Properties

Label 169.8.b.d.168.10
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.10
Root \(8.41902i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.d.168.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.41902i q^{2} -1.14749 q^{3} +57.1202 q^{4} +399.024i q^{5} -9.66073i q^{6} -944.231i q^{7} +1558.53i q^{8} -2185.68 q^{9} -3359.39 q^{10} +5673.16i q^{11} -65.5447 q^{12} +7949.50 q^{14} -457.876i q^{15} -5809.90 q^{16} -12214.2 q^{17} -18401.3i q^{18} -48622.1i q^{19} +22792.3i q^{20} +1083.49i q^{21} -47762.4 q^{22} -3416.52 q^{23} -1788.40i q^{24} -81095.5 q^{25} +5017.60 q^{27} -53934.6i q^{28} -126824. q^{29} +3854.87 q^{30} +170057. i q^{31} +150578. i q^{32} -6509.89i q^{33} -102832. i q^{34} +376771. q^{35} -124847. q^{36} +149165. i q^{37} +409350. q^{38} -621892. q^{40} -645325. i q^{41} -9121.96 q^{42} -129943. q^{43} +324052. i q^{44} -872141. i q^{45} -28763.7i q^{46} +338496. i q^{47} +6666.80 q^{48} -68029.2 q^{49} -682745. i q^{50} +14015.7 q^{51} -226916. q^{53} +42243.3i q^{54} -2.26373e6 q^{55} +1.47161e6 q^{56} +55793.3i q^{57} -1.06773e6i q^{58} +1.60203e6i q^{59} -26154.0i q^{60} -2.00107e6 q^{61} -1.43171e6 q^{62} +2.06379e6i q^{63} -2.01139e6 q^{64} +54806.9 q^{66} -1.38038e6i q^{67} -697677. q^{68} +3920.41 q^{69} +3.17204e6i q^{70} -5.13680e6i q^{71} -3.40645e6i q^{72} -5.76900e6i q^{73} -1.25582e6 q^{74} +93056.2 q^{75} -2.77730e6i q^{76} +5.35678e6 q^{77} -4.45623e6 q^{79} -2.31829e6i q^{80} +4.77433e6 q^{81} +5.43300e6 q^{82} -811479. i q^{83} +61889.4i q^{84} -4.87377e6i q^{85} -1.09399e6i q^{86} +145529. q^{87} -8.84179e6 q^{88} -5.15613e6i q^{89} +7.34257e6 q^{90} -195152. q^{92} -195138. i q^{93} -2.84980e6 q^{94} +1.94014e7 q^{95} -172787. i q^{96} -3.83876e6i q^{97} -572739. i q^{98} -1.23997e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} - 766 q^{4} + 6982 q^{9} + 1018 q^{10} + 38380 q^{12} - 47916 q^{14} + 1266 q^{16} + 76806 q^{17} + 251764 q^{22} + 137100 q^{23} + 39380 q^{25} - 432400 q^{27} - 443166 q^{29} + 315780 q^{30}+ \cdots + 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.41902i 0.744143i 0.928204 + 0.372071i \(0.121352\pi\)
−0.928204 + 0.372071i \(0.878648\pi\)
\(3\) −1.14749 −0.0245371 −0.0122686 0.999925i \(-0.503905\pi\)
−0.0122686 + 0.999925i \(0.503905\pi\)
\(4\) 57.1202 0.446251
\(5\) 399.024i 1.42759i 0.700353 + 0.713797i \(0.253026\pi\)
−0.700353 + 0.713797i \(0.746974\pi\)
\(6\) − 9.66073i − 0.0182591i
\(7\) − 944.231i − 1.04048i −0.854019 0.520242i \(-0.825842\pi\)
0.854019 0.520242i \(-0.174158\pi\)
\(8\) 1558.53i 1.07622i
\(9\) −2185.68 −0.999398
\(10\) −3359.39 −1.06233
\(11\) 5673.16i 1.28514i 0.766227 + 0.642571i \(0.222132\pi\)
−0.766227 + 0.642571i \(0.777868\pi\)
\(12\) −65.5447 −0.0109497
\(13\) 0 0
\(14\) 7949.50 0.774268
\(15\) − 457.876i − 0.0350291i
\(16\) −5809.90 −0.354608
\(17\) −12214.2 −0.602968 −0.301484 0.953471i \(-0.597482\pi\)
−0.301484 + 0.953471i \(0.597482\pi\)
\(18\) − 18401.3i − 0.743695i
\(19\) − 48622.1i − 1.62628i −0.582067 0.813141i \(-0.697756\pi\)
0.582067 0.813141i \(-0.302244\pi\)
\(20\) 22792.3i 0.637065i
\(21\) 1083.49i 0.0255305i
\(22\) −47762.4 −0.956329
\(23\) −3416.52 −0.0585512 −0.0292756 0.999571i \(-0.509320\pi\)
−0.0292756 + 0.999571i \(0.509320\pi\)
\(24\) − 1788.40i − 0.0264073i
\(25\) −81095.5 −1.03802
\(26\) 0 0
\(27\) 5017.60 0.0490595
\(28\) − 53934.6i − 0.464317i
\(29\) −126824. −0.965626 −0.482813 0.875724i \(-0.660385\pi\)
−0.482813 + 0.875724i \(0.660385\pi\)
\(30\) 3854.87 0.0260666
\(31\) 170057.i 1.02525i 0.858614 + 0.512623i \(0.171326\pi\)
−0.858614 + 0.512623i \(0.828674\pi\)
\(32\) 150578.i 0.812338i
\(33\) − 6509.89i − 0.0315337i
\(34\) − 102832.i − 0.448694i
\(35\) 376771. 1.48539
\(36\) −124847. −0.445983
\(37\) 149165.i 0.484129i 0.970260 + 0.242065i \(0.0778246\pi\)
−0.970260 + 0.242065i \(0.922175\pi\)
\(38\) 409350. 1.21019
\(39\) 0 0
\(40\) −621892. −1.53640
\(41\) − 645325.i − 1.46230i −0.682219 0.731148i \(-0.738985\pi\)
0.682219 0.731148i \(-0.261015\pi\)
\(42\) −9121.96 −0.0189983
\(43\) −129943. −0.249238 −0.124619 0.992205i \(-0.539771\pi\)
−0.124619 + 0.992205i \(0.539771\pi\)
\(44\) 324052.i 0.573496i
\(45\) − 872141.i − 1.42673i
\(46\) − 28763.7i − 0.0435705i
\(47\) 338496.i 0.475566i 0.971318 + 0.237783i \(0.0764207\pi\)
−0.971318 + 0.237783i \(0.923579\pi\)
\(48\) 6666.80 0.00870108
\(49\) −68029.2 −0.0826056
\(50\) − 682745.i − 0.772437i
\(51\) 14015.7 0.0147951
\(52\) 0 0
\(53\) −226916. −0.209362 −0.104681 0.994506i \(-0.533382\pi\)
−0.104681 + 0.994506i \(0.533382\pi\)
\(54\) 42243.3i 0.0365073i
\(55\) −2.26373e6 −1.83466
\(56\) 1.47161e6 1.11979
\(57\) 55793.3i 0.0399043i
\(58\) − 1.06773e6i − 0.718564i
\(59\) 1.60203e6i 1.01552i 0.861498 + 0.507762i \(0.169527\pi\)
−0.861498 + 0.507762i \(0.830473\pi\)
\(60\) − 26154.0i − 0.0156318i
\(61\) −2.00107e6 −1.12877 −0.564387 0.825510i \(-0.690887\pi\)
−0.564387 + 0.825510i \(0.690887\pi\)
\(62\) −1.43171e6 −0.762930
\(63\) 2.06379e6i 1.03986i
\(64\) −2.01139e6 −0.959104
\(65\) 0 0
\(66\) 54806.9 0.0234656
\(67\) − 1.38038e6i − 0.560706i −0.959897 0.280353i \(-0.909548\pi\)
0.959897 0.280353i \(-0.0904516\pi\)
\(68\) −697677. −0.269075
\(69\) 3920.41 0.00143668
\(70\) 3.17204e6i 1.10534i
\(71\) − 5.13680e6i − 1.70329i −0.524120 0.851644i \(-0.675606\pi\)
0.524120 0.851644i \(-0.324394\pi\)
\(72\) − 3.40645e6i − 1.07557i
\(73\) − 5.76900e6i − 1.73568i −0.496839 0.867842i \(-0.665506\pi\)
