Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [169,4,Mod(23,169)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("169.23");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 169.e (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 13) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 |
|
−2.59808 | + | 1.50000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | 9.00000i | −2.59808 | − | 1.50000i | −12.9904 | − | 7.50000i | − | 21.0000i | 13.0000 | − | 22.5167i | −13.5000 | − | 23.3827i | |||||||||||||||
23.2 | 2.59808 | − | 1.50000i | 0.500000 | + | 0.866025i | 0.500000 | − | 0.866025i | − | 9.00000i | 2.59808 | + | 1.50000i | 12.9904 | + | 7.50000i | 21.0000i | 13.0000 | − | 22.5167i | −13.5000 | − | 23.3827i | ||||||||||||||||
147.1 | −2.59808 | − | 1.50000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | − | 9.00000i | −2.59808 | + | 1.50000i | −12.9904 | + | 7.50000i | 21.0000i | 13.0000 | + | 22.5167i | −13.5000 | + | 23.3827i | ||||||||||||||||
147.2 | 2.59808 | + | 1.50000i | 0.500000 | − | 0.866025i | 0.500000 | + | 0.866025i | 9.00000i | 2.59808 | − | 1.50000i | 12.9904 | − | 7.50000i | − | 21.0000i | 13.0000 | + | 22.5167i | −13.5000 | + | 23.3827i | ||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
13.e | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 169.4.e.d | 4 | |
13.b | even | 2 | 1 | inner | 169.4.e.d | 4 | |
13.c | even | 3 | 1 | 13.4.b.a | ✓ | 2 | |
13.c | even | 3 | 1 | inner | 169.4.e.d | 4 | |
13.d | odd | 4 | 1 | 169.4.c.b | 2 | ||
13.d | odd | 4 | 1 | 169.4.c.c | 2 | ||
13.e | even | 6 | 1 | 13.4.b.a | ✓ | 2 | |
13.e | even | 6 | 1 | inner | 169.4.e.d | 4 | |
13.f | odd | 12 | 1 | 169.4.a.b | 1 | ||
13.f | odd | 12 | 1 | 169.4.a.c | 1 | ||
13.f | odd | 12 | 1 | 169.4.c.b | 2 | ||
13.f | odd | 12 | 1 | 169.4.c.c | 2 | ||
39.h | odd | 6 | 1 | 117.4.b.a | 2 | ||
39.i | odd | 6 | 1 | 117.4.b.a | 2 | ||
39.k | even | 12 | 1 | 1521.4.a.d | 1 | ||
39.k | even | 12 | 1 | 1521.4.a.i | 1 | ||
52.i | odd | 6 | 1 | 208.4.f.b | 2 | ||
52.j | odd | 6 | 1 | 208.4.f.b | 2 | ||
65.l | even | 6 | 1 | 325.4.c.b | 2 | ||
65.n | even | 6 | 1 | 325.4.c.b | 2 | ||
65.q | odd | 12 | 1 | 325.4.d.a | 2 | ||
65.q | odd | 12 | 1 | 325.4.d.b | 2 | ||
65.r | odd | 12 | 1 | 325.4.d.a | 2 | ||
65.r | odd | 12 | 1 | 325.4.d.b | 2 | ||
104.n | odd | 6 | 1 | 832.4.f.c | 2 | ||
104.p | odd | 6 | 1 | 832.4.f.c | 2 | ||
104.r | even | 6 | 1 | 832.4.f.e | 2 | ||
104.s | even | 6 | 1 | 832.4.f.e | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
13.4.b.a | ✓ | 2 | 13.c | even | 3 | 1 | |
13.4.b.a | ✓ | 2 | 13.e | even | 6 | 1 | |
117.4.b.a | 2 | 39.h | odd | 6 | 1 | ||
117.4.b.a | 2 | 39.i | odd | 6 | 1 | ||
169.4.a.b | 1 | 13.f | odd | 12 | 1 | ||
169.4.a.c | 1 | 13.f | odd | 12 | 1 | ||
169.4.c.b | 2 | 13.d | odd | 4 | 1 | ||
169.4.c.b | 2 | 13.f | odd | 12 | 1 | ||
169.4.c.c | 2 | 13.d | odd | 4 | 1 | ||
169.4.c.c | 2 | 13.f | odd | 12 | 1 | ||
169.4.e.d | 4 | 1.a | even | 1 | 1 | trivial | |
169.4.e.d | 4 | 13.b | even | 2 | 1 | inner | |
169.4.e.d | 4 | 13.c | even | 3 | 1 | inner | |
169.4.e.d | 4 | 13.e | even | 6 | 1 | inner | |
208.4.f.b | 2 | 52.i | odd | 6 | 1 | ||
208.4.f.b | 2 | 52.j | odd | 6 | 1 | ||
325.4.c.b | 2 | 65.l | even | 6 | 1 | ||
325.4.c.b | 2 | 65.n | even | 6 | 1 | ||
325.4.d.a | 2 | 65.q | odd | 12 | 1 | ||
325.4.d.a | 2 | 65.r | odd | 12 | 1 | ||
325.4.d.b | 2 | 65.q | odd | 12 | 1 | ||
325.4.d.b | 2 | 65.r | odd | 12 | 1 | ||
832.4.f.c | 2 | 104.n | odd | 6 | 1 | ||
832.4.f.c | 2 | 104.p | odd | 6 | 1 | ||
832.4.f.e | 2 | 104.r | even | 6 | 1 | ||
832.4.f.e | 2 | 104.s | even | 6 | 1 | ||
1521.4.a.d | 1 | 39.k | even | 12 | 1 | ||
1521.4.a.i | 1 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .