
\(760\) − 4458.30i − 0.212789i
\(761\) − 41326.7i − 1.96858i −0.176547 0.984292i \(-0.556493\pi\)
0.176547 0.984292i \(-0.443507\pi\)
\(762\) 990.733i 0.0471004i
\(763\) 21504.0 1.02031
\(764\) −12990.0 −0.615133
\(765\) − 4660.95i − 0.220284i
\(766\) −12756.0 −0.601688
\(767\) 0 0
\(768\) −8110.00 −0.381047
\(769\) − 14071.2i − 0.659844i −0.944008 0.329922i \(-0.892978\pi\)
0.944008 0.329922i \(-0.107022\pi\)
\(770\) 576.000 0.0269579
\(771\) 4134.00 0.193103
\(772\) 5585.86i 0.260414i
\(773\) − 200.918i − 0.00934866i −0.999989 0.00467433i \(-0.998512\pi\)
0.999989 0.00467433i \(-0.00148789\pi\)
\(774\) − 4143.07i − 0.192402i
\(775\) − 19017.9i − 0.881476i
\(776\) 4524.00 0.209281
\(777\) 3984.00 0.183945
\(778\) − 2094.05i − 0.0964978i
\(779\) −31086.0 −1.42975
\(780\) 0 0
\(781\) 14640.0 0.670756
\(782\) − 15806.7i − 0.722821i
\(783\) 14100.0 0.643541
\(784\) 151.000 0.00687864
\(785\) 2097.51i 0.0953675i
\(786\) − 6838.14i − 0.310316i
\(787\) 6903.95i 0.312706i 0.987701 + 0.156353i \(0.0499737\pi\)
−0.987701 + 0.156353i \(0.950026\pi\)
\(788\) 10253.7i 0.463546i
\(789\) −4104.00 −0.185179
\(790\) −3828.00 −0.172398
\(791\) − 9519.35i − 0.427900i
\(792\) 7176.00 0.321955
\(793\) 0 0
\(794\) 20256.0 0.905363
\(795\) 322.161i 0.0143722i
\(796\) −12610.0 −0.561494
\(797\) −31278.0 −1.39012 −0.695059 0.718953i \(-0.744622\pi\)
−0.695059 + 0.718953i \(0.744622\pi\)
\(798\) − 5487.14i − 0.243412i
\(799\) − 35261.1i − 1.56126i
\(800\) 22187.6i 0.980561i
\(801\) 22468.2i 0.991103i
\(802\) 5163.00 0.227322
\(803\) 6360.00 0.279501
\(804\) − 7863.51i − 0.344931i
\(805\) 1872.00 0.0819619
\(806\) 0 0
\(807\) 6660.00 0.290512
\(808\) 9659.65i 0.420576i
\(809\) 8049.00 0.349799 0.174900 0.984586i \(-0.444040\pi\)
0.174900 + 0.984586i \(0.444040\pi\)
\(810\) −1263.00 −0.0547868
\(811\) − 14026.1i − 0.607305i −0.952783 0.303653i \(-0.901794\pi\)
0.952783 0.303653i \(-0.0982062\pi\)
\(812\) − 9768.77i − 0.422188i
\(813\) 5611.84i 0.242086i
\(814\) 3450.25i 0.148564i
\(815\) −1740.00 −0.0747847
\(816\) 234.000 0.0100388
\(817\) 11888.8i 0.509102i
\(818\) 75.0000 0.00320576
\(819\) 0 0
\(820\) −2355.00 −0.100293
\(821\) − 8036.72i − 0.341636i −0.985303 0.170818i \(-0.945359\pi\)
0.985303 0.170818i \(-0.0546410\pi\)
\(822\) −2934.00 −0.124495
\(823\) −40300.0 −1.70689 −0.853445 0.521184i \(-0.825491\pi\)
−0.853445 + 0.521184i \(0.825491\pi\)
\(824\) 4098.03i 0.173255i
\(825\) 3380.96i 0.142679i
\(826\) − 6817.35i − 0.287174i
\(827\) − 39525.4i − 1.66195i −0.556310 0.830975i \(-0.687783\pi\)