0.496839 0.867842i \(-0.334494\pi\)
\(74\) −1.25582e6 −0.360261
\(75\) 93056.2 0.0254701
\(76\) − 2.77730e6i − 0.725731i
\(77\) 5.35678e6 1.33717
\(78\) 0 0
\(79\) −4.45623e6 −1.01689 −0.508444 0.861095i \(-0.669779\pi\)
−0.508444 + 0.861095i \(0.669779\pi\)
\(80\) − 2.31829e6i − 0.506237i
\(81\) 4.77433e6 0.998194
\(82\) 5.43300e6 1.08816
\(83\) − 811479.i − 0.155777i −0.996962 0.0778886i \(-0.975182\pi\)
0.996962 0.0778886i \(-0.0248179\pi\)
\(84\) 61889.4i 0.0113930i
\(85\) − 4.87377e6i − 0.860793i
\(86\) − 1.09399e6i − 0.185468i
\(87\) 145529. 0.0236937
\(88\) −8.84179e6 −1.38309
\(89\) − 5.15613e6i − 0.775281i −0.921811 0.387640i \(-0.873290\pi\)
0.921811 0.387640i \(-0.126710\pi\)
\(90\) 7.34257e6 1.06169
\(91\) 0 0
\(92\) −195152. −0.0261286
\(93\) − 195138.i − 0.0251566i
\(94\) −2.84980e6 −0.353889
\(95\) 1.94014e7 2.32167
\(96\) − 172787.i − 0.0199325i
\(97\) − 3.83876e6i − 0.427061i −0.976936 0.213530i \(-0.931504\pi\)
0.976936 0.213530i \(-0.0684963\pi\)
\(98\) − 572739.i − 0.0614703i
\(99\) − 1.23997e7i − 1.28437i
\(100\) −4.63219e6 −0.463219
\(101\) 9.61610e6 0.928697 0.464348 0.885653i \(-0.346289\pi\)
0.464348 + 0.885653i \(0.346289\pi\)
\(102\) 117998.i 0.0110097i
\(103\) −2.86658e6 −0.258484 −0.129242 0.991613i \(-0.541254\pi\)
−0.129242 + 0.991613i \(0.541254\pi\)
\(104\) 0 0
\(105\) −432341. −0.0364472
\(106\) − 1.91041e6i − 0.155796i
\(107\) −198466. −0.0156618 −0.00783091 0.999969i \(-0.502493\pi\)
−0.00783091 + 0.999969i \(0.502493\pi\)
\(108\) 286606. 0.0218929
\(109\) 1.82103e7i 1.34687i 0.739249 + 0.673433i \(0.235181\pi\)
−0.739249 + 0.673433i \(0.764819\pi\)
\(110\) − 1.90584e7i − 1.36525i
\(111\) − 171165.i − 0.0118791i
\(112\) 5.48589e6i 0.368964i
\(113\) −8.14016e6 −0.530711 −0.265356 0.964151i \(-0.585489\pi\)
−0.265356 + 0.964151i \(0.585489\pi\)
\(114\) −469725. −0.0296945
\(115\) − 1.36327e6i − 0.0835873i
\(116\) −7.24421e6 −0.430912
\(117\) 0 0
\(118\) −1.34876e7 −0.755694
\(119\) 1.15330e7i 0.627378i
\(120\) 713613. 0.0376989
\(121\) −1.26976e7 −0.651588
\(122\) − 1.68470e7i − 0.839969i
\(123\) 740504.i 0.0358806i
\(124\) 9.71368e6i 0.457517i
\(125\) − 1.18532e6i − 0.0542813i
\(126\) −1.73751e7 −0.773802
\(127\) −3.41396e7 −1.47892 −0.739460 0.673200i \(-0.764919\pi\)
−0.739460 + 0.673200i \(0.764919\pi\)
\(128\) 2.34010e6i 0.0986277i
\(129\) 149108. 0.00611558
\(130\) 0 0
\(131\) 6.55064e6 0.254586 0.127293 0.991865i \(-0.459371\pi\)
0.127293 + 0.991865i \(0.459371\pi\)
\(132\) − 371846.i − 0.0140720i
\(133\) −4.59105e7 −1.69212
\(134\) 1.16214e7 0.417246
\(135\) 2.00215e6i 0.0700370i
\(136\) − 1.90362e7i − 0.648924i
\(137\) − 1.53188e7i − 0.508984i −0.967075 0.254492i \(-0.918092\pi\)
0.967075 0.254492i \(-0.0819082\pi\)
\(138\) 33006.0i 0.00106910i
\(139\) 1.12089e7 0.354007 0.177004 0.984210i \(-0.443360\pi\)
0.177004 + 0.984210i \(0.443360\pi\)
\(140\) 2.15212e7 0.662856
\(141\) − 388420.i − 0.0116690i
\(142\) 4.32468e7 1.26749
\(143\) 0 0
\(144\) 1.26986e7 0.354395
\(145\) − 5.06059e7i − 1.37852i
\(146\) 4.85693e7 1.29160
\(147\) 78062.8 0.00202690
\(148\) 8.52034e6i 0.216043i
\(149\) 3.85311e7i 0.954243i 0.878837 + 0.477121i \(0.158320\pi\)
−0.878837 + 0.477121i \(0.841680\pi\)
\(150\) 783442.i 0.0189534i
\(151\) 4.08938e7i 0.966581i 0.875460 + 0.483290i \(0.160558\pi\)
−0.875460 + 0.483290i \(0.839442\pi\)
\(152\) 7.57790e7 1.75023
\(153\) 2.66964e7 0.602605
\(154\) 4.50988e7i 0.995044i
\(155\) −6.78568e7 −1.46363
\(156\) 0 0
\(157\) −2.52905e7 −0.521565 −0.260783 0.965398i \(-0.583981\pi\)
−0.260783 + 0.965398i \(0.583981\pi\)
\(158\) − 3.75171e7i − 0.756710i
\(159\) 260383. 0.00513716
\(160\) −6.00844e7 −1.15969
\(161\) 3.22598e6i 0.0609216i
\(162\) 4.01952e7i 0.742799i
\(163\) 6.83917e7i 1.23693i 0.785810 + 0.618467i \(0.212246\pi\)
−0.785810 + 0.618467i \(0.787754\pi\)
\(164\) − 3.68611e7i − 0.652551i
\(165\) 2.59761e6 0.0450173
\(166\) 6.83186e6 0.115921
\(167\) − 2.92588e7i − 0.486126i −0.970010 0.243063i \(-0.921848\pi\)
0.970010 0.243063i \(-0.0781522\pi\)
\(168\) −1.68866e6 −0.0274764
\(169\) 0 0
\(170\) 4.10323e7 0.640553
\(171\) 1.06272e8i 1.62530i
\(172\) −7.42237e6 −0.111223
\(173\) −9.01124e7 −1.32319 −0.661597 0.749860i \(-0.730121\pi\)
−0.661597 + 0.749860i \(0.730121\pi\)
\(174\) 1.22521e6i 0.0176315i
\(175\) 7.65729e7i 1.08005i
\(176\) − 3.29605e7i − 0.455722i
\(177\) − 1.83832e6i − 0.0249180i
\(178\) 4.34096e7 0.576920
\(179\) −1.69729e7 −0.221193 −0.110596 0.993865i \(-0.535276\pi\)
−0.110596 + 0.993865i \(0.535276\pi\)
\(180\) − 4.98168e7i − 0.636682i
\(181\) −4.68911e7 −0.587781 −0.293890 0.955839i \(-0.594950\pi\)
−0.293890 + 0.955839i \(0.594950\pi\)
\(182\) 0 0
\(183\) 2.29620e6 0.0276969
\(184\) − 5.32474e6i − 0.0630139i
\(185\) −5.95206e7 −0.691140
\(186\) 1.64287e6 0.0187201
\(187\) − 6.92932e7i − 0.774898i
\(188\) 1.93349e7i 0.212222i
\(189\) − 4.73778e6i − 0.0510456i
\(190\) 1.63341e8i 1.72765i
\(191\) −1.32211e8 −1.37294 −0.686470 0.727158i \(-0.740841\pi\)
−0.686470 + 0.727158i \(0.740841\pi\)
\(192\) 2.30804e6 0.0235337
\(193\) 1.37264e8i 1.37438i 0.726480 + 0.687188i \(0.241155\pi\)
−0.726480 + 0.687188i \(0.758845\pi\)
\(194\) 3.23186e7 0.317794
\(195\) 0 0
\(196\) −3.88584e6 −0.0368628
\(197\) 1.66568e8i 1.55225i 0.630581 + 0.776123i \(0.282817\pi\)
−0.630581 + 0.776123i \(0.717183\pi\)
\(198\) 1.04394e8 0.955753
\(199\) −5.79904e7 −0.521639 −0.260819 0.965388i \(-0.583993\pi\)
−0.260819 + 0.965388i \(0.583993\pi\)
\(200\) − 1.26390e8i − 1.11714i
