Properties

Label 169.4.e.d
Level 169169
Weight 44
Character orbit 169.e
Analytic conductor 9.9719.971
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,4,Mod(23,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.23");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 169.e (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.971322790979.97132279097
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+(β2+1)q3+β2q4+3β3q5+(β3+β1)q6+(5β3+5β1)q77β3q8+26β2q9+(27β227)q10++416β3q99+O(q100) q + \beta_1 q^{2} + ( - \beta_{2} + 1) q^{3} + \beta_{2} q^{4} + 3 \beta_{3} q^{5} + ( - \beta_{3} + \beta_1) q^{6} + ( - 5 \beta_{3} + 5 \beta_1) q^{7} - 7 \beta_{3} q^{8} + 26 \beta_{2} q^{9} + (27 \beta_{2} - 27) q^{10}+ \cdots + 416 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q3+2q4+52q954q10+4q12+180q14+142q16+90q17+288q22324q23+176q25+212q27+288q29+54q30+270q3552q3672q38+108q95+O(q100) 4 q + 2 q^{3} + 2 q^{4} + 52 q^{9} - 54 q^{10} + 4 q^{12} + 180 q^{14} + 142 q^{16} + 90 q^{17} + 288 q^{22} - 324 q^{23} + 176 q^{25} + 212 q^{27} + 288 q^{29} + 54 q^{30} + 270 q^{35} - 52 q^{36} - 72 q^{38}+ \cdots - 108 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== 3ζ12 3\zeta_{12} Copy content Toggle raw display
β2\beta_{2}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β3\beta_{3}== 3ζ123 3\zeta_{12}^{3} Copy content Toggle raw display
ζ12\zeta_{12}== (β1)/3 ( \beta_1 ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β2 \beta_{2} Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3)/3 ( \beta_{3} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/169Z)×\left(\mathbb{Z}/169\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
23.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−2.59808 + 1.50000i 0.500000 + 0.866025i 0.500000 0.866025i 9.00000i −2.59808 1.50000i −12.9904 7.50000i 21.0000i 13.0000 22.5167i −13.5000 23.3827i
23.2 2.59808 1.50000i 0.500000 + 0.866025i 0.500000 0.866025i 9.00000i 2.59808 + 1.50000i 12.9904 + 7.50000i 21.0000i 13.0000 22.5167i −13.5000 23.3827i
147.1 −2.59808 1.50000i 0.500000 0.866025i 0.500000 + 0.866025i 9.00000i −2.59808 + 1.50000i −12.9904 + 7.50000i 21.0000i 13.0000 + 22.5167i −13.5000 + 23.3827i
147.2 2.59808 + 1.50000i 0.500000 0.866025i 0.500000 + 0.866025i 9.00000i 2.59808 1.50000i 12.9904 7.50000i 21.0000i 13.0000 + 22.5167i −13.5000 + 23.3827i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.4.e.d 4
13.b even 2 1 inner 169.4.e.d 4
13.c even 3 1 13.4.b.a 2
13.c even 3 1 inner 169.4.e.d 4
13.d odd 4 1 169.4.c.b 2
13.d odd 4 1 169.4.c.c 2
13.e even 6 1 13.4.b.a 2
13.e even 6 1 inner 169.4.e.d 4
13.f odd 12 1 169.4.a.b 1
13.f odd 12 1 169.4.a.c 1
13.f odd 12 1 169.4.c.b 2
13.f odd 12 1 169.4.c.c 2
39.h odd 6 1 117.4.b.a 2
39.i odd 6 1 117.4.b.a 2
39.k even 12 1 1521.4.a.d 1
39.k even 12 1 1521.4.a.i 1
52.i odd 6 1 208.4.f.b 2
52.j odd 6 1 208.4.f.b 2
65.l even 6 1 325.4.c.b 2
