Properties

Label 169.8.b.d.168.9
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{17}\cdot 3^{3}\cdot 13^{6} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.9
Root \(4.51724i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.d.168.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.51724i q^{2} -43.8390 q^{3} +107.595 q^{4} +49.0275i q^{5} -198.031i q^{6} -850.411i q^{7} +1064.24i q^{8} -265.146 q^{9} -221.469 q^{10} -124.845i q^{11} -4716.83 q^{12} +3841.52 q^{14} -2149.31i q^{15} +8964.67 q^{16} -11326.0 q^{17} -1197.73i q^{18} +7864.97i q^{19} +5275.09i q^{20} +37281.1i q^{21} +563.954 q^{22} -86232.1 q^{23} -46655.1i q^{24} +75721.3 q^{25} +107500. q^{27} -91499.6i q^{28} +125681. q^{29} +9708.97 q^{30} -78827.3i q^{31} +176718. i q^{32} +5473.06i q^{33} -51162.4i q^{34} +41693.5 q^{35} -28528.3 q^{36} +168074. i q^{37} -35528.0 q^{38} -52176.9 q^{40} -346835. i q^{41} -168408. q^{42} +486181. q^{43} -13432.6i q^{44} -12999.4i q^{45} -389531. i q^{46} +443195. i q^{47} -393002. q^{48} +100343. q^{49} +342052. i q^{50} +496521. q^{51} -1.44734e6 q^{53} +485602. i q^{54} +6120.82 q^{55} +905040. q^{56} -344792. i q^{57} +567730. i q^{58} +2.66402e6i q^{59} -231254. i q^{60} -1.29692e6 q^{61} +356082. q^{62} +225483. i q^{63} +349200. q^{64} -24723.2 q^{66} +4.65420e6i q^{67} -1.21862e6 q^{68} +3.78033e6 q^{69} +188340. i q^{70} +4.09074e6i q^{71} -282178. i q^{72} +6.09222e6i q^{73} -759231. q^{74} -3.31954e6 q^{75} +846228. i q^{76} -106169. q^{77} -1131.00 q^{79} +439515. i q^{80} -4.13279e6 q^{81} +1.56674e6 q^{82} -5.26434e6i q^{83} +4.01125e6i q^{84} -555286. i q^{85} +2.19620e6i q^{86} -5.50971e6 q^{87} +132864. q^{88} -1.89261e6i q^{89} +58721.6 q^{90} -9.27810e6 q^{92} +3.45570e6i q^{93} -2.00202e6 q^{94} -385600. q^{95} -7.74714e6i q^{96} +1.68363e7i q^{97} +453276. i q^{98} +33102.1i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 52 q^{3} - 766 q^{4} + 6982 q^{9} + 1018 q^{10} + 38380 q^{12} - 47916 q^{14} + 1266 q^{16} + 76806 q^{17} + 251764 q^{22} + 137100 q^{23} + 39380 q^{25} - 432400 q^{27} - 443166 q^{29} + 315780 q^{30}+ \cdots + 86840772 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.51724i 0.399272i 0.979870 + 0.199636i \(0.0639759\pi\)
−0.979870 + 0.199636i \(0.936024\pi\)
\(3\) −43.8390 −0.937423 −0.468712 0.883351i \(-0.655282\pi\)
−0.468712 + 0.883351i \(0.655282\pi\)
\(4\) 107.595 0.840582
\(5\) 49.0275i 0.175406i 0.996147 + 0.0877030i \(0.0279526\pi\)
−0.996147 + 0.0877030i \(0.972047\pi\)
\(6\) − 198.031i − 0.374287i
\(7\) − 850.411i − 0.937100i −0.883437 0.468550i \(-0.844777\pi\)
0.883437 0.468550i \(-0.155223\pi\)
\(8\) 1064.24i 0.734892i
\(9\) −265.146 −0.121237
\(10\) −221.469 −0.0700346
\(11\) − 124.845i − 0.0282811i −0.999900 0.0141405i \(-0.995499\pi\)
0.999900 0.0141405i \(-0.00450122\pi\)
\(12\) −4716.83 −0.787981
\(13\) 0 0
\(14\) 3841.52 0.374158
\(15\) − 2149.31i − 0.164430i
\(16\) 8964.67 0.547160