\(201\) 1.58396e6i 0.0137581i
\(202\) 8.09581e7i 0.691083i
\(203\) 1.19751e8i 1.00472i
\(204\) 800577. 0.00660233
\(205\) 2.57501e8 2.08756
\(206\) − 2.41338e7i − 0.192349i
\(207\) 7.46742e6 0.0585160
\(208\) 0 0
\(209\) 2.75841e8 2.09000
\(210\) − 3.63988e6i − 0.0271219i
\(211\) 1.21082e8 0.887345 0.443673 0.896189i \(-0.353675\pi\)
0.443673 + 0.896189i \(0.353675\pi\)
\(212\) −1.29615e7 −0.0934283
\(213\) 5.89442e6i 0.0417938i
\(214\) − 1.67089e6i − 0.0116546i
\(215\) − 5.18505e7i − 0.355810i
\(216\) 7.82009e6i 0.0527987i
\(217\) 1.60573e8 1.06675
\(218\) −1.53313e8 −1.00226
\(219\) 6.61987e6i 0.0425887i
\(220\) −1.29305e8 −0.818719
\(221\) 0 0
\(222\) 1.44104e6 0.00883979
\(223\) − 4.62753e7i − 0.279436i −0.990191 0.139718i \(-0.955380\pi\)
0.990191 0.139718i \(-0.0446196\pi\)
\(224\) 1.42181e8 0.845224
\(225\) 1.77249e8 1.03740
\(226\) − 6.85321e7i − 0.394925i
\(227\) 3.36801e8i 1.91110i 0.294834 + 0.955548i \(0.404736\pi\)
−0.294834 + 0.955548i \(0.595264\pi\)
\(228\) 3.18692e6i 0.0178074i
\(229\) − 2.88661e8i − 1.58841i −0.607648 0.794206i \(-0.707887\pi\)
0.607648 0.794206i \(-0.292113\pi\)
\(230\) 1.14774e7 0.0622009
\(231\) −6.14684e6 −0.0328103
\(232\) − 1.97659e8i − 1.03922i
\(233\) 9.81949e7 0.508561 0.254281 0.967130i \(-0.418161\pi\)
0.254281 + 0.967130i \(0.418161\pi\)
\(234\) 0 0
\(235\) −1.35068e8 −0.678914
\(236\) 9.15085e7i 0.453179i
\(237\) 5.11348e6 0.0249515
\(238\) −9.70968e7 −0.466859
\(239\) 1.13856e8i 0.539465i 0.962935 + 0.269733i \(0.0869353\pi\)
−0.962935 + 0.269733i \(0.913065\pi\)
\(240\) 2.66022e6i 0.0124216i
\(241\) − 7.42915e7i − 0.341884i −0.985281 0.170942i \(-0.945319\pi\)
0.985281 0.170942i \(-0.0546811\pi\)
\(242\) − 1.06901e8i − 0.484874i
\(243\) −1.64520e7 −0.0735523
\(244\) −1.14301e8 −0.503717
\(245\) − 2.71453e7i − 0.117927i
\(246\) −6.23431e6 −0.0267003
\(247\) 0 0
\(248\) −2.65039e8 −1.10339
\(249\) 931163.i 0.00382233i
\(250\) 9.97923e6 0.0403931
\(251\) −1.42394e8 −0.568375 −0.284188 0.958769i \(-0.591724\pi\)
−0.284188 + 0.958769i \(0.591724\pi\)
\(252\) 1.17884e8i 0.464038i
\(253\) − 1.93824e7i − 0.0752466i
\(254\) − 2.87421e8i − 1.10053i
\(255\) 5.59259e6i 0.0211214i
\(256\) −2.77159e8 −1.03250
\(257\) 2.92823e8 1.07607 0.538033 0.842924i \(-0.319168\pi\)
0.538033 + 0.842924i \(0.319168\pi\)
\(258\) 1.25534e6i 0.00455086i
\(259\) 1.40846e8 0.503728
\(260\) 0 0
\(261\) 2.77197e8 0.965044
\(262\) 5.51500e7i 0.189448i
\(263\) −3.05065e8 −1.03406 −0.517032 0.855966i \(-0.672963\pi\)
−0.517032 + 0.855966i \(0.672963\pi\)
\(264\) 1.01459e7 0.0339371
\(265\) − 9.05449e7i − 0.298884i
\(266\) − 3.86521e8i − 1.25918i
\(267\) 5.91660e6i 0.0190232i
\(268\) − 7.88473e7i − 0.250216i
\(269\) 2.31855e8 0.726246 0.363123 0.931741i \(-0.381710\pi\)
0.363123 + 0.931741i \(0.381710\pi\)
\(270\) −1.68561e7 −0.0521176
\(271\) 4.92648e8i 1.50364i 0.659368 + 0.751821i \(0.270824\pi\)
−0.659368 + 0.751821i \(0.729176\pi\)
\(272\) 7.09634e7 0.213817
\(273\) 0 0
\(274\) 1.28970e8 0.378757
\(275\) − 4.60068e8i − 1.33401i
\(276\) 223935. 0.000641120 0
\(277\) 4.33329e8 1.22501 0.612503 0.790468i \(-0.290163\pi\)
0.612503 + 0.790468i \(0.290163\pi\)
\(278\) 9.43681e7i 0.263432i
\(279\) − 3.71690e8i − 1.02463i
\(280\) 5.87209e8i 1.59860i
\(281\) 2.88578e8i 0.775874i 0.921686 + 0.387937i \(0.126812\pi\)
−0.921686 + 0.387937i \(0.873188\pi\)
\(282\) 3.27011e6 0.00868342
\(283\) −5.98945e8 −1.57085 −0.785424 0.618958i \(-0.787555\pi\)
−0.785424 + 0.618958i \(0.787555\pi\)
\(284\) − 2.93415e8i − 0.760095i
\(285\) −2.22629e7 −0.0569671
\(286\) 0 0
\(287\) −6.09336e8 −1.52149
\(288\) − 3.29116e8i − 0.811849i
\(289\) −2.61152e8 −0.636430
\(290\) 4.26052e8 1.02582
\(291\) 4.40493e6i 0.0104789i
\(292\) − 3.29527e8i − 0.774552i
\(293\) − 3.12931e7i − 0.0726794i −0.999339 0.0363397i \(-0.988430\pi\)
0.999339 0.0363397i \(-0.0115698\pi\)
\(294\) 657212.i 0.00150831i
\(295\) −6.39251e8 −1.44975
\(296\) −2.32478e8 −0.521029
\(297\) 2.84657e7i 0.0630484i
\(298\) −3.24394e8 −0.710093
\(299\) 0 0
\(300\) 5.31539e6 0.0113661
\(301\) 1.22696e8i 0.259328i
\(302\) −3.44286e8 −0.719274
\(303\) −1.10344e7 −0.0227876
\(304\) 2.82490e8i 0.576693i
\(305\) − 7.98474e8i − 1.61143i
\(306\) 2.24757e8i 0.448424i
\(307\) 2.40062e8i 0.473520i 0.971568 + 0.236760i \(0.0760856\pi\)
−0.971568 + 0.236760i \(0.923914\pi\)
\(308\) 3.05980e8 0.596713
\(309\) 3.28937e6 0.00634247
\(310\) − 5.71288e8i − 1.08915i
\(311\) 1.13878e8 0.214674 0.107337 0.994223i \(-0.465768\pi\)
0.107337 + 0.994223i \(0.465768\pi\)
\(312\) 0 0
\(313\) −2.86637e8 −0.528356 −0.264178 0.964474i \(-0.585101\pi\)
−0.264178 + 0.964474i \(0.585101\pi\)
\(314\) − 2.12921e8i − 0.388119i
\(315\) −8.23503e8 −1.48449
\(316\) −2.54541e8 −0.453788
\(317\) 9.47644e8i 1.67085i 0.549603 + 0.835426i \(0.314779\pi\)
−0.549603 + 0.835426i \(0.685221\pi\)
\(318\) 2.19217e6i 0.00382278i
\(319\) − 7.19494e8i − 1.24097i
\(320\) − 8.02593e8i − 1.36921i
\(321\) 227737. 0.000384296 0
\(322\) −2.71596e7 −0.0453344
\(323\) 5.93880e8i 0.980596i
\(324\) 2.72711e8 0.445445
\(325\) 0 0
\(326\) −5.75791e8 −0.920456
\(327\) − 2.08961e7i − 0.0330482i
\(328\) 1.00576e9 1.57375
\(329\) 3.19618e8 0.494818
\(330\) 2.18693e7i 0.0334993i
\(331\) 6.84847e8i 1.03800i 0.854776 + 0.518998i \(0.173695\pi\)
−0.854776 + 0.518998i \(0.826305\pi\)
\(332\) − 4.63518e7i − 0.0695158i
\(333\) − 3.26028e8i − 0.483838i
\(334\) 2.46330e8 0.361747
\(335\) 5.50804e8 0.800460
\(336\) − 6.29500e6i − 0.00905333i
