Properties

Label 169.4.c.h.22.2
Level $169$
Weight $4$
Character 169.22
Analytic conductor $9.971$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(22,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.22");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.97132279097\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 169.22
Dual form 169.4.c.h.146.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(2.50000 + 4.33013i) q^{4} -1.73205 q^{5} +(1.73205 + 3.00000i) q^{6} +(-6.92820 - 12.0000i) q^{7} +22.5167 q^{8} +(11.5000 + 19.9186i) q^{9} +(-1.50000 + 2.59808i) q^{10} +(-6.92820 + 12.0000i) q^{11} -10.0000 q^{12} -24.0000 q^{14} +(1.73205 - 3.00000i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(58.5000 + 101.325i) q^{17} +39.8372 q^{18} +(57.1577 + 99.0000i) q^{19} +(-4.33013 - 7.50000i) q^{20} +27.7128 q^{21} +(12.0000 + 20.7846i) q^{22} +(-39.0000 + 67.5500i) q^{23} +(-22.5167 + 39.0000i) q^{24} -122.000 q^{25} -100.000 q^{27} +(34.6410 - 60.0000i) q^{28} +(70.5000 - 122.110i) q^{29} +(-3.00000 - 5.19615i) q^{30} +155.885 q^{31} +(90.9327 + 157.500i) q^{32} +(-13.8564 - 24.0000i) q^{33} +202.650 q^{34} +(12.0000 + 20.7846i) q^{35} +(-57.5000 + 99.5929i) q^{36} +(71.8801 - 124.500i) q^{37} +198.000 q^{38} -39.0000 q^{40} +(135.966 - 235.500i) q^{41} +(24.0000 - 41.5692i) q^{42} +(52.0000 + 90.0666i) q^{43} -69.2820 q^{44} +(-19.9186 - 34.5000i) q^{45} +(67.5500 + 117.000i) q^{46} -301.377 q^{47} +(-1.00000 - 1.73205i) q^{48} +(75.5000 - 130.770i) q^{49} +(-105.655 + 183.000i) q^{50} -234.000 q^{51} +93.0000 q^{53} +(-86.6025 + 150.000i) q^{54} +(12.0000 - 20.7846i) q^{55} +(-156.000 - 270.200i) q^{56} -228.631 q^{57} +(-122.110 - 211.500i) q^{58} +(-142.028 - 246.000i) q^{59} +17.3205 q^{60} +(-72.5000 - 125.574i) q^{61} +(135.000 - 233.827i) q^{62} +(159.349 - 276.000i) q^{63} +307.000 q^{64} -48.0000 q^{66} +(-393.176 + 681.000i) q^{67} +(-292.500 + 506.625i) q^{68} +(-78.0000 - 135.100i) q^{69} +41.5692 q^{70} +(-528.275 - 915.000i) q^{71} +(258.942 + 448.500i) q^{72} -458.993 q^{73} +(-124.500 - 215.640i) q^{74} +(122.000 - 211.310i) q^{75} +(-285.788 + 495.000i) q^{76} +192.000 q^{77} +1276.00 q^{79} +(0.866025 - 1.50000i) q^{80} +(-210.500 + 364.597i) q^{81} +(-235.500 - 407.898i) q^{82} -789.815 q^{83} +(69.2820 + 120.000i) q^{84} +(-101.325 - 175.500i) q^{85} +180.133 q^{86} +(141.000 + 244.219i) q^{87} +(-156.000 + 270.200i) q^{88} +(488.438 - 846.000i) q^{89} -69.0000 q^{90} -390.000 q^{92} +(-155.885 + 270.000i) q^{93} +(-261.000 + 452.065i) q^{94} +(-99.0000 - 171.473i) q^{95} -363.731 q^{96} +(-100.459 - 174.000i) q^{97} +(-130.770 - 226.500i) q^{98} -318.697 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 10 q^{4} + 46 q^{9} - 6 q^{10} - 40 q^{12} - 96 q^{14} - 2 q^{16} + 234 q^{17} + 48 q^{22} - 156 q^{23} - 488 q^{25} - 400 q^{27} + 282 q^{29} - 12 q^{30} + 48 q^{35} - 230 q^{36} + 792 q^{38}+ \cdots - 396 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.50000i 0.306186 0.530330i −0.671339 0.741151i \(-0.734280\pi\)
0.977525 + 0.210821i \(0.0676136\pi\)
\(3\) −1.00000 + 1.73205i −0.192450 + 0.333333i −0.946062 0.323987i \(-0.894977\pi\)
0.753612 + 0.657320i \(0.228310\pi\)
\(4\) 2.50000 + 4.33013i 0.312500 + 0.541266i
\(5\) −1.73205 −0.154919 −0.0774597 0.996995i \(-0.524681\pi\)
−0.0774597 + 0.996995i \(0.524681\pi\)
\(6\) 1.73205 + 3.00000i 0.117851 + 0.204124i
\(7\) −6.92820 12.0000i −0.374088 0.647939i 0.616102 0.787666i \(-0.288711\pi\)
−0.990190 + 0.139727i \(0.955377\pi\)
\(8\) 22.5167 0.995105
\(9\) 11.5000 + 19.9186i 0.425926 + 0.737725i
\(10\) −1.50000 + 2.59808i −0.0474342 + 0.0821584i
\(11\) −6.92820 + 12.0000i −0.189903 + 0.328921i −0.945218 0.326441i \(-0.894151\pi\)
0.755315 + 0.655362i \(0.227484\pi\)
\(12\) −10.0000 −0.240563
\(13\) 0 0
\(14\) −24.0000 −0.458162
\(15\) 1.73205 3.00000i 0.0298142 0.0516398i
\(16\) −0.500000 + 0.866025i −0.00781250 + 0.0135316i
\(17\) 58.5000 + 101.325i 0.834608 + 1.44558i 0.894349 + 0.447369i \(0.147639\pi\)
−0.0597414 + 0.998214i \(0.519028\pi\)
\(18\) 39.8372 0.521651
\(19\) 57.1577 + 99.0000i 0.690151 + 1.19538i 0.971788 + 0.235856i \(0.0757893\pi\)
−0.281637 + 0.959521i \(0.590877\pi\)
\(20\) −4.33013 7.50000i −0.0484123 0.0838525i
\(21\) 27.7128 0.287973
\(22\) 12.0000 + 20.7846i 0.116291 + 0.201422i
\(23\) −39.0000 + 67.5500i −0.353568 + 0.612398i −0.986872 0.161506i \(-0.948365\pi\)
0.633304 + 0.773903i \(0.281698\pi\)
\(24\) −22.5167 + 39.0000i −0.191508 + 0.331702i
\(25\) −122.000 −0.976000
\(26\) 0 0
\(27\) −100.000 −0.712778
\(28\) 34.6410 60.0000i 0.233805 0.404962i
\(29\) 70.5000 122.110i 0.451432 0.781903i −0.547043 0.837104i \(-0.684247\pi\)
0.998475 + 0.0552014i \(0.0175801\pi\)
\(30\) −3.00000 5.19615i −0.0182574 0.0316228i
\(31\) 155.885 0.903151 0.451576 0.892233i \(-0.350862\pi\)
0.451576 + 0.892233i \(0.350862\pi\)
\(32\) 90.9327 + 157.500i 0.502337 + 0.870073i
\(33\) −13.8564 24.0000i −0.0730937 0.126602i
\(34\) 202.650 1.02218
\(35\) 12.0000 + 20.7846i 0.0579534 + 0.100378i
\(36\) −57.5000 + 99.5929i −0.266204 + 0.461078i
\(37\) 71.8801 124.500i 0.319379 0.553180i −0.660980 0.750404i \(-0.729859\pi\)
0.980359 + 0.197223i \(0.0631924\pi\)
\(38\) 198.000 0.845259
\(39\) 0 0
\(40\) −39.0000 −0.154161
\(41\) 135.966 235.500i 0.517910 0.897047i −0.481873 0.876241i \(-0.660043\pi\)
0.999784 0.0208059i \(-0.00662322\pi\)
\(42\) 24.0000 41.5692i 0.0881733 0.152721i
\(43\) 52.0000 + 90.0666i 0.184417 + 0.319419i 0.943380 0.331714i \(-0.107627\pi\)
−0.758963 + 0.651134i \(0.774294\pi\)
\(44\) −69.2820 −0.237379
\(45\) −19.9186 34.5000i −0.0659842 0.114288i
\(46\) 67.5500 + 117.000i 0.216515 + 0.375015i
\(47\) −301.377 −0.935326 −0.467663 0.883907i \(-0.654904\pi\)
−0.467663 + 0.883907i \(0.654904\pi\)
\(48\) −1.00000 1.73205i −0.00300703 0.00520833i
\(49\) 75.5000 130.770i 0.220117 0.381253i
\(50\) −105.655 + 183.000i −0.298838 + 0.517602i
\(51\) −234.000 −0.642481
\(52\) 0 0
\(53\) 93.0000 0.241029 0.120514 0.992712i \(-0.461546\pi\)
0.120514 + 0.992712i \(0.461546\pi\)
\(54\) −86.6025 + 150.000i −0.218243 + 0.378008i
\(55\) 12.0000 20.7846i 0.0294196 0.0509563i
\(56\) −156.000 270.200i −0.372257 0.644768i
\(57\) −228.631 −0.531279
\(58\) −122.110 211.500i −0.276444 0.478816i
\(59\) −142.028 246.000i −0.313398 0.542822i 0.665698 0.746222i \(-0.268134\pi\)
−0.979096 + 0.203400i \(0.934801\pi\)
\(60\) 17.3205 0.0372678
\(61\) −72.5000 125.574i −0.152175 0.263575i 0.779852 0.625964i \(-0.215294\pi\)
−0.932027 + 0.362389i \(0.881961\pi\)
\(62\) 135.000 233.827i 0.276533 0.478968i
\(63\) 159.349 276.000i 0.318667 0.551948i
\(64\) 307.000 0.599609
\(65\) 0 0
\(66\) −48.0000 −0.0895211
\(67\) −393.176 + 681.000i −0.716926 + 1.24175i 0.245286 + 0.969451i \(0.421118\pi\)
−0.962212 + 0.272301i \(0.912215\pi\)
\(68\) −292.500 + 506.625i −0.521630 + 0.903490i
\(69\) −78.0000 135.100i −0.136088 0.235712i
