Properties

Label 169.8.b.a
Level $169$
Weight $8$
Character orbit 169.b
Analytic conductor $52.793$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 10 i q^{2} - 73 q^{3} + 28 q^{4} - 295 i q^{5} - 730 i q^{6} - 1373 i q^{7} + 1560 i q^{8} + 3142 q^{9} + 2950 q^{10} + 7646 i q^{11} - 2044 q^{12} + 13730 q^{14} + 21535 i q^{15} - 12016 q^{16} + 4147 q^{17} + \cdots + 24023732 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 146 q^{3} + 56 q^{4} + 6284 q^{9} + 5900 q^{10} - 4088 q^{12} + 27460 q^{14} - 24032 q^{16} + 8294 q^{17} - 152920 q^{22} + 35568 q^{23} - 17800 q^{25} - 139430 q^{27} - 186644 q^{29} - 430700 q^{30}+ \cdots - 1879740 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
168.1
1.00000i
1.00000i
10.0000i −73.0000 28.0000 295.000i 730.000i 1373.00i 1560.00i 3142.00 2950.00
168.2 10.0000i −73.0000 28.0000 295.000i 730.000i 1373.00i 1560.00i 3142.00 2950.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 169.8.b.a 2
13.b even 2 1 inner 169.8.b.a 2
13.d odd 4 1 13.8.a.a 1
13.d odd 4 1 169.8.a.a 1
39.f even 4 1 117.8.a.a 1
52.f even 4 1 208.8.a.d 1
65.g odd 4 1 325.8.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.8.a.a 1 13.d odd 4 1
117.8.a.a 1 39.f even 4 1
169.8.a.a 1 13.d odd 4 1
169.8.b.a 2 1.a even 1 1 trivial
169.8.b.a 2 13.b even 2 1 inner
208.8.a.d 1 52.f even 4 1
325.8.a.a 1 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 100 \) acting on \(S_{8}^{\mathrm{new}}(169, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 100 \) Copy content Toggle raw display
$3$ \( (T + 73)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 87025 \) Copy content Toggle raw display
$7$ \( T^{2} + 1885129 \) Copy content Toggle raw display
$11$ \( T^{2} + 58461316 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 4147)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 10150596 \) Copy content Toggle raw display
$23$ \( (T - 17784)^{2} \) Copy content Toggle raw display
$29$ \( (T + 93322)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 15496266256 \) Copy content Toggle raw display
$37$ \( T^{2} + 74890342921 \) Copy content Toggle raw display
$41$ \( T^{2} + 343180385856 \) Copy content Toggle raw display
$43$ \( (T - 533559)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 280958303025 \) Copy content Toggle raw display
$53$ \( (T + 615288)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 154067240196 \) Copy content Toggle raw display
$61$ \( (T - 1878064)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 15772319787844 \) Copy content Toggle raw display
$71$ \( T^{2} + 14037019053201 \) Copy content Toggle raw display
$73$ \( T^{2} + 6179211583204 \) Copy content Toggle raw display
$79$ \( (T + 1264456)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 188623438864 \) Copy content Toggle raw display
$89$ \( T^{2} + 33998345256100 \) Copy content Toggle raw display
$97$ \( T^{2} + 4183374808900 \) Copy content Toggle raw display
show more
show less