\(337\) 1.12788e9 1.60531 0.802654 0.596445i \(-0.203421\pi\)
0.802654 + 0.596445i \(0.203421\pi\)
\(338\) 0 0
\(339\) 9.34074e6 0.0130221
\(340\) − 2.78390e8i − 0.384130i
\(341\) −9.64760e8 −1.31759
\(342\) −8.94710e8 −1.20946
\(343\) − 7.13380e8i − 0.954534i
\(344\) − 2.02520e8i − 0.268234i
\(345\) 1.56434e6i 0.00205099i
\(346\) − 7.58658e8i − 0.984645i
\(347\) −3.84792e8 −0.494393 −0.247197 0.968965i \(-0.579509\pi\)
−0.247197 + 0.968965i \(0.579509\pi\)
\(348\) 8.31265e6 0.0105733
\(349\) − 2.00731e8i − 0.252770i −0.991981 0.126385i \(-0.959663\pi\)
0.991981 0.126385i \(-0.0403375\pi\)
\(350\) −6.44669e8 −0.803708
\(351\) 0 0
\(352\) −8.54254e8 −1.04397
\(353\) − 3.55684e8i − 0.430381i −0.976572 0.215191i \(-0.930963\pi\)
0.976572 0.215191i \(-0.0690373\pi\)
\(354\) 1.54768e7 0.0185426
\(355\) 2.04971e9 2.43160
\(356\) − 2.94519e8i − 0.345970i
\(357\) − 1.32340e7i − 0.0153941i
\(358\) − 1.42895e8i − 0.164599i
\(359\) 1.16954e8i 0.133409i 0.997773 + 0.0667044i \(0.0212485\pi\)
−0.997773 + 0.0667044i \(0.978752\pi\)
\(360\) 1.35926e9 1.53548
\(361\) −1.47023e9 −1.64479
\(362\) − 3.94777e8i − 0.437393i
\(363\) 1.45703e7 0.0159881
\(364\) 0 0
\(365\) 2.30197e9 2.47785
\(366\) 1.93318e7i 0.0206104i
\(367\) 1.69538e9 1.79034 0.895169 0.445726i \(-0.147055\pi\)
0.895169 + 0.445726i \(0.147055\pi\)
\(368\) 1.98496e7 0.0207628
\(369\) 1.41048e9i 1.46142i
\(370\) − 5.01104e8i − 0.514307i
\(371\) 2.14261e8i 0.217838i
\(372\) − 1.11463e7i − 0.0112262i
\(373\) −1.30728e9 −1.30433 −0.652164 0.758078i \(-0.726138\pi\)
−0.652164 + 0.758078i \(0.726138\pi\)
\(374\) 5.83380e8 0.576635
\(375\) 1.36014e6i 0.00133191i
\(376\) −5.27555e8 −0.511812
\(377\) 0 0
\(378\) 3.98874e7 0.0379852
\(379\) 8.39591e8i 0.792192i 0.918209 + 0.396096i \(0.129635\pi\)
−0.918209 + 0.396096i \(0.870365\pi\)
\(380\) 1.10821e9 1.03605
\(381\) 3.91748e7 0.0362885
\(382\) − 1.11309e9i − 1.02166i
\(383\) 6.31720e8i 0.574551i 0.957848 + 0.287276i \(0.0927496\pi\)
−0.957848 + 0.287276i \(0.907250\pi\)
\(384\) − 2.68523e6i − 0.00242004i
\(385\) 2.13748e9i 1.90893i
\(386\) −1.15563e9 −1.02273
\(387\) 2.84014e8 0.249088
\(388\) − 2.19271e8i − 0.190577i
\(389\) −4.49938e8 −0.387551 −0.193776 0.981046i \(-0.562073\pi\)
−0.193776 + 0.981046i \(0.562073\pi\)
\(390\) 0 0
\(391\) 4.17300e7 0.0353045
\(392\) − 1.06026e8i − 0.0889016i
\(393\) −7.51679e6 −0.00624681
\(394\) −1.40234e9 −1.15509
\(395\) − 1.77815e9i − 1.45170i
\(396\) − 7.08275e8i − 0.573151i
\(397\) − 1.42468e9i − 1.14275i −0.820690 0.571374i \(-0.806411\pi\)
0.820690 0.571374i \(-0.193589\pi\)
\(398\) − 4.88222e8i − 0.388174i
\(399\) 5.26817e7 0.0415198
\(400\) 4.71157e8 0.368092
\(401\) 8.70028e8i 0.673795i 0.941541 + 0.336898i \(0.109378\pi\)
−0.941541 + 0.336898i \(0.890622\pi\)
\(402\) −1.33354e7 −0.0102380
\(403\) 0 0
\(404\) 5.49273e8 0.414432
\(405\) 1.90508e9i 1.42502i
\(406\) −1.00819e9 −0.747653
\(407\) −8.46238e8 −0.622174
\(408\) 2.18438e7i 0.0159228i
\(409\) 2.23157e9i 1.61280i 0.591373 + 0.806398i \(0.298586\pi\)
−0.591373 + 0.806398i \(0.701414\pi\)
\(410\) 2.16790e9i 1.55345i
\(411\) 1.75782e7i 0.0124890i
\(412\) −1.63740e8 −0.115349
\(413\) 1.51269e9 1.05663
\(414\) 6.28683e7i 0.0435442i
\(415\) 3.23800e8 0.222387
\(416\) 0 0
\(417\) −1.28621e7 −0.00868632
\(418\) 2.32231e9i 1.55526i
\(419\) −8.31533e8 −0.552243 −0.276122 0.961123i \(-0.589049\pi\)
−0.276122 + 0.961123i \(0.589049\pi\)
\(420\) −2.46954e7 −0.0162646
\(421\) − 9.53842e8i − 0.623002i −0.950246 0.311501i \(-0.899168\pi\)
0.950246 0.311501i \(-0.100832\pi\)
\(422\) 1.01940e9i 0.660312i
\(423\) − 7.39844e8i − 0.475279i
\(424\) − 3.53655e8i − 0.225320i
\(425\) 9.90518e8 0.625894
\(426\) −4.96252e7 −0.0311006
\(427\) 1.88947e9i 1.17447i
\(428\) −1.13364e7 −0.00698911
\(429\) 0 0
\(430\) 4.36530e8 0.264773
\(431\) − 1.01803e9i − 0.612479i −0.951954 0.306240i \(-0.900929\pi\)
0.951954 0.306240i \(-0.0990709\pi\)
\(432\) −2.91518e7 −0.0173969
\(433\) −1.81766e9 −1.07598 −0.537990 0.842951i \(-0.680816\pi\)
−0.537990 + 0.842951i \(0.680816\pi\)
\(434\) 1.35187e9i 0.793816i
\(435\) 5.80697e7i 0.0338250i
\(436\) 1.04018e9i 0.601040i
\(437\) 1.66118e8i 0.0952208i
\(438\) −5.57328e7 −0.0316921
\(439\) 7.03870e8 0.397069 0.198535 0.980094i \(-0.436382\pi\)
0.198535 + 0.980094i \(0.436382\pi\)
\(440\) − 3.52809e9i − 1.97449i
\(441\) 1.48690e8 0.0825558
\(442\) 0 0
\(443\) 9.00901e7 0.0492339 0.0246169 0.999697i \(-0.492163\pi\)
0.0246169 + 0.999697i \(0.492163\pi\)
\(444\) − 9.77699e6i − 0.00530109i
\(445\) 2.05742e9 1.10679
\(446\) 3.89592e8 0.207940
\(447\) − 4.42139e7i − 0.0234144i
\(448\) 1.89921e9i 0.997932i
\(449\) − 1.03765e9i − 0.540992i −0.962721 0.270496i \(-0.912812\pi\)
0.962721 0.270496i \(-0.0871876\pi\)
\(450\) 1.49226e9i 0.771972i
\(451\) 3.66104e9 1.87926
\(452\) −4.64967e8 −0.236831
\(453\) − 4.69252e7i − 0.0237171i
\(454\) −2.83553e9 −1.42213
\(455\) 0 0
\(456\) −8.69555e7 −0.0429457
\(457\) − 1.66801e9i − 0.817507i −0.912645 0.408754i \(-0.865964\pi\)
0.912645 0.408754i \(-0.134036\pi\)
\(458\) 2.43024e9 1.18201
\(459\) −6.12860e7 −0.0295813
\(460\) − 7.78704e7i − 0.0373010i
\(461\) 2.90964e9i 1.38320i 0.722280 + 0.691601i \(0.243094\pi\)
−0.722280 + 0.691601i \(0.756906\pi\)
\(462\) − 5.17503e7i − 0.0244155i
\(463\) 1.89500e9i 0.887310i 0.896198 + 0.443655i \(0.146318\pi\)
−0.896198 + 0.443655i \(0.853682\pi\)
\(464\) 7.36836e8 0.342419
\(465\) 7.78650e7 0.0359134
\(466\) 8.26704e8i 0.378442i