\(70\) 41.5692 0.0709782
\(71\) −528.275 915.000i −0.883025 1.52944i −0.847961 0.530059i \(-0.822170\pi\)
−0.0350641 0.999385i \(-0.511164\pi\)
\(72\) 258.942 + 448.500i 0.423841 + 0.734114i
\(73\) −458.993 −0.735906 −0.367953 0.929844i \(-0.619941\pi\)
−0.367953 + 0.929844i \(0.619941\pi\)
\(74\) −124.500 215.640i −0.195579 0.338752i
\(75\) 122.000 211.310i 0.187831 0.325333i
\(76\) −285.788 + 495.000i −0.431344 + 0.747110i
\(77\) 192.000 0.284161
\(78\) 0 0
\(79\) 1276.00 1.81723 0.908615 0.417634i \(-0.137141\pi\)
0.908615 + 0.417634i \(0.137141\pi\)
\(80\) 0.866025 1.50000i 0.00121031 0.00209631i
\(81\) −210.500 + 364.597i −0.288752 + 0.500133i
\(82\) −235.500 407.898i −0.317154 0.549327i
\(83\) −789.815 −1.04450 −0.522250 0.852793i \(-0.674907\pi\)
−0.522250 + 0.852793i \(0.674907\pi\)
\(84\) 69.2820 + 120.000i 0.0899915 + 0.155870i
\(85\) −101.325 175.500i −0.129297 0.223949i
\(86\) 180.133 0.225864
\(87\) 141.000 + 244.219i 0.173756 + 0.300955i
\(88\) −156.000 + 270.200i −0.188973 + 0.327311i
\(89\) 488.438 846.000i 0.581734 1.00759i −0.413540 0.910486i \(-0.635708\pi\)
0.995274 0.0971073i \(-0.0309590\pi\)
\(90\) −69.0000 −0.0808138
\(91\) 0 0
\(92\) −390.000 −0.441960
\(93\) −155.885 + 270.000i −0.173812 + 0.301050i
\(94\) −261.000 + 452.065i −0.286384 + 0.496032i
\(95\) −99.0000 171.473i −0.106918 0.185187i
\(96\) −363.731 −0.386699
\(97\) −100.459 174.000i −0.105155 0.182134i 0.808646 0.588295i \(-0.200201\pi\)
−0.913802 + 0.406161i \(0.866867\pi\)
\(98\) −130.770 226.500i −0.134793 0.233469i
\(99\) −318.697 −0.323538
\(100\) −305.000 528.275i −0.305000 0.528275i
\(101\) 214.500 371.525i 0.211322 0.366021i −0.740806 0.671719i \(-0.765556\pi\)
0.952129 + 0.305698i \(0.0988897\pi\)
\(102\) −202.650 + 351.000i −0.196719 + 0.340727i
\(103\) −182.000 −0.174107 −0.0870534 0.996204i \(-0.527745\pi\)
−0.0870534 + 0.996204i \(0.527745\pi\)
\(104\) 0 0
\(105\) −48.0000 −0.0446126
\(106\) 80.5404 139.500i 0.0737997 0.127825i
\(107\) 753.000 1304.23i 0.680330 1.17837i −0.294551 0.955636i \(-0.595170\pi\)
0.974880 0.222729i \(-0.0714967\pi\)
\(108\) −250.000 433.013i −0.222743 0.385802i
\(109\) 1551.92 1.36373 0.681866 0.731477i \(-0.261169\pi\)
0.681866 + 0.731477i \(0.261169\pi\)
\(110\) −20.7846 36.0000i −0.0180158 0.0312042i
\(111\) 143.760 + 249.000i 0.122929 + 0.212919i
\(112\) 13.8564 0.0116902
\(113\) 343.500 + 594.959i 0.285962 + 0.495302i 0.972842 0.231470i \(-0.0743534\pi\)
−0.686880 + 0.726771i \(0.741020\pi\)
\(114\) −198.000 + 342.946i −0.162670 + 0.281753i
\(115\) 67.5500 117.000i 0.0547745 0.0948722i
\(116\) 705.000 0.564290
\(117\) 0 0
\(118\) −492.000 −0.383833
\(119\) 810.600 1404.00i 0.624433 1.08155i
\(120\) 39.0000 67.5500i 0.0296683 0.0513870i
\(121\) 569.500 + 986.403i 0.427874 + 0.741099i
\(122\) −251.147 −0.186376
\(123\) 271.932 + 471.000i 0.199344 + 0.345273i
\(124\) 389.711 + 675.000i 0.282235 + 0.488845i
\(125\) 427.817 0.306121
\(126\) −276.000 478.046i −0.195143 0.337998i
\(127\) 143.000 247.683i 0.0999149 0.173058i −0.811734 0.584027i \(-0.801476\pi\)
0.911649 + 0.410969i \(0.134810\pi\)
\(128\) −461.592 + 799.500i −0.318745 + 0.552082i
\(129\) −208.000 −0.141964
\(130\) 0 0
\(131\) −1974.00 −1.31656 −0.658279 0.752774i \(-0.728715\pi\)
−0.658279 + 0.752774i \(0.728715\pi\)
\(132\) 69.2820 120.000i 0.0456835 0.0791262i
\(133\) 792.000 1371.78i 0.516354 0.894352i
\(134\) 681.000 + 1179.53i 0.439026 + 0.760415i
\(135\) 173.205 0.110423
\(136\) 1317.22 + 2281.50i 0.830523 + 1.43851i
\(137\) −423.486 733.500i −0.264094 0.457424i 0.703232 0.710961i \(-0.251740\pi\)
−0.967326 + 0.253536i \(0.918406\pi\)
\(138\) −270.200 −0.166674
\(139\) −118.000 204.382i −0.0720045 0.124716i 0.827775 0.561060i \(-0.189606\pi\)
−0.899780 + 0.436344i \(0.856273\pi\)
\(140\) −60.0000 + 103.923i −0.0362209 + 0.0627364i
\(141\) 301.377 522.000i 0.180004 0.311775i
\(142\) −1830.00 −1.08148
\(143\) 0 0
\(144\) −23.0000 −0.0133102
\(145\) −122.110 + 211.500i −0.0699355 + 0.121132i
\(146\) −397.500 + 688.490i −0.225324 + 0.390273i
\(147\) 151.000 + 261.540i 0.0847229 + 0.146744i
\(148\) 718.801 0.399224
\(149\) 23.3827 + 40.5000i 0.0128563 + 0.0222677i 0.872382 0.488825i \(-0.162574\pi\)
−0.859526 + 0.511093i \(0.829241\pi\)
\(150\) −211.310 366.000i −0.115023 0.199225i
\(151\) 1770.16 0.953995 0.476998 0.878905i \(-0.341725\pi\)
0.476998 + 0.878905i \(0.341725\pi\)
\(152\) 1287.00 + 2229.15i 0.686773 + 1.18953i
\(153\) −1345.50 + 2330.47i −0.710962 + 1.23142i
\(154\) 166.277 288.000i 0.0870063 0.150699i
\(155\) −270.000 −0.139916
\(156\) 0 0
\(157\) 1211.00 0.615594 0.307797 0.951452i \(-0.400408\pi\)
0.307797 + 0.951452i \(0.400408\pi\)
\(158\) 1105.05 1914.00i 0.556411 0.963732i
\(159\) −93.0000 + 161.081i −0.0463860 + 0.0803430i
\(160\) −157.500 272.798i −0.0778217 0.134791i
\(161\) 1080.80 0.529062
\(162\) 364.597 + 631.500i 0.176824 + 0.306267i
\(163\) −502.295 870.000i −0.241367 0.418059i 0.719737 0.694247i \(-0.244262\pi\)
−0.961104 + 0.276187i \(0.910929\pi\)
\(164\) 1359.66 0.647388
\(165\) 24.0000 + 41.5692i 0.0113236 + 0.0196131i
\(166\) −684.000 + 1184.72i −0.319811 + 0.553930i
\(167\) −457.261 + 792.000i −0.211880 + 0.366987i −0.952303 0.305154i \(-0.901292\pi\)
0.740423 + 0.672141i \(0.234625\pi\)
\(168\) 624.000 0.286563
\(169\) 0 0
\(170\) −351.000 −0.158356
\(171\) −1314.63 + 2277.00i −0.587906 + 1.01828i
\(172\) −260.000 + 450.333i −0.115261 + 0.199637i
\(173\) 1287.00 + 2229.15i 0.565600 + 0.979648i 0.996994 + 0.0774841i \(0.0246887\pi\)
−0.431394 + 0.902164i \(0.641978\pi\)
\(174\) 488.438 0.212807
\(175\) 845.241 + 1464.00i 0.365110 + 0.632389i
\(176\) −6.92820 12.0000i −0.00296723 0.00513940i
\(177\) 568.113 0.241254
\(178\) −846.000 1465.31i −0.356238 0.617022i
\(179\) 1872.00 3242.40i 0.781675 1.35390i −0.149290 0.988793i \(-0.547699\pi\)
0.930965 0.365108i \(-0.118968\pi\)
\(180\) 99.5929 172.500i 0.0412401 0.0714299i
\(181\) 637.000 0.261590 0.130795 0.991409i \(-0.458247\pi\)
0.130795 + 0.991409i \(0.458247\pi\)
\(182\) 0 0
\(183\) 290.000 0.117144
\(184\) −878.150 + 1521.00i −0.351837 + 0.609400i
\(185\) −124.500 + 215.640i −0.0494780 + 0.0856983i
\(186\) 270.000 + 467.654i 0.106437 + 0.184355i
\(187\) −1621.20 −0.633978
\(188\) −753.442 1305.00i −0.292289 0.506260i
\(189\) 692.820 + 1200.00i 0.266642 + 0.461837i
\(190\) −342.946 −0.130947
\(191\) 1299.00 + 2249.93i 0.492106 + 0.852353i 0.999959 0.00909077i \(-0.00289372\pi\)
−0.507852 + 0.861444i \(0.669560\pi\)
\(192\) −307.000 + 531.740i −0.115395 + 0.199870i
\(193\) −558.586 + 967.500i −0.208331 + 0.360840i −0.951189 0.308609i \(-0.900137\pi\)
0.742858 + 0.669449i \(0.233470\pi\)
\(194\) −348.000 −0.128788
\(195\) 0 0
\(196\) 755.000 0.275146
\(197\) 1025.37 1776.00i 0.370837 0.642308i −0.618858 0.785503i \(-0.712404\pi\)
0.989695 + 0.143195i \(0.0457375\pi\)
\(198\) −276.000 + 478.046i −0.0990630 + 0.171582i