0.556310 0.830975i \(-0.312217\pi\)
\(828\) 8970.00 0.376484
\(829\) −12311.0 −0.515776 −0.257888 0.966175i \(-0.583027\pi\)
−0.257888 + 0.966175i \(0.583027\pi\)
\(830\) − 2369.45i − 0.0990899i
\(831\) 754.000 0.0314753
\(832\) 0 0
\(833\) 17667.0 0.734844
\(834\) 817.528i 0.0339433i
\(835\) −1584.00 −0.0656486
\(836\) −7920.00 −0.327654
\(837\) 15588.5i 0.643747i
\(838\) − 16388.7i − 0.675581i
\(839\) − 21467.0i − 0.883343i −0.897177 0.441671i \(-0.854386\pi\)
0.897177 0.441671i \(-0.145614\pi\)
\(840\) − 1080.80i − 0.0443942i
\(841\) −4508.00 −0.184837
\(842\) 12243.0 0.501095
\(843\) 72.7461i 0.00297214i
\(844\) 5210.00 0.212483
\(845\) 0 0
\(846\) −12006.0 −0.487913
\(847\) 15782.4i 0.640249i
\(848\) 93.0000 0.00376608
\(849\) −14248.0 −0.575960
\(850\) 24723.3i 0.997649i
\(851\) 11213.3i 0.451688i
\(852\) − 10565.5i − 0.424846i
\(853\) − 774.227i − 0.0310774i −0.999879 0.0155387i \(-0.995054\pi\)
0.999879 0.0155387i \(-0.00494632\pi\)
\(854\) −3480.00 −0.139442
\(855\) 4554.00 0.182156
\(856\) − 33910.1i − 1.35400i
\(857\) 13923.0 0.554960 0.277480 0.960731i \(-0.410501\pi\)
0.277480 + 0.960731i \(0.410501\pi\)
\(858\) 0 0
\(859\) −22358.0 −0.888062 −0.444031 0.896011i \(-0.646452\pi\)
−0.444031 + 0.896011i \(0.646452\pi\)
\(860\) 900.666i 0.0357122i
\(861\) −7536.00 −0.298288
\(862\) 17196.0 0.679464
\(863\) 2230.88i 0.0879955i 0.999032 + 0.0439977i \(0.0140094\pi\)
−0.999032 + 0.0439977i \(0.985991\pi\)
\(864\) − 18186.5i − 0.716109i
\(865\) 4458.30i 0.175245i
\(866\) − 11461.0i − 0.449723i
\(867\) 17552.0 0.687540
\(868\) 10800.0 0.422322
\(869\) 17680.8i 0.690195i
\(870\) 846.000 0.0329679
\(871\) 0 0
\(872\) 34944.0 1.35706
\(873\) 4621.11i 0.179153i
\(874\) 15444.0 0.597713
\(875\) −5928.00 −0.229032
\(876\) − 4589.93i − 0.177031i
\(877\) 16754.1i 0.645093i 0.946554 + 0.322547i \(0.104539\pi\)
−0.946554 + 0.322547i \(0.895461\pi\)
\(878\) 24227.9i 0.931268i
\(879\) 16645.0i 0.638706i
\(880\) −24.0000 −0.000919363 0
\(881\) 17355.0 0.663683 0.331842 0.943335i \(-0.392330\pi\)
0.331842 + 0.943335i \(0.392330\pi\)
\(882\) − 6015.41i − 0.229648i
\(883\) −46982.0 −1.79057 −0.895283 0.445497i \(-0.853027\pi\)
−0.895283 + 0.445497i \(0.853027\pi\)
\(884\) 0 0
\(885\) −984.000 −0.0373749
\(886\) 3471.03i 0.131616i
\(887\) −8916.00 −0.337508 −0.168754 0.985658i \(-0.553974\pi\)
−0.168754 + 0.985658i \(0.553974\pi\)
\(888\) 6474.00 0.244655
\(889\) 3962.93i 0.149508i
\(890\) 2930.63i 0.110376i
\(891\) 5833.55i 0.219339i
\(892\) − 12037.8i − 0.451854i