\(467\) 9.95155e8 0.452149 0.226075 0.974110i \(-0.427411\pi\)
0.226075 + 0.974110i \(0.427411\pi\)
\(468\) 0 0
\(469\) −1.30339e9 −0.583405
\(470\) − 1.13714e9i − 0.505209i
\(471\) 2.90206e7 0.0127977
\(472\) −2.49682e9 −1.09292
\(473\) − 7.37188e8i − 0.320305i
\(474\) 4.30504e7i 0.0185675i
\(475\) 3.94303e9i 1.68812i
\(476\) 6.58769e8i 0.279968i
\(477\) 4.95966e8 0.209236
\(478\) −9.58556e8 −0.401439
\(479\) 1.39127e9i 0.578411i 0.957267 + 0.289206i \(0.0933912\pi\)
−0.957267 + 0.289206i \(0.906609\pi\)
\(480\) 6.89461e7 0.0284555
\(481\) 0 0
\(482\) 6.25461e8 0.254411
\(483\) − 3.70178e6i − 0.00149484i
\(484\) −7.25289e8 −0.290772
\(485\) 1.53176e9 0.609669
\(486\) − 1.38510e8i − 0.0547335i
\(487\) − 2.89212e9i − 1.13466i −0.823491 0.567329i \(-0.807977\pi\)
0.823491 0.567329i \(-0.192023\pi\)
\(488\) − 3.11872e9i − 1.21481i
\(489\) − 7.84787e7i − 0.0303508i
\(490\) 2.28537e8 0.0877547
\(491\) 3.80132e9 1.44927 0.724635 0.689133i \(-0.242009\pi\)
0.724635 + 0.689133i \(0.242009\pi\)
\(492\) 4.22977e7i 0.0160117i
\(493\) 1.54906e9 0.582241
\(494\) 0 0
\(495\) 4.94780e9 1.83355
\(496\) − 9.88014e8i − 0.363561i
\(497\) −4.85032e9 −1.77224
\(498\) −7.83948e6 −0.00284436
\(499\) 4.75421e8i 0.171288i 0.996326 + 0.0856439i \(0.0272947\pi\)
−0.996326 + 0.0856439i \(0.972705\pi\)
\(500\) − 6.77057e7i − 0.0242231i
\(501\) 3.35742e7i 0.0119281i
\(502\) − 1.19882e9i − 0.422952i
\(503\) −1.70972e9 −0.599013 −0.299506 0.954094i \(-0.596822\pi\)
−0.299506 + 0.954094i \(0.596822\pi\)
\(504\) −3.21648e9 −1.11911
\(505\) 3.83706e9i 1.32580i
\(506\) 1.63181e8 0.0559942
\(507\) 0 0
\(508\) −1.95006e9 −0.659970
\(509\) 7.59754e8i 0.255365i 0.991815 + 0.127682i \(0.0407538\pi\)
−0.991815 + 0.127682i \(0.959246\pi\)
\(510\) −4.70841e7 −0.0157173
\(511\) −5.44727e9 −1.80595
\(512\) − 2.03387e9i − 0.669698i
\(513\) − 2.43966e8i − 0.0797846i
\(514\) 2.46528e9i 0.800747i
\(515\) − 1.14384e9i − 0.369011i
\(516\) 8.51709e6 0.00272908
\(517\) −1.92034e9 −0.611169
\(518\) 1.18579e9i 0.374846i
\(519\) 1.03403e8 0.0324674
\(520\) 0 0
\(521\) −4.09809e9 −1.26955 −0.634774 0.772698i \(-0.718907\pi\)
−0.634774 + 0.772698i \(0.718907\pi\)
\(522\) 2.33373e9i 0.718131i
\(523\) −3.85404e9 −1.17804 −0.589021 0.808118i \(-0.700486\pi\)
−0.589021 + 0.808118i \(0.700486\pi\)
\(524\) 3.74174e8 0.113609
\(525\) − 8.78666e7i − 0.0265012i
\(526\) − 2.56835e9i − 0.769491i
\(527\) − 2.07711e9i − 0.618190i
\(528\) 3.78218e7i 0.0111821i
\(529\) −3.39315e9 −0.996572
\(530\) 7.62299e8 0.222413
\(531\) − 3.50154e9i − 1.01491i
\(532\) −2.62241e9 −0.755111
\(533\) 0 0
\(534\) −4.98120e7 −0.0141560
\(535\) − 7.91927e7i − 0.0223587i
\(536\) 2.15136e9 0.603442
\(537\) 1.94762e7 0.00542743
\(538\) 1.95199e9i 0.540431i
\(539\) − 3.85941e8i − 0.106160i
\(540\) 1.14363e8i 0.0312541i
\(541\) 1.31488e8i 0.0357022i 0.999841 + 0.0178511i \(0.00568248\pi\)
−0.999841 + 0.0178511i \(0.994318\pi\)
\(542\) −4.14761e9 −1.11892
\(543\) 5.38070e7 0.0144225
\(544\) − 1.83919e9i − 0.489814i
\(545\) −7.26635e9 −1.92278
\(546\) 0 0
\(547\) 2.11326e9 0.552073 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(548\) − 8.75015e8i − 0.227135i
\(549\) 4.37370e9 1.12809
\(550\) 3.87332e9 0.992691
\(551\) 6.16645e9i 1.57038i
\(552\) 6.11008e6i 0.00154618i
\(553\) 4.20771e9i 1.05805i
\(554\) 3.64820e9i 0.911579i
\(555\) 6.82992e7 0.0169586
\(556\) 6.40255e8 0.157976
\(557\) − 2.39033e9i − 0.586091i −0.956098 0.293046i \(-0.905331\pi\)
0.956098 0.293046i \(-0.0946688\pi\)
\(558\) 3.12927e9 0.762470
\(559\) 0 0
\(560\) −2.18901e9 −0.526731
\(561\) 7.95131e7i 0.0190138i
\(562\) −2.42954e9 −0.577361
\(563\) 5.42284e9 1.28070 0.640350 0.768083i \(-0.278789\pi\)
0.640350 + 0.768083i \(0.278789\pi\)
\(564\) − 2.21866e7i − 0.00520732i
\(565\) − 3.24812e9i − 0.757640i
\(566\) − 5.04253e9i − 1.16894i
\(567\) − 4.50807e9i − 1.03860i
\(568\) 8.00585e9 1.83311
\(569\) −1.61095e9 −0.366598 −0.183299 0.983057i \(-0.558678\pi\)
−0.183299 + 0.983057i \(0.558678\pi\)
\(570\) − 1.87432e8i − 0.0423917i
\(571\) 5.46762e9 1.22906 0.614528 0.788895i \(-0.289347\pi\)
0.614528 + 0.788895i \(0.289347\pi\)
\(572\) 0 0
\(573\) 1.51711e8 0.0336880
\(574\) − 5.13001e9i − 1.13221i
\(575\) 2.77064e8 0.0607775
\(576\) 4.39626e9 0.958527
\(577\) − 3.08434e9i − 0.668417i −0.942499 0.334209i \(-0.891531\pi\)
0.942499 0.334209i \(-0.108469\pi\)
\(578\) − 2.19864e9i − 0.473595i
\(579\) − 1.57509e8i − 0.0337233i
\(580\) − 2.89062e9i − 0.615167i
\(581\) −7.66224e8 −0.162084
\(582\) −3.70852e7 −0.00779777
\(583\) − 1.28733e9i − 0.269060i
\(584\) 8.99117e9 1.86797
\(585\) 0 0
\(586\) 2.63457e8 0.0540839
\(587\) 1.47215e9i 0.300413i 0.988655 + 0.150206i \(0.0479938\pi\)
−0.988655 + 0.150206i \(0.952006\pi\)
\(588\) 4.45896e6 0.000904509 0
\(589\) 8.26852e9 1.66734
\(590\) − 5.38186e9i − 1.07882i
\(591\) − 1.91135e8i − 0.0380877i
\(592\) − 8.66635e8i − 0.171676i
\(593\) − 5.98992e9i − 1.17959i −0.807554 0.589793i \(-0.799209\pi\)
0.807554 0.589793i \(-0.200791\pi\)
\(594\) −2.39653e8 −0.0469170
\(595\) −4.60196e9 −0.895640
\(596\) 2.20090e9i 0.425832i
\(597\) 6.65433e7 0.0127995
\(598\) 0 0
\(599\) −6.44870e9 −1.22597 −0.612983 0.790096i \(-0.710031\pi\)
−0.612983 + 0.790096i \(0.710031\pi\)
\(600\) 1.45031e8i 0.0274114i
\(601\) 5.19885e9 0.976892 0.488446 0.872594i \(-0.337564\pi\)
0.488446 + 0.872594i \(0.337564\pi\)
\(602\) −1.03298e9 −0.192977
\(603\) 3.01706e9i 0.560369i
\(604\) 2.33586e9i 0.431338i
\(605\) − 5.06665e9i − 0.930202i