\(199\) −1261.00 2184.12i −0.449196 0.778030i 0.549138 0.835732i \(-0.314956\pi\)
−0.998334 + 0.0577019i \(0.981623\pi\)
\(200\) −2747.03 −0.971223
\(201\) −786.351 1362.00i −0.275945 0.477951i
\(202\) −371.525 643.500i −0.129408 0.224141i
\(203\) −1953.75 −0.675500
\(204\) −585.000 1013.25i −0.200775 0.347753i
\(205\) −235.500 + 407.898i −0.0802343 + 0.138970i
\(206\) −157.617 + 273.000i −0.0533091 + 0.0923340i
\(207\) −1794.00 −0.602375
\(208\) 0 0
\(209\) −1584.00 −0.524247
\(210\) −41.5692 + 72.0000i −0.0136598 + 0.0236594i
\(211\) −521.000 + 902.398i −0.169986 + 0.294425i −0.938415 0.345511i \(-0.887706\pi\)
0.768428 + 0.639936i \(0.221039\pi\)
\(212\) 232.500 + 402.702i 0.0753215 + 0.130461i
\(213\) 2113.10 0.679753
\(214\) −1304.23 2259.00i −0.416615 0.721598i
\(215\) −90.0666 156.000i −0.0285697 0.0494842i
\(216\) −2251.67 −0.709289
\(217\) −1080.00 1870.61i −0.337858 0.585187i
\(218\) 1344.00 2327.88i 0.417556 0.723228i
\(219\) 458.993 795.000i 0.141625 0.245302i
\(220\) 120.000 0.0367745
\(221\) 0 0
\(222\) 498.000 0.150557
\(223\) −1203.78 + 2085.00i −0.361483 + 0.626107i −0.988205 0.153136i \(-0.951063\pi\)
0.626722 + 0.779243i \(0.284396\pi\)
\(224\) 1260.00 2182.38i 0.375836 0.650967i
\(225\) −1403.00 2430.07i −0.415704 0.720020i
\(226\) 1189.92 0.350231
\(227\) −1203.78 2085.00i −0.351971 0.609631i 0.634624 0.772821i \(-0.281155\pi\)
−0.986595 + 0.163190i \(0.947822\pi\)
\(228\) −571.577 990.000i −0.166025 0.287563i
\(229\) −2508.01 −0.723729 −0.361864 0.932231i \(-0.617860\pi\)
−0.361864 + 0.932231i \(0.617860\pi\)
\(230\) −117.000 202.650i −0.0335424 0.0580971i
\(231\) −192.000 + 332.554i −0.0546869 + 0.0947205i
\(232\) 1587.42 2749.50i 0.449222 0.778076i
\(233\) 5850.00 1.64483 0.822417 0.568885i \(-0.192625\pi\)
0.822417 + 0.568885i \(0.192625\pi\)
\(234\) 0 0
\(235\) 522.000 0.144900
\(236\) 710.141 1230.00i 0.195874 0.339263i
\(237\) −1276.00 + 2210.10i −0.349726 + 0.605744i
\(238\) −1404.00 2431.80i −0.382386 0.662312i
\(239\) −5383.21 −1.45695 −0.728475 0.685072i \(-0.759771\pi\)
−0.728475 + 0.685072i \(0.759771\pi\)
\(240\) 1.73205 + 3.00000i 0.000465847 + 0.000806872i
\(241\) 2458.65 + 4258.50i 0.657159 + 1.13823i 0.981348 + 0.192240i \(0.0615753\pi\)
−0.324189 + 0.945992i \(0.605091\pi\)
\(242\) 1972.81 0.524036
\(243\) −1771.00 3067.46i −0.467530 0.809785i
\(244\) 362.500 627.868i 0.0951094 0.164734i
\(245\) −130.770 + 226.500i −0.0341003 + 0.0590635i
\(246\) 942.000 0.244145
\(247\) 0 0
\(248\) 3510.00 0.898731
\(249\) 789.815 1368.00i 0.201014 0.348167i
\(250\) 370.500 641.725i 0.0937299 0.162345i
\(251\) −1989.00 3445.05i −0.500178 0.866333i −1.00000 0.000205037i \(-0.999935\pi\)
0.499822 0.866128i \(-0.333399\pi\)
\(252\) 1593.49 0.398334
\(253\) −540.400 936.000i −0.134287 0.232592i
\(254\) −247.683 429.000i −0.0611852 0.105976i
\(255\) 405.300 0.0995328
\(256\) 2027.50 + 3511.73i 0.494995 + 0.857357i
\(257\) 1033.50 1790.07i 0.250848 0.434482i −0.712911 0.701254i \(-0.752624\pi\)
0.963760 + 0.266772i \(0.0859572\pi\)
\(258\) −180.133 + 312.000i −0.0434675 + 0.0752879i
\(259\) −1992.00 −0.477903
\(260\) 0 0
\(261\) 3243.00 0.769106
\(262\) −1709.53 + 2961.00i −0.403112 + 0.698211i
\(263\) 1026.00 1777.08i 0.240555 0.416653i −0.720318 0.693644i \(-0.756004\pi\)
0.960872 + 0.276991i \(0.0893373\pi\)
\(264\) −312.000 540.400i −0.0727359 0.125982i
\(265\) −161.081 −0.0373400
\(266\) −1371.78 2376.00i −0.316201 0.547676i
\(267\) 976.877 + 1692.00i 0.223910 + 0.387823i
\(268\) −3931.76 −0.896157
\(269\) −1665.00 2883.86i −0.377386 0.653652i 0.613295 0.789854i \(-0.289844\pi\)
−0.990681 + 0.136202i \(0.956510\pi\)
\(270\) 150.000 259.808i 0.0338100 0.0585607i
\(271\) −1402.96 + 2430.00i −0.314479 + 0.544694i −0.979327 0.202285i \(-0.935163\pi\)
0.664848 + 0.746979i \(0.268496\pi\)
\(272\) −117.000 −0.0260815
\(273\) 0 0
\(274\) −1467.00 −0.323448
\(275\) 845.241 1464.00i 0.185345 0.321027i
\(276\) 390.000 675.500i 0.0850552 0.147320i
\(277\) 188.500 + 326.492i 0.0408876 + 0.0708194i 0.885745 0.464172i \(-0.153648\pi\)
−0.844857 + 0.534992i \(0.820315\pi\)
\(278\) −408.764 −0.0881872
\(279\) 1792.67 + 3105.00i 0.384676 + 0.666278i
\(280\) 270.200 + 468.000i 0.0576698 + 0.0998870i
\(281\) 36.3731 0.00772183 0.00386092 0.999993i \(-0.498771\pi\)
0.00386092 + 0.999993i \(0.498771\pi\)
\(282\) −522.000 904.131i −0.110229 0.190923i
\(283\) −3562.00 + 6169.56i −0.748194 + 1.29591i 0.200493 + 0.979695i \(0.435745\pi\)
−0.948688 + 0.316215i \(0.897588\pi\)
\(284\) 2641.38 4575.00i 0.551891 0.955902i
\(285\) 396.000 0.0823053
\(286\) 0 0
\(287\) −3768.00 −0.774976
\(288\) −2091.45 + 3622.50i −0.427917 + 0.741173i
\(289\) −4388.00 + 7600.24i −0.893141 + 1.54696i
\(290\) 211.500 + 366.329i 0.0428266 + 0.0741778i
\(291\) 401.836 0.0809486
\(292\) −1147.48 1987.50i −0.229971 0.398321i
\(293\) −4161.25 7207.50i −0.829703 1.43709i −0.898271 0.439441i \(-0.855177\pi\)
0.0685685 0.997646i \(-0.478157\pi\)
\(294\) 523.079 0.103764
\(295\) 246.000 + 426.084i 0.0485514 + 0.0840936i
\(296\) 1618.50 2803.32i 0.317816 0.550473i
\(297\) 692.820 1200.00i 0.135359 0.234448i
\(298\) 81.0000 0.0157457
\(299\) 0 0
\(300\) 1220.00 0.234789
\(301\) 720.533 1248.00i 0.137976 0.238982i
\(302\) 1533.00 2655.23i 0.292100 0.505932i
\(303\) 429.000 + 743.050i 0.0813380 + 0.140882i
\(304\) −114.315 −0.0215672
\(305\) 125.574 + 217.500i 0.0235748 + 0.0408328i
\(306\) 2330.47 + 4036.50i 0.435374 + 0.754089i
\(307\) 2220.49 0.412801 0.206401 0.978468i \(-0.433825\pi\)
0.206401 + 0.978468i \(0.433825\pi\)
\(308\) 480.000 + 831.384i 0.0888004 + 0.153807i
\(309\) 182.000 315.233i 0.0335069 0.0580356i
\(310\) −233.827 + 405.000i −0.0428402 + 0.0742015i
\(311\) −4914.00 −0.895972 −0.447986 0.894041i \(-0.647859\pi\)
−0.447986 + 0.894041i \(0.647859\pi\)
\(312\) 0 0
\(313\) −518.000 −0.0935434 −0.0467717 0.998906i \(-0.514893\pi\)
−0.0467717 + 0.998906i \(0.514893\pi\)
\(314\) 1048.76 1816.50i 0.188487 0.326468i
\(315\) −276.000 + 478.046i −0.0493677 + 0.0855074i
\(316\) 3190.00 + 5525.24i 0.567885 + 0.983605i
\(317\) 3916.17 0.693861 0.346930 0.937891i \(-0.387224\pi\)
0.346930 + 0.937891i \(0.387224\pi\)
\(318\) 161.081 + 279.000i 0.0284055 + 0.0491998i
\(319\) 976.877 + 1692.00i 0.171456 + 0.296971i
\(320\) −531.740 −0.0928911
\(321\) 1506.00 + 2608.47i 0.261859 + 0.453553i
\(322\) 936.000 1621.20i 0.161991 0.280577i
\(323\) −6687.45 + 11583.0i −1.15201 + 1.99534i
\(324\) −2105.00 −0.360940
\(325\) 0 0
\(326\) −1740.00 −0.295613
\(327\) −1551.92 + 2688.00i −0.262450 + 0.454577i
\(328\) 3061.50 5302.67i 0.515375 0.892656i
\(329\) 2088.00 + 3616.52i 0.349894 + 0.606034i
\(330\) 83.1384 0.0138685
\(331\) 3727.37 + 6456.00i 0.618958 + 1.07207i 0.989676 + 0.143321i \(0.0457781\pi\)
−0.370719 + 0.928745i \(0.620889\pi\)
\(332\) −1974.54 3420.00i −0.326406 0.565352i
\(333\) 3306.48 0.544127
\(334\) 792.000 + 1371.78i 0.129749 + 0.224733i