\(893\) 34452.0 1.29103
\(894\) −162.000 −0.00606050
\(895\) 6484.80i 0.242193i
\(896\) −12792.0 −0.476954
\(897\) 0 0
\(898\) 15732.0 0.584614
\(899\) 21979.7i 0.815423i
\(900\) −14030.0 −0.519630
\(901\) 10881.0 0.402329
\(902\) − 6526.37i − 0.240914i
\(903\) 2882.13i 0.106214i
\(904\) − 15468.9i − 0.569126i
\(905\) − 1103.32i − 0.0405254i
\(906\) −6132.00 −0.224859
\(907\) −30836.0 −1.12888 −0.564439 0.825475i \(-0.690908\pi\)
−0.564439 + 0.825475i \(0.690908\pi\)
\(908\) − 12037.8i − 0.439964i
\(909\) −9867.00 −0.360031
\(910\) 0 0
\(911\) −27480.0 −0.999400 −0.499700 0.866199i \(-0.666556\pi\)
−0.499700 + 0.866199i \(0.666556\pi\)
\(912\) 228.631i 0.00830123i
\(913\) −10944.0 −0.396707
\(914\) −4371.00 −0.158184
\(915\) 502.295i 0.0181479i
\(916\) − 12540.0i − 0.452331i
\(917\) − 27352.5i − 0.985017i
\(918\) − 20265.0i − 0.728589i
\(919\) −28442.0 −1.02091 −0.510454 0.859905i \(-0.670523\pi\)
−0.510454 + 0.859905i \(0.670523\pi\)
\(920\) 3042.00 0.109013
\(921\) 4440.98i 0.158887i
\(922\) 33927.0 1.21185
\(923\) 0 0
\(924\) −1920.00 −0.0683586
\(925\) − 17538.7i − 0.623427i
\(926\) 14952.0 0.530619
\(927\) −4186.00 −0.148313
\(928\) − 25643.0i − 0.907083i
\(929\) − 6978.43i − 0.246453i −0.992379 0.123227i \(-0.960676\pi\)
0.992379 0.123227i \(-0.0393242\pi\)
\(930\) 935.307i 0.0329784i
\(931\) 17261.6i 0.607655i
\(932\) −29250.0 −1.02802
\(933\) 9828.00 0.344860
\(934\) 9457.00i 0.331309i
\(935\) −2808.00 −0.0982154
\(936\) 0 0
\(937\) −38465.0 −1.34109 −0.670543 0.741871i \(-0.733939\pi\)
−0.670543 + 0.741871i \(0.733939\pi\)
\(938\) 18872.4i 0.656937i
\(939\) −1036.00 −0.0360049
\(940\) 2610.00 0.0905626
\(941\) − 4884.38i − 0.169210i −0.996415 0.0846049i \(-0.973037\pi\)
0.996415 0.0846049i \(-0.0269628\pi\)
\(942\) 4195.03i 0.145097i
\(943\) − 21210.7i − 0.732466i
\(944\) 284.056i 0.00979369i
\(945\) 2400.00 0.0826159
\(946\) −2496.00 −0.0857843
\(947\) 21765.0i 0.746849i 0.927661 + 0.373424i \(0.121816\pi\)
−0.927661 + 0.373424i \(0.878184\pi\)
\(948\) 12760.0 0.437158
\(949\) 0 0
\(950\) −24156.0 −0.824973
\(951\) − 7832.33i − 0.267067i
\(952\) −36504.0 −1.24275
\(953\) 6474.00 0.220056 0.110028 0.993928i \(-0.464906\pi\)
0.110028 + 0.993928i \(0.464906\pi\)
\(954\) − 3704.86i − 0.125733i
\(955\) − 4499.87i − 0.152474i
\(956\) 26916.1i 0.910594i
\(957\) − 3907.51i − 0.131987i
\(958\) 4422.00 0.149132
\(959\) −11736.0 −0.395177
\(960\) − 1063.48i − 0.0357538i
\(961\) 5491.00 0.184317
\(962\) 0 0
\(963\) 34638.0 1.15908
\(964\) − 24586.5i − 0.821449i