\(606\) − 9.28985e7i − 0.0169572i
\(607\) −3.63606e9 −0.659890 −0.329945 0.944000i \(-0.607030\pi\)
−0.329945 + 0.944000i \(0.607030\pi\)
\(608\) 7.32142e9 1.32109
\(609\) − 1.37413e8i − 0.0246529i
\(610\) 6.72237e9 1.19913
\(611\) 0 0
\(612\) 1.52490e9 0.268913
\(613\) − 1.64970e9i − 0.289263i −0.989486 0.144632i \(-0.953800\pi\)
0.989486 0.144632i \(-0.0461997\pi\)
\(614\) −2.02108e9 −0.352367
\(615\) −2.95479e8 −0.0512229
\(616\) 8.34869e9i 1.43908i
\(617\) 6.85487e8i 0.117490i 0.998273 + 0.0587450i \(0.0187099\pi\)
−0.998273 + 0.0587450i \(0.981290\pi\)
\(618\) 2.76933e7i 0.00471970i
\(619\) 3.07866e9i 0.521728i 0.965376 + 0.260864i \(0.0840074\pi\)
−0.965376 + 0.260864i \(0.915993\pi\)
\(620\) −3.87599e9 −0.653149
\(621\) −1.71427e7 −0.00287249
\(622\) 9.58744e8i 0.159748i
\(623\) −4.86858e9 −0.806667
\(624\) 0 0
\(625\) −5.86262e9 −0.960531
\(626\) − 2.41320e9i − 0.393172i
\(627\) −3.16524e8 −0.0512827
\(628\) −1.44460e9 −0.232749
\(629\) − 1.82193e9i − 0.291914i
\(630\) − 6.93308e9i − 1.10467i
\(631\) − 8.91118e9i − 1.41199i −0.708215 0.705996i \(-0.750499\pi\)
0.708215 0.705996i \(-0.249501\pi\)
\(632\) − 6.94517e9i − 1.09439i
\(633\) −1.38941e8 −0.0217729
\(634\) −7.97823e9 −1.24335
\(635\) − 1.36225e10i − 2.11130i
\(636\) 1.48731e7 0.00229246
\(637\) 0 0
\(638\) 6.05743e9 0.923455
\(639\) 1.12274e10i 1.70226i
\(640\) −9.33756e8 −0.140800
\(641\) −1.19624e9 −0.179397 −0.0896984 0.995969i \(-0.528590\pi\)
−0.0896984 + 0.995969i \(0.528590\pi\)
\(642\) 1.91732e6i 0 0.000285971i
\(643\) − 7.69066e9i − 1.14084i −0.821353 0.570421i \(-0.806780\pi\)
0.821353 0.570421i \(-0.193220\pi\)
\(644\) 1.84269e8i 0.0271863i
\(645\) 5.94978e7i 0.00873056i
\(646\) −4.99989e9 −0.729703
\(647\) −2.75099e9 −0.399322 −0.199661 0.979865i \(-0.563984\pi\)
−0.199661 + 0.979865i \(0.563984\pi\)
\(648\) 7.44094e9i 1.07427i
\(649\) −9.08860e9 −1.30509
\(650\) 0 0
\(651\) −1.84256e8 −0.0261750
\(652\) 3.90655e9i 0.551984i
\(653\) −4.79202e9 −0.673477 −0.336738 0.941598i \(-0.609324\pi\)
−0.336738 + 0.941598i \(0.609324\pi\)
\(654\) 1.75925e8 0.0245926
\(655\) 2.61387e9i 0.363445i
\(656\) 3.74928e9i 0.518542i
\(657\) 1.26092e10i 1.73464i
\(658\) 2.69087e9i 0.368215i
\(659\) −4.70316e9 −0.640164 −0.320082 0.947390i \(-0.603710\pi\)
−0.320082 + 0.947390i \(0.603710\pi\)
\(660\) 1.48376e8 0.0200890
\(661\) − 4.42747e8i − 0.0596280i −0.999555 0.0298140i \(-0.990508\pi\)
0.999555 0.0298140i \(-0.00949150\pi\)
\(662\) −5.76574e9 −0.772417
\(663\) 0 0
\(664\) 1.26471e9 0.167650
\(665\) − 1.83194e10i − 2.41566i
\(666\) 2.74483e9 0.360044
\(667\) 4.33297e8 0.0565386
\(668\) − 1.67127e9i − 0.216934i
\(669\) 5.31003e7i 0.00685656i
\(670\) 4.63722e9i 0.595657i
\(671\) − 1.13524e10i − 1.45063i
\(672\) −1.63151e8 −0.0207394
\(673\) −4.22977e9 −0.534890 −0.267445 0.963573i \(-0.586179\pi\)
−0.267445 + 0.963573i \(0.586179\pi\)
\(674\) 9.49564e9i 1.19458i
\(675\) −4.06905e8 −0.0509249
\(676\) 0 0
\(677\) 2.02881e9 0.251294 0.125647 0.992075i \(-0.459899\pi\)
0.125647 + 0.992075i \(0.459899\pi\)
\(678\) 7.86398e7i 0.00969033i
\(679\) −3.62468e9 −0.444350
\(680\) 7.59591e9 0.926400
\(681\) − 3.86475e8i − 0.0468929i
\(682\) − 8.12233e9i − 0.980472i
\(683\) 1.47606e9i 0.177268i 0.996064 + 0.0886340i \(0.0282502\pi\)
−0.996064 + 0.0886340i \(0.971750\pi\)
\(684\) 6.07030e9i 0.725294i
\(685\) 6.11259e9 0.726622
\(686\) 6.00595e9 0.710309
\(687\) 3.31235e8i 0.0389751i
\(688\) 7.54957e8 0.0883818
\(689\) 0 0
\(690\) −1.31702e7 −0.00152623
\(691\) 8.97569e9i 1.03489i 0.855716 + 0.517445i \(0.173117\pi\)
−0.855716 + 0.517445i \(0.826883\pi\)
\(692\) −5.14724e9 −0.590477
\(693\) −1.17082e10 −1.33636
\(694\) − 3.23957e9i − 0.367899i
\(695\) 4.47263e9i 0.505378i
\(696\) 2.26812e8i 0.0254996i
\(697\) 7.88214e9i 0.881717i
\(698\) 1.68996e9 0.188097
\(699\) −1.12678e8 −0.0124786
\(700\) 4.37386e9i 0.481972i
\(701\) 5.08142e9 0.557149 0.278575 0.960415i \(-0.410138\pi\)
0.278575 + 0.960415i \(0.410138\pi\)
\(702\) 0 0
\(703\) 7.25272e9 0.787331
\(704\) − 1.14109e10i − 1.23258i
\(705\) 1.54989e8 0.0166586
\(706\) 2.99451e9 0.320265
\(707\) − 9.07982e9i − 0.966294i
\(708\) − 1.05005e8i − 0.0111197i
\(709\) 3.63793e9i 0.383348i 0.981459 + 0.191674i \(0.0613916\pi\)
−0.981459 + 0.191674i \(0.938608\pi\)
\(710\) 1.72565e10i 1.80946i
\(711\) 9.73991e9 1.01628
\(712\) 8.03598e9 0.834371
\(713\) − 5.81002e8i − 0.0600294i
\(714\) 1.11417e8 0.0114554
\(715\) 0 0
\(716\) −9.69495e8 −0.0987075
\(717\) − 1.30649e8i − 0.0132369i
\(718\) −9.84638e8 −0.0992753
\(719\) −8.62579e9 −0.865462 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(720\) 5.06706e9i 0.505932i
\(721\) 2.70672e9i 0.268949i
\(722\) − 1.23779e10i − 1.22396i
\(723\) 8.52486e7i 0.00838887i
\(724\) −2.67843e9 −0.262298
\(725\) 1.02849e10 1.00234
\(726\) 1.22668e8i 0.0118974i
\(727\) 1.23787e10 1.19482 0.597412 0.801934i \(-0.296196\pi\)
0.597412 + 0.801934i \(0.296196\pi\)
\(728\) 0 0
\(729\) −1.04226e10 −0.996389
\(730\) 1.93804e10i 1.84388i
\(731\) 1.58715e9 0.150282
\(732\) 1.31159e8 0.0123598
\(733\) 1.32984e10i 1.24720i 0.781745 + 0.623598i \(0.214330\pi\)
−0.781745 + 0.623598i \(0.785670\pi\)
\(734\) 1.42734e10i 1.33227i
\(735\) 3.11490e7i 0.00289360i
\(736\) − 5.14452e8i − 0.0475634i
\(737\) 7.83109e9 0.720587
\(738\) −1.18748e10 −1.08750
\(739\) − 1.28451e10i − 1.17079i −0.810747 0.585397i \(-0.800939\pi\)
0.810747 0.585397i \(-0.199061\pi\)
\(740\) −3.39982e9 −0.308422
\(741\) 0 0
\(742\) −1.80386e9 −0.162103