\(335\) 681.000 1179.53i 0.111066 0.192371i
\(336\) −13.8564 + 24.0000i −0.00224979 + 0.00389675i
\(337\) 3575.00 0.577871 0.288936 0.957349i \(-0.406699\pi\)
0.288936 + 0.957349i \(0.406699\pi\)
\(338\) 0 0
\(339\) −1374.00 −0.220134
\(340\) 506.625 877.500i 0.0808106 0.139968i
\(341\) −1080.00 + 1870.61i −0.171511 + 0.297066i
\(342\) 2277.00 + 3943.88i 0.360018 + 0.623569i
\(343\) −6845.06 −1.07755
\(344\) 1170.87 + 2028.00i 0.183514 + 0.317856i
\(345\) 135.100 + 234.000i 0.0210827 + 0.0365163i
\(346\) 4458.30 0.692716
\(347\) 3483.00 + 6032.73i 0.538839 + 0.933297i 0.998967 + 0.0454442i \(0.0144703\pi\)
−0.460128 + 0.887853i \(0.652196\pi\)
\(348\) −705.000 + 1221.10i −0.108598 + 0.188097i
\(349\) 3325.54 5760.00i 0.510063 0.883455i −0.489869 0.871796i \(-0.662955\pi\)
0.999932 0.0116588i \(-0.00371121\pi\)
\(350\) 2928.00 0.447166
\(351\) 0 0
\(352\) −2520.00 −0.381581
\(353\) 2815.45 4876.50i 0.424508 0.735269i −0.571867 0.820347i \(-0.693781\pi\)
0.996374 + 0.0850777i \(0.0271139\pi\)
\(354\) 492.000 852.169i 0.0738687 0.127944i
\(355\) 915.000 + 1584.83i 0.136798 + 0.236940i
\(356\) 4884.38 0.727168
\(357\) 1621.20 + 2808.00i 0.240344 + 0.416289i
\(358\) −3242.40 5616.00i −0.478676 0.829092i
\(359\) 7129.12 1.04808 0.524040 0.851694i \(-0.324424\pi\)
0.524040 + 0.851694i \(0.324424\pi\)
\(360\) −448.500 776.825i −0.0656612 0.113729i
\(361\) −3104.50 + 5377.15i −0.452617 + 0.783956i
\(362\) 551.658 955.500i 0.0800953 0.138729i
\(363\) −2278.00 −0.329377
\(364\) 0 0
\(365\) 795.000 0.114006
\(366\) 251.147 435.000i 0.0358680 0.0621252i
\(367\) −1.00000 + 1.73205i −0.000142233 + 0.000246355i −0.866097 0.499877i \(-0.833379\pi\)
0.865954 + 0.500123i \(0.166712\pi\)
\(368\) −39.0000 67.5500i −0.00552450 0.00956871i
\(369\) 6254.44 0.882366
\(370\) 215.640 + 373.500i 0.0302989 + 0.0524793i
\(371\) −644.323 1116.00i −0.0901660 0.156172i
\(372\) −1558.85 −0.217264
\(373\) −1749.50 3030.22i −0.242857 0.420641i 0.718670 0.695351i \(-0.244751\pi\)
−0.961527 + 0.274711i \(0.911418\pi\)
\(374\) −1404.00 + 2431.80i −0.194115 + 0.336218i
\(375\) −427.817 + 741.000i −0.0589129 + 0.102040i
\(376\) −6786.00 −0.930748
\(377\) 0 0
\(378\) 2400.00 0.326568
\(379\) 2759.16 4779.00i 0.373953 0.647706i −0.616216 0.787577i \(-0.711335\pi\)
0.990170 + 0.139871i \(0.0446686\pi\)
\(380\) 495.000 857.365i 0.0668236 0.115742i
\(381\) 286.000 + 495.367i 0.0384573 + 0.0666100i
\(382\) 4499.87 0.602705
\(383\) 3682.34 + 6378.00i 0.491276 + 0.850915i 0.999950 0.0100443i \(-0.00319724\pi\)
−0.508673 + 0.860960i \(0.669864\pi\)
\(384\) −923.183 1599.00i −0.122685 0.212496i
\(385\) −332.554 −0.0440221
\(386\) 967.500 + 1675.76i 0.127576 + 0.220969i
\(387\) −1196.00 + 2071.53i −0.157096 + 0.272098i
\(388\) 502.295 870.000i 0.0657220 0.113834i
\(389\) 1209.00 0.157580 0.0787901 0.996891i \(-0.474894\pi\)
0.0787901 + 0.996891i \(0.474894\pi\)
\(390\) 0 0
\(391\) −9126.00 −1.18036
\(392\) 1700.01 2944.50i 0.219039 0.379387i
\(393\) 1974.00 3419.07i 0.253372 0.438853i
\(394\) −1776.00 3076.12i −0.227090 0.393332i
\(395\) −2210.10 −0.281524
\(396\) −796.743 1380.00i −0.101106 0.175120i
\(397\) 5847.40 + 10128.0i 0.739226 + 1.28038i 0.952844 + 0.303460i \(0.0981419\pi\)
−0.213618 + 0.976917i \(0.568525\pi\)
\(398\) −4368.23 −0.550150
\(399\) 1584.00 + 2743.57i 0.198745 + 0.344236i
\(400\) 61.0000 105.655i 0.00762500 0.0132069i
\(401\) 1490.43 2581.50i 0.185607 0.321481i −0.758174 0.652053i \(-0.773908\pi\)
0.943781 + 0.330571i \(0.107241\pi\)
\(402\) −2724.00 −0.337962
\(403\) 0 0
\(404\) 2145.00 0.264153
\(405\) 364.597 631.500i 0.0447332 0.0774802i
\(406\) −1692.00 + 2930.63i −0.206829 + 0.358238i
\(407\) 996.000 + 1725.12i 0.121302 + 0.210101i
\(408\) −5268.90 −0.639337
\(409\) −21.6506 37.5000i −0.00261749 0.00453363i 0.864714 0.502265i \(-0.167500\pi\)
−0.867331 + 0.497731i \(0.834167\pi\)
\(410\) 407.898 + 706.500i 0.0491333 + 0.0851013i
\(411\) 1693.95 0.203300
\(412\) −455.000 788.083i −0.0544084 0.0942380i
\(413\) −1968.00 + 3408.68i −0.234477 + 0.406126i
\(414\) −1553.65 + 2691.00i −0.184439 + 0.319458i
\(415\) 1368.00 0.161813
\(416\) 0 0
\(417\) 472.000 0.0554291
\(418\) −1371.78 + 2376.00i −0.160517 + 0.278024i
\(419\) 4731.00 8194.33i 0.551610 0.955416i −0.446549 0.894759i \(-0.647347\pi\)
0.998159 0.0606569i \(-0.0193195\pi\)
\(420\) −120.000 207.846i −0.0139414 0.0241473i
\(421\) 7068.50 0.818284 0.409142 0.912471i \(-0.365828\pi\)
0.409142 + 0.912471i \(0.365828\pi\)
\(422\) 902.398 + 1563.00i 0.104095 + 0.180298i
\(423\) −3465.83 6003.00i −0.398380 0.690014i
\(424\) 2094.05 0.239849
\(425\) −7137.00 12361.6i −0.814577 1.41089i
\(426\) 1830.00 3169.65i 0.208131 0.360493i
\(427\) −1004.59 + 1740.00i −0.113854 + 0.197200i
\(428\) 7530.00 0.850412
\(429\) 0 0
\(430\) −312.000 −0.0349906
\(431\) −4964.06 + 8598.00i −0.554780 + 0.960907i 0.443140 + 0.896452i \(0.353864\pi\)
−0.997921 + 0.0644552i \(0.979469\pi\)
\(432\) 50.0000 86.6025i 0.00556858 0.00964506i
\(433\) −3308.50 5730.49i −0.367197 0.636004i 0.621929 0.783074i \(-0.286349\pi\)
−0.989126 + 0.147070i \(0.953016\pi\)
\(434\) −3741.23 −0.413790
\(435\) −244.219 423.000i −0.0269182 0.0466237i
\(436\) 3879.79 + 6720.00i 0.426166 + 0.738141i
\(437\) −8916.60 −0.976061
\(438\) −795.000 1376.98i −0.0867273 0.150216i
\(439\) 6994.00 12114.0i 0.760377 1.31701i −0.182280 0.983247i \(-0.558348\pi\)
0.942656 0.333765i \(-0.108319\pi\)
\(440\) 270.200 468.000i 0.0292756 0.0507069i
\(441\) 3473.00 0.375013
\(442\) 0 0
\(443\) 2004.00 0.214928 0.107464 0.994209i \(-0.465727\pi\)
0.107464 + 0.994209i \(0.465727\pi\)
\(444\) −718.801 + 1245.00i −0.0768306 + 0.133075i
\(445\) −846.000 + 1465.31i −0.0901219 + 0.156096i
\(446\) 2085.00 + 3611.33i 0.221362 + 0.383411i
\(447\) −93.5307 −0.00989676
\(448\) −2126.96 3684.00i −0.224307 0.388510i
\(449\) 4541.44 + 7866.00i 0.477336 + 0.826769i 0.999663 0.0259758i \(-0.00826929\pi\)
−0.522327 + 0.852745i \(0.674936\pi\)
\(450\) −4860.13 −0.509131
\(451\) 1884.00 + 3263.18i 0.196705 + 0.340704i
\(452\) −1717.50 + 2974.80i −0.178727 + 0.309563i
\(453\) −1770.16 + 3066.00i −0.183596 + 0.317998i
\(454\) −4170.00 −0.431074
\(455\) 0 0
\(456\) −5148.00 −0.528678
\(457\) 1261.80 2185.50i 0.129156 0.223705i −0.794194 0.607665i \(-0.792106\pi\)
0.923350 + 0.383959i \(0.125440\pi\)
\(458\) −2172.00 + 3762.01i −0.221596 + 0.383815i
\(459\) −5850.00 10132.5i −0.594890 1.03038i
\(460\) 675.500 0.0684681
\(461\) −9793.88 16963.5i −0.989472 1.71382i −0.620072 0.784545i \(-0.712897\pi\)
−0.369400 0.929270i \(-0.620437\pi\)
\(462\) 332.554 + 576.000i 0.0334887 + 0.0580042i
\(463\) −8632.54 −0.866497 −0.433249 0.901274i \(-0.642633\pi\)
−0.433249 + 0.901274i \(0.642633\pi\)
\(464\) 70.5000 + 122.110i 0.00705362 + 0.0122172i
\(465\) 270.000 467.654i 0.0269268 0.0466385i
\(466\) 5066.25 8775.00i 0.503625 0.872305i
\(467\) −5460.00 −0.541025 −0.270512 0.962716i \(-0.587193\pi\)