\(965\) −1935.00 −0.0645491
\(966\) 3744.00 0.124701
\(967\) − 7541.35i − 0.250789i −0.992107 0.125395i \(-0.959980\pi\)
0.992107 0.125395i \(-0.0400197\pi\)
\(968\) 25646.5i 0.851559i
\(969\) 26749.8i 0.886819i
\(970\) 602.754i 0.0199518i
\(971\) 34998.0 1.15668 0.578342 0.815795i \(-0.303700\pi\)
0.578342 + 0.815795i \(0.303700\pi\)
\(972\) 17710.0 0.584412
\(973\) 3270.11i 0.107744i
\(974\) 18756.0 0.617024
\(975\) 0 0
\(976\) 145.000 0.00475547
\(977\) − 25216.9i − 0.825753i −0.910787 0.412877i \(-0.864524\pi\)
0.910787 0.412877i \(-0.135476\pi\)
\(978\) −3480.00 −0.113781
\(979\) 13536.0 0.441892
\(980\) 1307.70i 0.0426254i
\(981\) 35694.1i 1.16170i
\(982\) 19724.6i 0.640975i
\(983\) 56440.6i 1.83131i 0.401967 + 0.915654i \(0.368327\pi\)
−0.401967 + 0.915654i \(0.631673\pi\)
\(984\) −12246.0 −0.396736
\(985\) −3552.00 −0.114900
\(986\) − 28573.6i − 0.922891i
\(987\) 8352.00 0.269349
\(988\) 0 0
\(989\) −8112.00 −0.260816
\(990\) 956.092i 0.0306935i
\(991\) 59282.0 1.90026 0.950129 0.311859i \(-0.100951\pi\)
0.950129 + 0.311859i \(0.100951\pi\)
\(992\) 28350.0 0.907372
\(993\) 14909.5i 0.476474i
\(994\) 25357.2i 0.809137i
\(995\) − 4368.23i − 0.139178i
\(996\) 7898.15i 0.251268i
\(997\) −37711.0 −1.19791 −0.598957 0.800782i \(-0.704418\pi\)
−0.598957 + 0.800782i \(0.704418\pi\)
\(998\) −30618.0 −0.971138
\(999\) 14376.0i 0.455292i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.4.b.d.168.2 2
13.2 odd 12 169.4.c.h.22.1 4
13.3 even 3 169.4.e.a.147.1 2
13.4 even 6 169.4.e.a.23.1 2
13.5 odd 4 169.4.a.i.1.2 2
13.6 odd 12 169.4.c.h.146.1 4
13.7 odd 12 169.4.c.h.146.2 4
13.8 odd 4 169.4.a.i.1.1 2
13.9 even 3 13.4.e.b.10.1 yes 2
13.10 even 6 13.4.e.b.4.1 2
13.11 odd 12 169.4.c.h.22.2 4
13.12 even 2 inner 169.4.b.d.168.1 2
39.5 even 4 1521.4.a.o.1.1 2
39.8 even 4 1521.4.a.o.1.2 2
39.23 odd 6 117.4.q.a.82.1 2
39.35 odd 6 117.4.q.a.10.1 2
52.23 odd 6 208.4.w.b.17.1 2
52.35 odd 6 208.4.w.b.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.4.e.b.4.1 2 13.10 even 6
13.4.e.b.10.1 yes 2 13.9 even 3
117.4.q.a.10.1 2 39.35 odd 6
117.4.q.a.82.1 2 39.23 odd 6
169.4.a.i.1.1 2 13.8 odd 4
169.4.a.i.1.2 2 13.5 odd 4
169.4.b.d.168.1 2 13.12 even 2 inner
169.4.b.d.168.2 2 1.1 even 1 trivial
169.4.c.h.22.1 4 13.2 odd 12
169.4.c.h.22.2 4 13.11 odd 12
169.4.c.h.146.1 4 13.6 odd 12
169.4.c.h.146.2 4 13.7 odd 12
169.4.e.a.23.1 2 13.4 even 6
169.4.e.a.147.1 2 13.3 even 3
208.4.w.b.17.1 2 52.23 odd 6
208.4.w.b.49.1 2 52.35 odd 6
1521.4.a.o.1.1 2 39.5 even 4
1521.4.a.o.1.2 2 39.8 even 4