\(743\) − 2.01042e10i − 1.79815i −0.437793 0.899076i \(-0.644240\pi\)
0.437793 0.899076i \(-0.355760\pi\)
\(744\) 3.04129e8 0.0270740
\(745\) −1.53748e10 −1.36227
\(746\) − 1.10060e10i − 0.970606i
\(747\) 1.77364e9i 0.155683i
\(748\) − 3.95804e9i − 0.345799i
\(749\) 1.87397e8i 0.0162959i
\(750\) −1.14511e7 −0.000991131 0
\(751\) −1.99539e8 −0.0171905 −0.00859524 0.999963i \(-0.502736\pi\)
−0.00859524 + 0.999963i \(0.502736\pi\)
\(752\) − 1.96663e9i − 0.168640i
\(753\) 1.63396e8 0.0139463
\(754\) 0 0
\(755\) −1.63176e10 −1.37988
\(756\) − 2.70623e8i − 0.0227792i
\(757\) 2.34770e10 1.96701 0.983507 0.180868i \(-0.0578908\pi\)
0.983507 + 0.180868i \(0.0578908\pi\)
\(758\) −7.06853e9 −0.589504
\(759\) 2.22411e7i 0.00184634i
\(760\) 3.02377e10i 2.49862i
\(761\) 1.60366e10i 1.31907i 0.751676 + 0.659533i \(0.229246\pi\)
−0.751676 + 0.659533i \(0.770754\pi\)
\(762\) 3.29813e8i 0.0270038i
\(763\) 1.71947e10 1.40139
\(764\) −7.55193e9 −0.612676
\(765\) 1.06525e10i 0.860274i
\(766\) −5.31846e9 −0.427548
\(767\) 0 0
\(768\) 3.18037e8 0.0253345
\(769\) 1.49614e10i 1.18639i 0.805057 + 0.593197i \(0.202135\pi\)
−0.805057 + 0.593197i \(0.797865\pi\)
\(770\) −1.79955e10 −1.42052
\(771\) −3.36011e8 −0.0264036
\(772\) 7.84053e9i 0.613317i
\(773\) − 3.25072e9i − 0.253135i −0.991958 0.126567i \(-0.959604\pi\)
0.991958 0.126567i \(-0.0403960\pi\)
\(774\) 2.39112e9i 0.185357i
\(775\) − 1.37909e10i − 1.06423i
\(776\) 5.98282e9 0.459611
\(777\) −1.61620e8 −0.0123601
\(778\) − 3.78804e9i − 0.288394i
\(779\) −3.13771e10 −2.37811
\(780\) 0 0
\(781\) 2.91419e10 2.18897
\(782\) 3.51326e8i 0.0262716i
\(783\) −6.36353e8 −0.0473731
\(784\) 3.95243e8 0.0292926
\(785\) − 1.00915e10i − 0.744583i
\(786\) − 6.32840e7i − 0.00464852i
\(787\) 1.13640e10i 0.831033i 0.909586 + 0.415517i \(0.136399\pi\)
−0.909586 + 0.415517i \(0.863601\pi\)
\(788\) 9.51441e9i 0.692692i
\(789\) 3.50059e8 0.0253730
\(790\) 1.49702e10 1.08027
\(791\) 7.68619e9i 0.552196i
\(792\) 1.93254e10 1.38226
\(793\) 0 0
\(794\) 1.19944e10 0.850367
\(795\) 1.03899e8i 0.00733377i
\(796\) −3.31242e9 −0.232782
\(797\) 5.72603e9 0.400636 0.200318 0.979731i \(-0.435803\pi\)
0.200318 + 0.979731i \(0.435803\pi\)
\(798\) 4.43528e8i 0.0308967i
\(799\) − 4.13445e9i − 0.286751i
\(800\) − 1.22112e10i − 0.843226i
\(801\) 1.12697e10i 0.774814i
\(802\) −7.32478e9 −0.501400
\(803\) 3.27285e10 2.23060
\(804\) 9.04763e7i 0.00613958i
\(805\) −1.28725e9 −0.0869712
\(806\) 0 0
\(807\) −2.66051e8 −0.0178200
\(808\) 1.49870e10i 0.999480i
\(809\) 1.88681e10 1.25288 0.626440 0.779470i \(-0.284512\pi\)
0.626440 + 0.779470i \(0.284512\pi\)
\(810\) −1.60389e10 −1.06042
\(811\) − 2.28943e10i − 1.50714i −0.657367 0.753570i \(-0.728330\pi\)
0.657367 0.753570i \(-0.271670\pi\)
\(812\) 6.84021e9i 0.448356i
\(813\) − 5.65308e8i − 0.0368951i
\(814\) − 7.12449e9i − 0.462987i
\(815\) −2.72900e10 −1.76584
\(816\) −8.14297e7 −0.00524647
\(817\) 6.31810e9i 0.405331i
\(818\) −1.87876e10 −1.20015
\(819\) 0 0
\(820\) 1.47085e10 0.931578
\(821\) 3.01467e9i 0.190125i 0.995471 + 0.0950625i \(0.0303051\pi\)
−0.995471 + 0.0950625i \(0.969695\pi\)
\(822\) −1.47991e8 −0.00929361
\(823\) −9.51460e9 −0.594964 −0.297482 0.954727i \(-0.596147\pi\)
−0.297482 + 0.954727i \(0.596147\pi\)
\(824\) − 4.46766e9i − 0.278185i
\(825\) 5.27923e8i 0.0327327i
\(826\) 1.27354e10i 0.786287i
\(827\) 3.09369e10i 1.90199i 0.309210 + 0.950994i \(0.399936\pi\)
−0.309210 + 0.950994i \(0.600064\pi\)
\(828\) 4.26540e8 0.0261128
\(829\) −1.75499e10 −1.06988 −0.534938 0.844891i \(-0.679665\pi\)
−0.534938 + 0.844891i \(0.679665\pi\)
\(830\) 2.72608e9i 0.165487i
\(831\) −4.97240e8 −0.0300581
\(832\) 0 0
\(833\) 8.30923e8 0.0498085
\(834\) − 1.08286e8i − 0.00646386i
\(835\) 1.16750e10 0.693991
\(836\) 1.57561e10 0.932666
\(837\) 8.53278e8i 0.0502981i
\(838\) − 7.00069e9i − 0.410948i
\(839\) − 1.26056e10i − 0.736878i −0.929652 0.368439i \(-0.879892\pi\)
0.929652 0.368439i \(-0.120108\pi\)
\(840\) − 6.73816e8i − 0.0392251i
\(841\) −1.16552e9 −0.0675671
\(842\) 8.03041e9 0.463602
\(843\) − 3.31140e8i − 0.0190377i
\(844\) 6.91625e9 0.395979
\(845\) 0 0
\(846\) 6.22876e9 0.353676
\(847\) 1.19895e10i 0.677966i
\(848\) 1.31836e9 0.0742417
\(849\) 6.87282e8 0.0385441
\(850\) 8.33918e9i 0.465755i
\(851\) − 5.09625e8i − 0.0283464i
\(852\) 3.36690e8i 0.0186506i
\(853\) − 1.77001e10i − 0.976457i −0.872716 0.488229i \(-0.837643\pi\)
0.872716 0.488229i \(-0.162357\pi\)
\(854\) −1.59075e10 −0.873974
\(855\) −4.24053e10 −2.32027
\(856\) − 3.09315e8i − 0.0168555i
\(857\) 6.38662e9 0.346608 0.173304 0.984868i \(-0.444556\pi\)
0.173304 + 0.984868i \(0.444556\pi\)
\(858\) 0 0
\(859\) 9.57498e9 0.515421 0.257710 0.966222i \(-0.417032\pi\)
0.257710 + 0.966222i \(0.417032\pi\)
\(860\) − 2.96171e9i − 0.158781i
\(861\) 6.99206e8 0.0373331
\(862\) 8.57084e9 0.455772
\(863\) − 3.52438e10i − 1.86658i −0.359130 0.933288i \(-0.616926\pi\)
0.359130 0.933288i \(-0.383074\pi\)
\(864\) 7.55541e8i 0.0398529i
\(865\) − 3.59571e10i − 1.88898i
\(866\) − 1.53029e10i − 0.800683i
\(867\) 2.99669e8 0.0156162
\(868\) 9.17195e9 0.476039
\(869\) − 2.52809e10i − 1.30684i
\(870\) −4.88890e8 −0.0251706
\(871\) 0 0
\(872\) −2.83813e10 −1.44952
\(873\) 8.39031e9i 0.426804i
\(874\) −1.39855e9 −0.0708579
\(875\) −1.11922e9 −0.0564788
\(876\) 3.78128e8i 0.0190053i
\(877\) − 6.34498e9i − 0.317638i −0.987308 0.158819i \(-0.949231\pi\)
0.987308 0.158819i \(-0.0507686\pi\)
\(878\) 5.92589e9i 0.295476i
\(879\) 3.59084e7i 0.00178335i