−0.270512 + 0.962716i \(0.587193\pi\)
\(468\) 0 0
\(469\) 10896.0 1.07277
\(470\) 452.065 783.000i 0.0443664 0.0768449i
\(471\) −1211.00 + 2097.51i −0.118471 + 0.205198i
\(472\) −3198.00 5539.10i −0.311864 0.540165i
\(473\) −1441.07 −0.140085
\(474\) 2210.10 + 3828.00i 0.214163 + 0.370941i
\(475\) −6973.24 12078.0i −0.673587 1.16669i
\(476\) 8106.00 0.780542
\(477\) 1069.50 + 1852.43i 0.102660 + 0.177813i
\(478\) −4662.00 + 8074.82i −0.446098 + 0.772665i
\(479\) 1276.52 2211.00i 0.121766 0.210904i −0.798698 0.601732i \(-0.794478\pi\)
0.920464 + 0.390827i \(0.127811\pi\)
\(480\) 630.000 0.0599072
\(481\) 0 0
\(482\) 8517.00 0.804852
\(483\) −1080.80 + 1872.00i −0.101818 + 0.176354i
\(484\) −2847.50 + 4932.01i −0.267421 + 0.463187i
\(485\) 174.000 + 301.377i 0.0162906 + 0.0282161i
\(486\) −6134.92 −0.572605
\(487\) −5414.39 9378.00i −0.503798 0.872603i −0.999990 0.00439074i \(-0.998602\pi\)
0.496193 0.868212i \(-0.334731\pi\)
\(488\) −1632.46 2827.50i −0.151430 0.262285i
\(489\) 2009.18 0.185804
\(490\) 226.500 + 392.310i 0.0208821 + 0.0361689i
\(491\) 5694.00 9862.30i 0.523354 0.906475i −0.476277 0.879295i \(-0.658014\pi\)
0.999631 0.0271797i \(-0.00865264\pi\)
\(492\) −1359.66 + 2355.00i −0.124590 + 0.215796i
\(493\) 16497.0 1.50707
\(494\) 0 0
\(495\) 552.000 0.0501223
\(496\) −77.9423 + 135.000i −0.00705587 + 0.0122211i
\(497\) −7320.00 + 12678.6i −0.660658 + 1.14429i
\(498\) −1368.00 2369.45i −0.123095 0.213208i
\(499\) −17677.3 −1.58586 −0.792931 0.609311i \(-0.791446\pi\)
−0.792931 + 0.609311i \(0.791446\pi\)
\(500\) 1069.54 + 1852.50i 0.0956627 + 0.165693i
\(501\) −914.523 1584.00i −0.0815526 0.141253i
\(502\) −6890.10 −0.612590
\(503\) −1938.00 3356.71i −0.171792 0.297552i 0.767255 0.641343i \(-0.221622\pi\)
−0.939046 + 0.343791i \(0.888289\pi\)
\(504\) 3588.00 6214.60i 0.317108 0.549246i
\(505\) −371.525 + 643.500i −0.0327379 + 0.0567037i
\(506\) −1872.00 −0.164467
\(507\) 0 0
\(508\) 1430.00 0.124894
\(509\) −8532.95 + 14779.5i −0.743058 + 1.28701i 0.208039 + 0.978120i \(0.433292\pi\)
−0.951097 + 0.308893i \(0.900042\pi\)
\(510\) 351.000 607.950i 0.0304756 0.0527852i
\(511\) 3180.00 + 5507.92i 0.275293 + 0.476822i
\(512\) −361.999 −0.0312465
\(513\) −5715.77 9900.00i −0.491925 0.852038i
\(514\) −1790.07 3100.50i −0.153612 0.266065i
\(515\) 315.233 0.0269725
\(516\) −520.000 900.666i −0.0443638 0.0768404i
\(517\) 2088.00 3616.52i 0.177621 0.307649i
\(518\) −1725.12 + 2988.00i −0.146327 + 0.253446i
\(519\) −5148.00 −0.435399
\(520\) 0 0
\(521\) 2121.00 0.178355 0.0891773 0.996016i \(-0.471576\pi\)
0.0891773 + 0.996016i \(0.471576\pi\)
\(522\) 2808.52 4864.50i 0.235490 0.407880i
\(523\) 5732.00 9928.12i 0.479241 0.830069i −0.520476 0.853876i \(-0.674245\pi\)
0.999717 + 0.0238072i \(0.00757878\pi\)
\(524\) −4935.00 8547.67i −0.411425 0.712608i
\(525\) −3380.96 −0.281062
\(526\) −1777.08 3078.00i −0.147309 0.255147i
\(527\) 9119.25 + 15795.0i 0.753777 + 1.30558i
\(528\) 27.7128 0.00228418
\(529\) 3041.50 + 5268.03i 0.249979 + 0.432977i
\(530\) −139.500 + 241.621i −0.0114330 + 0.0198025i
\(531\) 3266.65 5658.00i 0.266969 0.462404i
\(532\) 7920.00 0.645443
\(533\) 0 0
\(534\) 3384.00 0.274232
\(535\) −1304.23 + 2259.00i −0.105396 + 0.182552i
\(536\) −8853.00 + 15333.8i −0.713417 + 1.23567i
\(537\) 3744.00 + 6484.80i 0.300867 + 0.521117i
\(538\) −5767.73 −0.462202
\(539\) 1046.16 + 1812.00i 0.0836016 + 0.144802i
\(540\) 433.013 + 750.000i 0.0345072 + 0.0597683i
\(541\) 4764.87 0.378665 0.189333 0.981913i \(-0.439368\pi\)
0.189333 + 0.981913i \(0.439368\pi\)
\(542\) 2430.00 + 4208.88i 0.192578 + 0.333555i
\(543\) −637.000 + 1103.32i −0.0503431 + 0.0871968i
\(544\) −10639.1 + 18427.5i −0.838508 + 1.45234i
\(545\) −2688.00 −0.211268
\(546\) 0 0
\(547\) 6554.00 0.512301 0.256151 0.966637i \(-0.417546\pi\)
0.256151 + 0.966637i \(0.417546\pi\)
\(548\) 2117.43 3667.50i 0.165059 0.285890i
\(549\) 1667.50 2888.19i 0.129631 0.224527i
\(550\) −1464.00 2535.72i −0.113500 0.196588i
\(551\) 16118.5 1.24622
\(552\) −1756.30 3042.00i −0.135422 0.234558i
\(553\) −8840.39 15312.0i −0.679804 1.17745i
\(554\) 652.983 0.0500769
\(555\) −249.000 431.281i −0.0190441 0.0329853i
\(556\) 590.000 1021.91i 0.0450028 0.0779472i
\(557\) 9056.03 15685.5i 0.688898 1.19321i −0.283297 0.959032i \(-0.591428\pi\)
0.972195 0.234174i \(-0.0752386\pi\)
\(558\) 6210.00 0.471130
\(559\) 0 0
\(560\) −24.0000 −0.00181104
\(561\) 1621.20 2808.00i 0.122009 0.211326i
\(562\) 31.5000 54.5596i 0.00236432 0.00409512i
\(563\) −6084.00 10537.8i −0.455435 0.788837i 0.543278 0.839553i \(-0.317183\pi\)
−0.998713 + 0.0507160i \(0.983850\pi\)
\(564\) 3013.77 0.225005
\(565\) −594.959 1030.50i −0.0443011 0.0767318i
\(566\) 6169.56 + 10686.0i 0.458173 + 0.793580i
\(567\) 5833.55 0.432074
\(568\) −11895.0 20602.7i −0.878703 1.52196i
\(569\) −3861.00 + 6687.45i −0.284467 + 0.492711i −0.972480 0.232988i \(-0.925150\pi\)
0.688013 + 0.725698i \(0.258483\pi\)
\(570\) 342.946 594.000i 0.0252008 0.0436490i
\(571\) −11440.0 −0.838440 −0.419220 0.907885i \(-0.637696\pi\)
−0.419220 + 0.907885i \(0.637696\pi\)
\(572\) 0 0
\(573\) −5196.00 −0.378824
\(574\) −3263.18 + 5652.00i −0.237287 + 0.410993i
\(575\) 4758.00 8241.10i 0.345082 0.597700i
\(576\) 3530.50 + 6115.01i 0.255389 + 0.442347i
\(577\) 15444.7 1.11433 0.557167 0.830400i \(-0.311888\pi\)
0.557167 + 0.830400i \(0.311888\pi\)
\(578\) 7600.24 + 13164.0i 0.546935 + 0.947319i
\(579\) −1117.17 1935.00i −0.0801867 0.138887i
\(580\) −1221.10 −0.0874194
\(581\) 5472.00 + 9477.78i 0.390735 + 0.676772i
\(582\) 348.000 602.754i 0.0247853 0.0429295i
\(583\) −644.323 + 1116.00i −0.0457721 + 0.0792796i
\(584\) −10335.0 −0.732304
\(585\) 0 0
\(586\) −14415.0 −1.01617
\(587\) −7035.59 + 12186.0i −0.494702 + 0.856848i −0.999981 0.00610719i \(-0.998056\pi\)
0.505280 + 0.862956i \(0.331389\pi\)
\(588\) −755.000 + 1307.70i −0.0529518 + 0.0917153i
\(589\) 8910.00 + 15432.6i 0.623311 + 1.07961i
\(590\) 852.169 0.0594631
\(591\) 2050.75 + 3552.00i 0.142735 + 0.247225i
\(592\) 71.8801 + 124.500i 0.00499029 + 0.00864344i
\(593\) −26938.6 −1.86549 −0.932745 0.360538i \(-0.882593\pi\)
−0.932745 + 0.360538i \(0.882593\pi\)
\(594\) −1200.00 2078.46i −0.0828899 0.143570i
\(595\) −1404.00 + 2431.80i −0.0967368 + 0.167553i
\(596\) −116.913 + 202.500i −0.00803517 + 0.0139173i
\(597\) 5044.00 0.345791
\(598\) 0 0
\(599\) −10554.0 −0.719908 −0.359954 0.932970i \(-0.617208\pi\)
−0.359954 + 0.932970i \(0.617208\pi\)
\(600\) 2747.03 4758.00i 0.186912 0.323741i
\(601\) 7415.50 12844.0i 0.503302 0.871745i −0.496691 0.867928i \(-0.665452\pi\)
0.999993 0.00381713i \(-0.00121503\pi\)
\(602\) −1248.00 2161.60i −0.0844928 0.146346i
\(603\) −18086.1 −1.22143
\(604\) 4425.39 + 7665.00i 0.298123 + 0.516365i
\(605\) −986.403 1708.50i −0.0662859 0.114811i
\(606\) 1486.10 0.0996183
\(607\) 3977.00 + 6888.37i 0.265933 + 0.460610i 0.967808 0.251691i \(-0.0809866\pi\)