65.n even 6 1 325.4.c.b 2
65.q odd 12 1 325.4.d.a 2
65.q odd 12 1 325.4.d.b 2
65.r odd 12 1 325.4.d.a 2
65.r odd 12 1 325.4.d.b 2
104.n odd 6 1 832.4.f.c 2
104.p odd 6 1 832.4.f.c 2
104.r even 6 1 832.4.f.e 2
104.s even 6 1 832.4.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.b.a 2 13.c even 3 1
13.4.b.a 2 13.e even 6 1
117.4.b.a 2 39.h odd 6 1
117.4.b.a 2 39.i odd 6 1
169.4.a.b 1 13.f odd 12 1
169.4.a.c 1 13.f odd 12 1
169.4.c.b 2 13.d odd 4 1
169.4.c.b 2 13.f odd 12 1
169.4.c.c 2 13.d odd 4 1
169.4.c.c 2 13.f odd 12 1
169.4.e.d 4 1.a even 1 1 trivial
169.4.e.d 4 13.b even 2 1 inner
169.4.e.d 4 13.c even 3 1 inner
169.4.e.d 4 13.e even 6 1 inner
208.4.f.b 2 52.i odd 6 1
208.4.f.b 2 52.j odd 6 1
325.4.c.b 2 65.l even 6 1
325.4.c.b 2 65.n even 6 1
325.4.d.a 2 65.q odd 12 1
325.4.d.a 2 65.r odd 12 1
325.4.d.b 2 65.q odd 12 1
325.4.d.b 2 65.r odd 12 1
832.4.f.c 2 104.n odd 6 1
832.4.f.c 2 104.p odd 6 1
832.4.f.e 2 104.r even 6 1
832.4.f.e 2 104.s even 6 1
1521.4.a.d 1 39.k even 12 1
1521.4.a.i 1 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T249T22+81 T_{2}^{4} - 9T_{2}^{2} + 81 acting on S4new(169,[χ])S_{4}^{\mathrm{new}}(169, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 (T2+81)2 (T^{2} + 81)^{2} Copy content Toggle raw display
77 T4225T2+50625 T^{4} - 225 T^{2} + 50625 Copy content Toggle raw display
1111 T42304T2+5308416 T^{4} - 2304 T^{2} + 5308416 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T245T+2025)2 (T^{2} - 45 T + 2025)^{2} Copy content Toggle raw display
1919 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
2323 (T2+162T+26244)2 (T^{2} + 162 T + 26244)^{2} Copy content Toggle raw display
2929 (T2144T+20736)2 (T^{2} - 144 T + 20736)^{2} Copy content Toggle raw display
3131 (T2+69696)2 (T^{2} + 69696)^{2} Copy content Toggle raw display
3737 T4++8428892481 T^{4} + \cdots + 8428892481 Copy content Toggle raw display
4141 T4++1358954496 T^{4} + \cdots + 1358954496 Copy content Toggle raw display
4343 (T297T+9409)2 (T^{2} - 97 T + 9409)^{2} Copy content Toggle raw display
4747 (T2+12321)2 (T^{2} + 12321)^{2} Copy content Toggle raw display
5353 (T+414)4 (T + 414)^{4} Copy content Toggle raw display
5959 T4++74247530256 T^{4} + \cdots + 74247530256 Copy content Toggle raw display
6161 (T2+376T+141376)2 (T^{2} + 376 T + 141376)^{2} Copy content Toggle raw display
6767 T41296T2+1679616 T^{4} - 1296 T^{2} + 1679616 Copy content Toggle raw display
7171 T4++16243247601 T^{4} + \cdots + 16243247601 Copy content Toggle raw display
7373 (T2+1205604)2 (T^{2} + 1205604)^{2} Copy content Toggle raw display
7979 (T+830)4 (T + 830)^{4} Copy content Toggle raw display
8383 (T2+191844)2 (T^{2} + 191844)^{2} Copy content Toggle raw display
8989 T4++36804120336 T^{4} + \cdots + 36804120336 Copy content Toggle raw display
9797 T4++526936617216 T^{4} + \cdots + 526936617216 Copy content Toggle raw display
show more
show less