\(880\) 1.31521e10 0.650586
\(881\) 2.92173e8 0.0143954 0.00719771 0.999974i \(-0.497709\pi\)
0.00719771 + 0.999974i \(0.497709\pi\)
\(882\) 1.25183e9i 0.0614333i
\(883\) 3.68103e10 1.79931 0.899656 0.436600i \(-0.143817\pi\)
0.899656 + 0.436600i \(0.143817\pi\)
\(884\) 0 0
\(885\) 7.33533e8 0.0355728
\(886\) 7.58470e8i 0.0366370i
\(887\) 4.03158e9 0.193973 0.0969867 0.995286i \(-0.469080\pi\)
0.0969867 + 0.995286i \(0.469080\pi\)
\(888\) 2.66766e8 0.0127846
\(889\) 3.22356e10i 1.53879i
\(890\) 1.73215e10i 0.823607i
\(891\) 2.70856e10i 1.28282i
\(892\) − 2.64325e9i − 0.124699i
\(893\) 1.64584e10 0.773404
\(894\) 3.72238e8 0.0174237
\(895\) − 6.77261e9i − 0.315773i
\(896\) 2.20959e9 0.102620
\(897\) 0 0
\(898\) 8.73603e9 0.402575
\(899\) − 2.15673e10i − 0.990004i
\(900\) 1.01245e10 0.462940
\(901\) 2.77159e9 0.126239
\(902\) 3.08223e10i 1.39844i
\(903\) − 1.40793e8i − 0.00636316i
\(904\) − 1.26867e10i − 0.571161i
\(905\) − 1.87107e10i − 0.839112i
\(906\) 3.95064e8 0.0176489
\(907\) 2.17702e10 0.968807 0.484403 0.874845i \(-0.339037\pi\)
0.484403 + 0.874845i \(0.339037\pi\)
\(908\) 1.92381e10i 0.852830i
\(909\) −2.10177e10 −0.928138
\(910\) 0 0
\(911\) −3.27391e10 −1.43467 −0.717335 0.696728i \(-0.754638\pi\)
−0.717335 + 0.696728i \(0.754638\pi\)
\(912\) − 3.24154e8i − 0.0141504i
\(913\) 4.60365e9 0.200196
\(914\) 1.40430e10 0.608342
\(915\) 9.16240e8i 0.0395399i
\(916\) − 1.64883e10i − 0.708831i
\(917\) − 6.18532e9i − 0.264892i
\(918\) − 5.15968e8i − 0.0220127i
\(919\) 1.03618e10 0.440385 0.220193 0.975456i \(-0.429331\pi\)
0.220193 + 0.975456i \(0.429331\pi\)
\(920\) 2.12470e9 0.0899582
\(921\) − 2.75468e8i − 0.0116188i
\(922\) −2.44963e10 −1.02930
\(923\) 0 0
\(924\) −3.51108e8 −0.0146416
\(925\) − 1.20966e10i − 0.502537i
\(926\) −1.59540e10 −0.660286
\(927\) 6.26544e9 0.258329
\(928\) − 1.90969e10i − 0.784415i
\(929\) 2.15053e10i 0.880018i 0.897993 + 0.440009i \(0.145025\pi\)
−0.897993 + 0.440009i \(0.854975\pi\)
\(930\) 6.55546e8i 0.0267247i
\(931\) 3.30772e9i 0.134340i
\(932\) 5.60891e9 0.226946
\(933\) −1.30674e8 −0.00526750
\(934\) 8.37823e9i 0.336464i
\(935\) 2.76497e10 1.10624
\(936\) 0 0
\(937\) 2.31411e8 0.00918957 0.00459479 0.999989i \(-0.498537\pi\)
0.00459479 + 0.999989i \(0.498537\pi\)
\(938\) − 1.09733e10i − 0.434137i
\(939\) 3.28912e8 0.0129643
\(940\) −7.71511e9 −0.302966
\(941\) 2.99031e10i 1.16991i 0.811065 + 0.584956i \(0.198888\pi\)
−0.811065 + 0.584956i \(0.801112\pi\)
\(942\) 2.44325e8i 0.00952334i
\(943\) 2.20476e9i 0.0856192i
\(944\) − 9.30767e9i − 0.360113i
\(945\) 1.89049e9 0.0728724
\(946\) 6.20640e9 0.238353
\(947\) − 3.37889e10i − 1.29285i −0.762976 0.646427i \(-0.776263\pi\)
0.762976 0.646427i \(-0.223737\pi\)
\(948\) 2.92083e8 0.0111347
\(949\) 0 0
\(950\) −3.31965e10 −1.25620
\(951\) − 1.08741e9i − 0.0409979i
\(952\) −1.79746e10 −0.675195
\(953\) 4.50079e10 1.68447 0.842236 0.539110i \(-0.181239\pi\)
0.842236 + 0.539110i \(0.181239\pi\)
\(954\) 4.17554e9i 0.155702i
\(955\) − 5.27555e10i − 1.96000i
\(956\) 6.50348e9i 0.240737i
\(957\) 8.25611e8i 0.0304497i
\(958\) −1.17131e10 −0.430421
\(959\) −1.44645e10 −0.529589
\(960\) 9.20966e8i 0.0335965i
\(961\) −1.40672e9 −0.0511298
\(962\) 0 0
\(963\) 4.33783e8 0.0156524
\(964\) − 4.24354e9i − 0.152566i
\(965\) −5.47716e10 −1.96205
\(966\) 3.11653e7 0.00111238
\(967\) 5.77459e9i 0.205366i 0.994714 + 0.102683i \(0.0327427\pi\)
−0.994714 + 0.102683i \(0.967257\pi\)
\(968\) − 1.97896e10i − 0.701250i
\(969\) − 6.81471e8i − 0.0240610i
\(970\) 1.28959e10i 0.453681i
\(971\) −5.40196e10 −1.89358 −0.946790 0.321851i \(-0.895695\pi\)
−0.946790 + 0.321851i \(0.895695\pi\)
\(972\) −9.39741e8 −0.0328228
\(973\) − 1.05838e10i − 0.368338i
\(974\) 2.43488e10 0.844347
\(975\) 0 0
\(976\) 1.16260e10 0.400273
\(977\) − 3.21144e10i − 1.10171i −0.834600 0.550857i \(-0.814301\pi\)
0.834600 0.550857i \(-0.185699\pi\)
\(978\) 6.60713e8 0.0225854
\(979\) 2.92516e10 0.996345
\(980\) − 1.55055e9i − 0.0526252i
\(981\) − 3.98019e10i − 1.34605i
\(982\) 3.20034e10i 1.07846i
\(983\) − 1.36597e10i − 0.458673i −0.973347 0.229337i \(-0.926344\pi\)
0.973347 0.229337i \(-0.0736556\pi\)
\(984\) −1.15410e9 −0.0386153
\(985\) −6.64648e10 −2.21598
\(986\) 1.30415e10i 0.433271i
\(987\) −3.66758e8 −0.0121414
\(988\) 0 0
\(989\) 4.43953e8 0.0145932
\(990\) 4.16556e10i 1.36443i
\(991\) −3.04984e10 −0.995450 −0.497725 0.867335i \(-0.665831\pi\)
−0.497725 + 0.867335i \(0.665831\pi\)
\(992\) −2.56068e10 −0.832847
\(993\) − 7.85854e8i − 0.0254694i
\(994\) − 4.08349e10i − 1.31880i
\(995\) − 2.31396e10i − 0.744688i
\(996\) 5.31882e7i 0.00170572i
\(997\) 3.41604e10 1.09167 0.545833 0.837894i \(-0.316213\pi\)
0.545833 + 0.837894i \(0.316213\pi\)
\(998\) −4.00258e9 −0.127463
\(999\) 7.48452e8i 0.0237511i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.d.168.10 14
13.3 even 3 13.8.e.a.4.3 14
13.4 even 6 13.8.e.a.10.3 yes 14
13.5 odd 4 169.8.a.g.1.10 14
13.8 odd 4 169.8.a.g.1.5 14
13.12 even 2 inner 169.8.b.d.168.5 14
39.17 odd 6 117.8.q.b.10.5 14
39.29 odd 6 117.8.q.b.82.5 14
52.3 odd 6 208.8.w.a.17.4 14
52.43 odd 6 208.8.w.a.49.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.3 14 13.3 even 3
13.8.e.a.10.3 yes 14 13.4 even 6
117.8.q.b.10.5 14 39.17 odd 6
117.8.q.b.82.5 14 39.29 odd 6
169.8.a.g.1.5 14 13.8 odd 4
169.8.a.g.1.10 14 13.5 odd 4
169.8.b.d.168.5 14 13.12 even 2 inner
169.8.b.d.168.10 14 1.1 even 1 trivial
208.8.w.a.17.4 14 52.3 odd 6
208.8.w.a.49.4 14 52.43 odd 6