−0.701874 + 0.712301i \(0.747653\pi\)
\(608\) −10395.0 + 18004.7i −0.693377 + 1.20096i
\(609\) 1953.75 3384.00i 0.130000 0.225167i
\(610\) 435.000 0.0288732
\(611\) 0 0
\(612\) −13455.0 −0.888703
\(613\) 12610.2 21841.5i 0.830866 1.43910i −0.0664859 0.997787i \(-0.521179\pi\)
0.897352 0.441315i \(-0.145488\pi\)
\(614\) 1923.00 3330.73i 0.126394 0.218921i
\(615\) −471.000 815.796i −0.0308822 0.0534895i
\(616\) 4323.20 0.282771
\(617\) 8692.30 + 15055.5i 0.567162 + 0.982353i 0.996845 + 0.0793731i \(0.0252918\pi\)
−0.429683 + 0.902980i \(0.641375\pi\)
\(618\) −315.233 546.000i −0.0205187 0.0355394i
\(619\) 8209.92 0.533093 0.266547 0.963822i \(-0.414117\pi\)
0.266547 + 0.963822i \(0.414117\pi\)
\(620\) −675.000 1169.13i −0.0437236 0.0757316i
\(621\) 3900.00 6755.00i 0.252015 0.436504i
\(622\) −4255.65 + 7371.00i −0.274334 + 0.475161i
\(623\) −13536.0 −0.870479
\(624\) 0 0
\(625\) 14509.0 0.928576
\(626\) −448.601 + 777.000i −0.0286417 + 0.0496089i
\(627\) 1584.00 2743.57i 0.100891 0.174749i
\(628\) 3027.50 + 5243.78i 0.192373 + 0.333200i
\(629\) 16819.9 1.06622
\(630\) 478.046 + 828.000i 0.0302314 + 0.0523624i
\(631\) 6432.84 + 11142.0i 0.405843 + 0.702941i 0.994419 0.105501i \(-0.0336445\pi\)
−0.588576 + 0.808442i \(0.700311\pi\)
\(632\) 28731.3 1.80834
\(633\) −1042.00 1804.80i −0.0654278 0.113324i
\(634\) 3391.50 5874.25i 0.212451 0.367975i
\(635\) −247.683 + 429.000i −0.0154788 + 0.0268100i
\(636\) −930.000 −0.0579825
\(637\) 0 0
\(638\) 3384.00 0.209990
\(639\) 12150.3 21045.0i 0.752206 1.30286i
\(640\) 799.500 1384.77i 0.0493797 0.0855282i
\(641\) 3100.50 + 5370.22i 0.191049 + 0.330907i 0.945598 0.325337i \(-0.105478\pi\)
−0.754549 + 0.656244i \(0.772144\pi\)
\(642\) 5216.94 0.320710
\(643\) 8410.84 + 14568.0i 0.515849 + 0.893477i 0.999831 + 0.0183989i \(0.00585689\pi\)
−0.483981 + 0.875078i \(0.660810\pi\)
\(644\) 2702.00 + 4680.00i 0.165332 + 0.286363i
\(645\) 360.267 0.0219930
\(646\) 11583.0 + 20062.3i 0.705460 + 1.22189i
\(647\) −6747.00 + 11686.1i −0.409972 + 0.710092i −0.994886 0.101003i \(-0.967795\pi\)
0.584914 + 0.811095i \(0.301128\pi\)
\(648\) −4739.76 + 8209.50i −0.287338 + 0.497685i
\(649\) 3936.00 0.238061
\(650\) 0 0
\(651\) 4320.00 0.260083
\(652\) 2511.47 4350.00i 0.150854 0.261287i
\(653\) 5667.00 9815.53i 0.339612 0.588226i −0.644747 0.764396i \(-0.723037\pi\)
0.984360 + 0.176170i \(0.0563708\pi\)
\(654\) 2688.00 + 4655.75i 0.160717 + 0.278371i
\(655\) 3419.07 0.203960
\(656\) 135.966 + 235.500i 0.00809235 + 0.0140164i
\(657\) −5278.42 9142.50i −0.313441 0.542896i
\(658\) 7233.04 0.428531
\(659\) −6618.00 11462.7i −0.391200 0.677578i 0.601408 0.798942i \(-0.294607\pi\)
−0.992608 + 0.121364i \(0.961273\pi\)
\(660\) −120.000 + 207.846i −0.00707726 + 0.0122582i
\(661\) 5926.21 10264.5i 0.348718 0.603998i −0.637304 0.770613i \(-0.719950\pi\)
0.986022 + 0.166615i \(0.0532836\pi\)
\(662\) 12912.0 0.758065
\(663\) 0 0
\(664\) −17784.0 −1.03939
\(665\) −1371.78 + 2376.00i −0.0799932 + 0.138552i
\(666\) 2863.50 4959.73i 0.166604 0.288567i
\(667\) 5499.00 + 9524.55i 0.319224 + 0.552911i
\(668\) −4572.61 −0.264850
\(669\) −2407.55 4170.00i −0.139135 0.240989i
\(670\) −1179.53 2043.00i −0.0680136 0.117803i
\(671\) 2009.18 0.115594
\(672\) 2520.00 + 4364.77i 0.144659 + 0.250557i
\(673\) 4010.50 6946.39i 0.229708 0.397866i −0.728014 0.685563i \(-0.759556\pi\)
0.957722 + 0.287697i \(0.0928896\pi\)
\(674\) 3096.04 5362.50i 0.176936 0.306463i
\(675\) 12200.0 0.695671
\(676\) 0 0
\(677\) −21630.0 −1.22793 −0.613965 0.789333i \(-0.710426\pi\)
−0.613965 + 0.789333i \(0.710426\pi\)
\(678\) −1189.92 + 2061.00i −0.0674020 + 0.116744i
\(679\) −1392.00 + 2411.01i −0.0786746 + 0.136268i
\(680\) −2281.50 3951.67i −0.128664 0.222853i
\(681\) 4815.10 0.270947
\(682\) 1870.61 + 3240.00i 0.105029 + 0.181915i
\(683\) −13269.2 22983.0i −0.743387 1.28758i −0.950945 0.309361i \(-0.899885\pi\)
0.207557 0.978223i \(-0.433449\pi\)
\(684\) −13146.3 −0.734883
\(685\) 733.500 + 1270.46i 0.0409133 + 0.0708639i
\(686\) −5928.00 + 10267.6i −0.329930 + 0.571456i
\(687\) 2508.01 4344.00i 0.139282 0.241243i
\(688\) −104.000 −0.00576303
\(689\) 0 0
\(690\) 468.000 0.0258210
\(691\) −415.692 + 720.000i −0.0228852 + 0.0396383i −0.877241 0.480050i \(-0.840619\pi\)
0.854356 + 0.519688i \(0.173952\pi\)
\(692\) −6435.00 + 11145.7i −0.353500 + 0.612280i
\(693\) 2208.00 + 3824.37i 0.121032 + 0.209633i
\(694\) 12065.5 0.659941
\(695\) 204.382 + 354.000i 0.0111549 + 0.0193208i
\(696\) 3174.85 + 5499.00i 0.172906 + 0.299481i
\(697\) 31816.0 1.72901
\(698\) −5760.00 9976.61i −0.312348 0.541003i
\(699\) −5850.00 + 10132.5i −0.316548 + 0.548278i
\(700\) −4226.20 + 7320.00i −0.228194 + 0.395243i
\(701\) −30186.0 −1.62640 −0.813202 0.581981i \(-0.802278\pi\)
−0.813202 + 0.581981i \(0.802278\pi\)
\(702\) 0 0
\(703\) 16434.0 0.881679
\(704\) −2126.96 + 3684.00i −0.113868 + 0.197224i
\(705\) −522.000 + 904.131i −0.0278860 + 0.0483000i
\(706\) −4876.50 8446.35i −0.259957 0.450258i
\(707\) −5944.40 −0.316212
\(708\) 1420.28 + 2460.00i 0.0753919 + 0.130583i
\(709\) −5940.07 10288.5i −0.314646 0.544983i 0.664716 0.747096i \(-0.268552\pi\)
−0.979362 + 0.202113i \(0.935219\pi\)
\(710\) 3169.65 0.167542
\(711\) 14674.0 + 25416.1i 0.774006 + 1.34062i
\(712\) 10998.0 19049.1i 0.578887 1.00266i
\(713\) −6079.50 + 10530.0i −0.319325 + 0.553088i
\(714\) 5616.00 0.294361
\(715\) 0 0
\(716\) 18720.0 0.977094
\(717\) 5383.21 9324.00i 0.280390 0.485650i
\(718\) 6174.00 10693.7i 0.320908 0.555828i
\(719\) 9204.00 + 15941.8i 0.477401 + 0.826883i 0.999665 0.0259014i \(-0.00824561\pi\)
−0.522264 + 0.852784i \(0.674912\pi\)
\(720\) 39.8372 0.00206201
\(721\) 1260.93 + 2184.00i 0.0651312 + 0.112811i
\(722\) 5377.15 + 9313.50i 0.277170 + 0.480073i
\(723\) −9834.58 −0.505881
\(724\) 1592.50 + 2758.29i 0.0817470 + 0.141590i
\(725\) −8601.00 + 14897.4i −0.440597 + 0.763137i
\(726\) −1972.81 + 3417.00i −0.100851 + 0.174679i
\(727\) −21112.0 −1.07703 −0.538515 0.842616i \(-0.681014\pi\)
−0.538515 + 0.842616i \(0.681014\pi\)
\(728\) 0 0
\(729\) −4283.00 −0.217599
\(730\) 688.490 1192.50i 0.0349071 0.0604608i
\(731\) −6084.00 + 10537.8i −0.307832 + 0.533180i
\(732\) 725.000 + 1255.74i 0.0366076 + 0.0634062i
\(733\) −23959.5 −1.20732 −0.603658 0.797243i \(-0.706291\pi\)
−0.603658 + 0.797243i \(0.706291\pi\)
\(734\) 1.73205 + 3.00000i 8.70997e−5 + 0.000150861i
\(735\) −261.540 453.000i −0.0131252 0.0227335i
\(736\) −14185.5 −0.710441
\(737\) −5448.00 9436.21i −0.272293 0.471625i
\(738\) 5416.50 9381.65i 0.270168 0.467945i
\(739\) −1583.09 + 2742.00i −0.0788025 + 0.136490i −0.902734 0.430200i \(-0.858443\pi\)
0.823931 + 0.566690i \(0.191776\pi\)
\(740\) −1245.00 −0.0618474
\(741\) 0 0
\(742\) −2232.00 −0.110430
\(743\) −15051.5 + 26070.0i −0.743185 + 1.28723i 0.207852 + 0.978160i \(0.433353\pi\)
−0.951038 + 0.309075i \(0.899981\pi\)
\(744\) −3510.00 + 6079.50i −0.172961 + 0.299577i
\(745\) −40.5000 70.1481i −0.00199168 0.00344970i
\(746\) −6060.45 −0.297438
\(747\) −9082.87 15732.0i −0.444880 0.770554i
\(748\) −4053.00 7020.00i −0.198118 0.343151i
\(749\) −20867.7 −1.01801
\(750\) 741.000 + 1283.45i 0.0360767 + 0.0624866i
\(751\) 14248.0 24678.3i 0.692299 1.19910i −0.278783 0.960354i \(-0.589931\pi\)
0.971083 0.238744i \(-0.0767356\pi\)
\(752\) 150.688 261.000i 0.00730724 0.0126565i
\(753\) 7956.00 0.385037
\(754\) 0 0
\(755\) −3066.00 −0.147792
\(756\) −3464.10 + 6000.00i −0.166651 + 0.288648i
\(757\) −8711.00 + 15087.9i −0.418239 + 0.724411i −0.995762 0.0919633i \(-0.970686\pi\)
0.577524 + 0.816374i \(0.304019\pi\)
\(758\) −4779.00 8277.47i −0.228999 0.396638i
\(759\) 2161.60 0.103374
\(760\) −2229.15 3861.00i −0.106394 0.184281i
\(761\) 20663.4 + 35790.0i 0.984292 + 1.70484i 0.645040 + 0.764149i \(0.276841\pi\)
0.339252 + 0.940695i \(0.389826\pi\)
\(762\) 990.733 0.0471004
\(763\) −10752.0 18623.0i −0.510155 0.883615i
\(764\) −6495.00 + 11249.7i −0.307567 + 0.532721i
\(765\) 2330.47 4036.50i 0.110142 0.190771i
\(766\) 12756.0 0.601688
\(767\) 0 0
\(768\) −8110.00 −0.381047
\(769\) −7035.59 + 12186.0i −0.329922 + 0.571441i −0.982496 0.186283i \(-0.940356\pi\)
0.652574 + 0.757725i \(0.273689\pi\)
\(770\) −288.000 + 498.831i −0.0134790 + 0.0233462i
\(771\) 2067.00 + 3580.15i 0.0965515 + 0.167232i
\(772\) −5585.86 −0.260414
\(773\) −100.459 174.000i −0.00467433 0.00809618i 0.863679 0.504043i \(-0.168155\pi\)
−0.868353 + 0.495946i \(0.834821\pi\)
\(774\) 2071.53 + 3588.00i 0.0962012 + 0.166625i
\(775\) −19017.9 −0.881476
\(776\) −2262.00 3917.90i −0.104641 0.181243i
\(777\) 1992.00 3450.25i 0.0919725 0.159301i
\(778\) 1047.02 1813.50i 0.0482489 0.0835696i
\(779\) 31086.0 1.42975
\(780\) 0 0
\(781\) 14640.0 0.670756
\(782\) −7903.35 + 13689.0i −0.361411 + 0.625982i
\(783\) −7050.00 + 12211.0i −0.321771 + 0.557323i
\(784\) 75.5000 + 130.770i 0.00343932 + 0.00595708i
\(785\) −2097.51 −0.0953675
\(786\) −3419.07 5922.00i −0.155158 0.268741i
\(787\) −3451.98 5979.00i −0.156353 0.270811i 0.777198 0.629256i \(-0.216640\pi\)
−0.933551 + 0.358445i \(0.883307\pi\)
\(788\) 10253.7 0.463546
\(789\) 2052.00 + 3554.17i 0.0925895 + 0.160370i
\(790\) −1914.00 + 3315.15i −0.0861988 + 0.149301i
\(791\) 4759.68 8244.00i 0.213950 0.370573i
\(792\) −7176.00 −0.321955
\(793\) 0 0
\(794\) 20256.0 0.905363
\(795\) 161.081 279.000i 0.00718609 0.0124467i
\(796\) 6305.00 10920.6i 0.280747 0.486268i
\(797\) −15639.0 27087.5i −0.695059 1.20388i −0.970161 0.242462i \(-0.922045\pi\)
0.275102 0.961415i \(-0.411288\pi\)
\(798\) 5487.14 0.243412
\(799\) −17630.5 30537.0i −0.780631 1.35209i
\(800\) −11093.8 19215.0i −0.490281 0.849191i
\(801\) 22468.2 0.991103
\(802\) −2581.50 4471.29i −0.113661 0.196866i
\(803\) 3180.00 5507.92i 0.139751 0.242055i
\(804\) 3931.76 6810.00i 0.172466 0.298719i
\(805\) −1872.00 −0.0819619
\(806\) 0 0
\(807\) 6660.00 0.290512
\(808\) 4829.82 8365.50i 0.210288 0.364229i
\(809\) −4024.50 + 6970.64i −0.174900 + 0.302935i −0.940127 0.340826i \(-0.889293\pi\)
0.765227 + 0.643761i \(0.222627\pi\)
\(810\) −631.500 1093.79i −0.0273934 0.0474467i
\(811\) 14026.1 0.607305 0.303653 0.952783i \(-0.401794\pi\)
0.303653 + 0.952783i \(0.401794\pi\)
\(812\) −4884.38 8460.00i −0.211094 0.365625i
\(813\) −2805.92 4860.00i −0.121043 0.209653i
\(814\) 3450.25 0.148564
\(815\) 870.000 + 1506.88i 0.0373924 + 0.0647655i
\(816\) 117.000 202.650i 0.00501939 0.00869383i
\(817\) −5944.40 + 10296.0i −0.254551 + 0.440895i
\(818\) −75.0000 −0.00320576
\(819\) 0 0
\(820\) −2355.00 −0.100293
\(821\) −4018.36 + 6960.00i −0.170818 + 0.295866i −0.938706 0.344718i \(-0.887974\pi\)
0.767888 + 0.640584i \(0.221308\pi\)
\(822\) 1467.00 2540.92i 0.0622476 0.107816i
\(823\) −20150.0 34900.8i −0.853445 1.47821i −0.878081 0.478513i \(-0.841176\pi\)
0.0246361 0.999696i \(-0.492157\pi\)
\(824\) −4098.03 −0.173255
\(825\) 1690.48 + 2928.00i 0.0713394 + 0.123563i
\(826\) 3408.68 + 5904.00i 0.143587 + 0.248700i
\(827\) −39525.4 −1.66195 −0.830975 0.556310i \(-0.812217\pi\)
−0.830975 + 0.556310i \(0.812217\pi\)
\(828\) −4485.00 7768.25i −0.188242 0.326045i
\(829\) −6155.50 + 10661.6i −0.257888 + 0.446676i −0.965676 0.259750i \(-0.916360\pi\)
0.707788 + 0.706425i \(0.249693\pi\)
\(830\) 1184.72 2052.00i 0.0495450 0.0858144i
\(831\) −754.000 −0.0314753
\(832\) 0 0
\(833\) 17667.0 0.734844
\(834\) 408.764 708.000i 0.0169716 0.0293957i
\(835\) 792.000 1371.78i 0.0328243 0.0568534i
\(836\) −3960.00 6858.92i −0.163827 0.283757i
\(837\) −15588.5 −0.643747
\(838\) −8194.33 14193.0i −0.337791 0.585070i
\(839\) 10733.5 + 18591.0i 0.441671 + 0.764997i 0.997814 0.0660899i \(-0.0210524\pi\)
−0.556142 + 0.831087i \(0.687719\pi\)
\(840\) −1080.80 −0.0443942
\(841\) 2254.00 + 3904.04i 0.0924187 + 0.160074i
\(842\) 6121.50 10602.7i 0.250547 0.433961i
\(843\) −36.3731 + 63.0000i −0.00148607 + 0.00257394i
\(844\) −5210.00 −0.212483
\(845\) 0 0
\(846\) −12006.0 −0.487913
\(847\) 7891.22 13668.0i 0.320125 0.554472i
\(848\) −46.5000 + 80.5404i −0.00188304 + 0.00326152i
\(849\) −7124.00 12339.1i −0.287980 0.498796i
\(850\) −24723.3 −0.997649
\(851\) 5606.65 + 9711.00i 0.225844 + 0.391174i
\(852\) 5282.75 + 9150.00i 0.212423 + 0.367927i
\(853\) −774.227 −0.0310774 −0.0155387 0.999879i \(-0.504946\pi\)
−0.0155387 + 0.999879i \(0.504946\pi\)
\(854\) 1740.00 + 3013.77i 0.0697208 + 0.120760i
\(855\) 2277.00 3943.88i 0.0910781 0.157752i
\(856\) 16955.0 29367.0i 0.676999 1.17260i
\(857\) −13923.0 −0.554960 −0.277480 0.960731i \(-0.589499\pi\)
−0.277480 + 0.960731i \(0.589499\pi\)
\(858\) 0 0
\(859\) −22358.0 −0.888062 −0.444031 0.896011i \(-0.646452\pi\)
−0.444031 + 0.896011i \(0.646452\pi\)
\(860\) 450.333 780.000i 0.0178561 0.0309277i
\(861\) 3768.00 6526.37i 0.149144 0.258325i
\(862\) 8598.00 + 14892.2i 0.339732 + 0.588433i
\(863\) −2230.88 −0.0879955 −0.0439977 0.999032i \(-0.514009\pi\)
−0.0439977 + 0.999032i \(0.514009\pi\)
\(864\) −9093.27 15750.0i −0.358055 0.620169i
\(865\) −2229.15 3861.00i −0.0876224 0.151766i
\(866\) −11461.0 −0.449723
\(867\) −8776.00 15200.5i −0.343770 0.595427i
\(868\) 5400.00 9353.07i 0.211161 0.365742i
\(869\) −8840.39 + 15312.0i −0.345097 + 0.597726i
\(870\) −846.000 −0.0329679
\(871\) 0 0
\(872\) 34944.0 1.35706
\(873\) 2310.56 4002.00i 0.0895767 0.155151i
\(874\) −7722.00 + 13374.9i −0.298856 + 0.517635i
\(875\) −2964.00 5133.80i −0.114516 0.198348i
\(876\) 4589.93 0.177031
\(877\) 8377.06 + 14509.5i 0.322547 + 0.558667i 0.981013 0.193943i \(-0.0621278\pi\)
−0.658466 + 0.752610i \(0.728794\pi\)
\(878\) −12114.0 20982.0i −0.465634 0.806501i
\(879\) 16645.0 0.638706
\(880\) 12.0000 + 20.7846i 0.000459682 + 0.000796192i
\(881\) 8677.50 15029.9i 0.331842 0.574766i −0.651031 0.759051i \(-0.725663\pi\)
0.982873 + 0.184284i \(0.0589967\pi\)
\(882\) 3007.71 5209.50i 0.114824 0.198881i
\(883\) 46982.0 1.79057 0.895283 0.445497i \(-0.146973\pi\)
0.895283 + 0.445497i \(0.146973\pi\)
\(884\) 0 0
\(885\) −984.000 −0.0373749
\(886\) 1735.51 3006.00i 0.0658079 0.113983i
\(887\) 4458.00 7721.48i 0.168754 0.292291i −0.769228 0.638975i \(-0.779359\pi\)
0.937982 + 0.346684i \(0.112692\pi\)
\(888\) 3237.00 + 5606.65i 0.122327 + 0.211877i
\(889\) −3962.93 −0.149508
\(890\) 1465.31 + 2538.00i 0.0551882 + 0.0955887i
\(891\) −2916.77 5052.00i −0.109670 0.189953i
\(892\) −12037.8 −0.451854
\(893\) −17226.0 29836.3i −0.645516 1.11807i
\(894\) −81.0000 + 140.296i −0.00303025 + 0.00524855i
\(895\) −3242.40 + 5616.00i −0.121097 + 0.209745i
\(896\) 12792.0 0.476954
\(897\) 0 0
\(898\) 15732.0 0.584614
\(899\) 10989.9 19035.0i 0.407711 0.706177i
\(900\) 7015.00 12150.3i 0.259815 0.450012i
\(901\) 5440.50 + 9423.22i 0.201165 + 0.348427i
\(902\) 6526.37 0.240914
\(903\) 1441.07 + 2496.00i 0.0531071 + 0.0919841i
\(904\) 7734.47 + 13396.5i 0.284563 + 0.492877i
\(905\) −1103.32 −0.0405254
\(906\) 3066.00 + 5310.47i 0.112429 + 0.194733i
\(907\) −15418.0 + 26704.8i −0.564439 + 0.977637i 0.432662 + 0.901556i \(0.357574\pi\)
−0.997102 + 0.0760813i \(0.975759\pi\)
\(908\) 6018.88 10425.0i 0.219982 0.381020i
\(909\) 9867.00 0.360031
\(910\) 0 0
\(911\) −27480.0 −0.999400 −0.499700 0.866199i \(-0.666556\pi\)
−0.499700 + 0.866199i \(0.666556\pi\)
\(912\) 114.315 198.000i 0.00415061 0.00718907i
\(913\) 5472.00 9477.78i 0.198354 0.343558i
\(914\) −2185.50 3785.40i −0.0790918 0.136991i
\(915\) −502.295 −0.0181479
\(916\) −6270.02 10860.0i −0.226165 0.391730i
\(917\) 13676.3 + 23688.0i 0.492509 + 0.853050i
\(918\) −20265.0 −0.728589
\(919\) 14221.0 + 24631.5i 0.510454 + 0.884133i 0.999927 + 0.0121140i \(0.00385609\pi\)
−0.489472 + 0.872019i \(0.662811\pi\)
\(920\) 1521.00 2634.45i 0.0545064 0.0944078i
\(921\) −2220.49 + 3846.00i −0.0794437 + 0.137600i
\(922\) −33927.0 −1.21185
\(923\) 0 0
\(924\) −1920.00 −0.0683586
\(925\) −8769.37 + 15189.0i −0.311714 + 0.539904i
\(926\) −7476.00 + 12948.8i −0.265310 + 0.459530i
\(927\) −2093.00 3625.18i −0.0741566 0.128443i
\(928\) 25643.0 0.907083
\(929\) −3489.22 6043.50i −0.123227 0.213435i 0.797812 0.602907i \(-0.205991\pi\)
−0.921038 + 0.389472i \(0.872658\pi\)
\(930\) −467.654 810.000i −0.0164892 0.0285602i
\(931\) 17261.6 0.607655
\(932\) 14625.0 + 25331.2i 0.514011 + 0.890292i
\(933\) 4914.00 8511.30i 0.172430 0.298657i
\(934\) −4728.50 + 8190.00i −0.165654 + 0.286922i
\(935\) 2808.00 0.0982154
\(936\) 0 0
\(937\) −38465.0 −1.34109 −0.670543 0.741871i \(-0.733939\pi\)
−0.670543 + 0.741871i \(0.733939\pi\)
\(938\) 9436.21 16344.0i 0.328468 0.568924i
\(939\) 518.000 897.202i 0.0180024 0.0311811i
\(940\) 1305.00 + 2260.33i 0.0452813 + 0.0784295i
\(941\) 4884.38 0.169210 0.0846049 0.996415i \(-0.473037\pi\)
0.0846049 + 0.996415i \(0.473037\pi\)
\(942\) 2097.51 + 3633.00i 0.0725485 + 0.125658i
\(943\) 10605.3 + 18369.0i 0.366233 + 0.634334i
\(944\) 284.056 0.00979369
\(945\) −1200.00 2078.46i −0.0413079 0.0715475i
\(946\) −1248.00 + 2161.60i −0.0428922 + 0.0742914i
\(947\) −10882.5 + 18849.0i −0.373424 + 0.646790i −0.990090 0.140435i \(-0.955150\pi\)
0.616665 + 0.787225i \(0.288483\pi\)
\(948\) −12760.0 −0.437158
\(949\) 0 0
\(950\) −24156.0 −0.824973
\(951\) −3916.17 + 6783.00i −0.133534 + 0.231287i
\(952\) 18252.0 31613.4i 0.621377 1.07626i
\(953\) 3237.00 + 5606.65i 0.110028 + 0.190574i 0.915781 0.401677i \(-0.131573\pi\)
−0.805753 + 0.592251i \(0.798239\pi\)
\(954\) 3704.86 0.125733
\(955\) −2249.93 3897.00i −0.0762368 0.132046i
\(956\) −13458.0 23310.0i −0.455297 0.788598i
\(957\) −3907.51 −0.131987
\(958\) −2211.00 3829.56i −0.0745659 0.129152i
\(959\) −5868.00 + 10163.7i −0.197589 + 0.342234i
\(960\) 531.740 921.000i 0.0178769 0.0309637i
\(961\) −5491.00 −0.184317
\(962\) 0 0
\(963\) 34638.0 1.15908
\(964\) −12293.2 + 21292.5i −0.410724 + 0.711395i
\(965\) 967.500 1675.76i 0.0322745 0.0559011i
\(966\) 1872.00 + 3242.40i 0.0623505 + 0.107994i
\(967\) 7541.35 0.250789 0.125395 0.992107i \(-0.459980\pi\)
0.125395 + 0.992107i \(0.459980\pi\)
\(968\) 12823.2 + 22210.5i 0.425779 + 0.737472i
\(969\) −13374.9 23166.0i −0.443409 0.768007i
\(970\) 602.754 0.0199518
\(971\) −17499.0 30309.2i −0.578342 1.00172i −0.995670 0.0929611i \(-0.970367\pi\)
0.417328 0.908756i \(-0.362967\pi\)
\(972\) 8855.00 15337.3i 0.292206 0.506116i
\(973\) −1635.06 + 2832.00i −0.0538720 + 0.0933091i
\(974\) −18756.0 −0.617024
\(975\) 0 0
\(976\) 145.000 0.00475547
\(977\) −12608.5 + 21838.5i −0.412877 + 0.715123i −0.995203 0.0978318i \(-0.968809\pi\)
0.582326 + 0.812955i \(0.302143\pi\)
\(978\) 1740.00 3013.77i 0.0568907 0.0985375i
\(979\) 6768.00 + 11722.5i 0.220946 + 0.382690i
\(980\) −1307.70 −0.0426254
\(981\) 17847.1 + 30912.0i 0.580849 + 1.00606i
\(982\) −9862.30 17082.0i −0.320487 0.555100i
\(983\) 56440.6 1.83131 0.915654 0.401967i \(-0.131673\pi\)
0.915654 + 0.401967i \(0.131673\pi\)
\(984\) 6123.00 + 10605.3i 0.198368 + 0.343583i
\(985\) −1776.00 + 3076.12i −0.0574498 + 0.0995060i
\(986\) 14286.8 24745.5i 0.461445 0.799247i
\(987\) −8352.00 −0.269349
\(988\) 0 0
\(989\) −8112.00 −0.260816
\(990\) 478.046 828.000i 0.0153468 0.0265814i
\(991\) −29641.0 + 51339.7i −0.950129 + 1.64567i −0.204987 + 0.978765i \(0.565715\pi\)
−0.745142 + 0.666906i \(0.767618\pi\)
\(992\) 14175.0 + 24551.8i 0.453686 + 0.785808i
\(993\) −14909.5 −0.476474
\(994\) 12678.6 + 21960.0i 0.404569 + 0.700733i
\(995\) 2184.12 + 3783.00i 0.0695891 + 0.120532i
\(996\) 7898.15 0.251268
\(997\) 18855.5 + 32658.7i 0.598957 + 1.03742i 0.992975 + 0.118321i \(0.0377511\pi\)
−0.394019 + 0.919102i \(0.628916\pi\)
\(998\) −15309.0 + 26516.0i −0.485569 + 0.841030i
\(999\) −7188.01 + 12450.0i −0.227646 + 0.394295i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.4.c.h.22.2 4
13.2 odd 12 13.4.e.b.10.1 yes 2
13.3 even 3 inner 169.4.c.h.146.2 4
13.4 even 6 169.4.a.i.1.2 2
13.5 odd 4 169.4.e.a.147.1 2
13.6 odd 12 169.4.b.d.168.2 2
13.7 odd 12 169.4.b.d.168.1 2
13.8 odd 4 13.4.e.b.4.1 2
13.9 even 3 169.4.a.i.1.1 2
13.10 even 6 inner 169.4.c.h.146.1 4
13.11 odd 12 169.4.e.a.23.1 2
13.12 even 2 inner 169.4.c.h.22.1 4
39.2 even 12 117.4.q.a.10.1 2
39.8 even 4 117.4.q.a.82.1 2
39.17 odd 6 1521.4.a.o.1.1 2
39.35 odd 6 1521.4.a.o.1.2 2
52.15 even 12 208.4.w.b.49.1 2
52.47 even 4 208.4.w.b.17.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.4.e.b.4.1 2 13.8 odd 4
13.4.e.b.10.1 yes 2 13.2 odd 12
117.4.q.a.10.1 2 39.2 even 12
117.4.q.a.82.1 2 39.8 even 4
169.4.a.i.1.1 2 13.9 even 3
169.4.a.i.1.2 2 13.4 even 6
169.4.b.d.168.1 2 13.7 odd 12
169.4.b.d.168.2 2 13.6 odd 12
169.4.c.h.22.1 4 13.12 even 2 inner
169.4.c.h.22.2 4 1.1 even 1 trivial
169.4.c.h.146.1 4 13.10 even 6 inner
169.4.c.h.146.2 4 13.3 even 3 inner
169.4.e.a.23.1 2 13.11 odd 12
169.4.e.a.147.1 2 13.5 odd 4
208.4.w.b.17.1 2 52.47 even 4
208.4.w.b.49.1 2 52.15 even 12
1521.4.a.o.1.1 2 39.17 odd 6
1521.4.a.o.1.2 2 39.35 odd 6