\(17\) −11326.0 −0.559122 −0.279561 0.960128i \(-0.590189\pi\)
−0.279561 + 0.960128i \(0.590189\pi\)
\(18\) − 1197.73i − 0.0484066i
\(19\) 7864.97i 0.263063i 0.991312 + 0.131531i \(0.0419894\pi\)
−0.991312 + 0.131531i \(0.958011\pi\)
\(20\) 5275.09i 0.147443i
\(21\) 37281.1i 0.878459i
\(22\) 563.954 0.0112918
\(23\) −86232.1 −1.47782 −0.738910 0.673804i \(-0.764659\pi\)
−0.738910 + 0.673804i \(0.764659\pi\)
\(24\) − 46655.1i − 0.688905i
\(25\) 75721.3 0.969233
\(26\) 0 0
\(27\) 107500. 1.05107
\(28\) − 91499.6i − 0.787709i
\(29\) 125681. 0.956920 0.478460 0.878109i \(-0.341195\pi\)
0.478460 + 0.878109i \(0.341195\pi\)
\(30\) 9708.97 0.0656521
\(31\) − 78827.3i − 0.475237i −0.971359 0.237619i \(-0.923633\pi\)
0.971359 0.237619i \(-0.0763668\pi\)
\(32\) 176718.i 0.953358i
\(33\) 5473.06i 0.0265113i
\(34\) − 51162.4i − 0.223241i
\(35\) 41693.5 0.164373
\(36\) −28528.3 −0.101910
\(37\) 168074.i 0.545500i 0.962085 + 0.272750i \(0.0879331\pi\)
−0.962085 + 0.272750i \(0.912067\pi\)
\(38\) −35528.0 −0.105034
\(39\) 0 0
\(40\) −52176.9 −0.128905
\(41\) − 346835.i − 0.785921i −0.919555 0.392960i \(-0.871451\pi\)
0.919555 0.392960i \(-0.128549\pi\)
\(42\) −168408. −0.350744
\(43\) 486181. 0.932520 0.466260 0.884648i \(-0.345601\pi\)
0.466260 + 0.884648i \(0.345601\pi\)
\(44\) − 13432.6i − 0.0237726i
\(45\) − 12999.4i − 0.0212658i
\(46\) − 389531.i − 0.590052i
\(47\) 443195.i 0.622662i 0.950302 + 0.311331i \(0.100775\pi\)
−0.950302 + 0.311331i \(0.899225\pi\)
\(48\) −393002. −0.512921
\(49\) 100343. 0.121844
\(50\) 342052.i 0.386987i
\(51\) 496521. 0.524134
\(52\) 0 0
\(53\) −1.44734e6 −1.33538 −0.667692 0.744438i \(-0.732718\pi\)
−0.667692 + 0.744438i \(0.732718\pi\)
\(54\) 485602.i 0.419664i
\(55\) 6120.82 0.00496067
\(56\) 905040. 0.688668
\(57\) − 344792.i − 0.246601i
\(58\) 567730.i 0.382071i
\(59\) 2.66402e6i 1.68871i 0.535784 + 0.844355i \(0.320016\pi\)
−0.535784 + 0.844355i \(0.679984\pi\)
\(60\) − 231254.i − 0.138217i
\(61\) −1.29692e6 −0.731578 −0.365789 0.930698i \(-0.619201\pi\)
−0.365789 + 0.930698i \(0.619201\pi\)
\(62\) 356082. 0.189749
\(63\) 225483.i 0.113612i
\(64\) 349200. 0.166511
\(65\) 0 0
\(66\) −24723.2 −0.0105852
\(67\) 4.65420e6i 1.89053i 0.326309 + 0.945263i \(0.394195\pi\)
−0.326309 + 0.945263i \(0.605805\pi\)
\(68\) −1.21862e6 −0.469988
\(69\) 3.78033e6 1.38534
\(70\) 188340.i 0.0656295i
\(71\) 4.09074e6i 1.35643i 0.734864 + 0.678215i \(0.237246\pi\)
−0.734864 + 0.678215i \(0.762754\pi\)
\(72\) − 282178.i − 0.0890964i
\(73\) 6.09222e6i 1.83293i 0.400117 + 0.916464i \(0.368969\pi\)
−0.400117 + 0.916464i \(0.631031\pi\)
\(74\) −759231. −0.217803
\(75\) −3.31954e6 −0.908581
\(76\) 846228.i 0.221126i
\(77\) −106169. −0.0265022
\(78\) 0 0
\(79\) −1131.00 −0.000258087 0 −0.000129044 1.00000i \(-0.500041\pi\)
−0.000129044 1.00000i \(0.500041\pi\)
\(80\) 439515.i 0.0959752i
\(81\) −4.13279e6 −0.864064
\(82\) 1.56674e6 0.313796
\(83\) − 5.26434e6i − 1.01058i −0.862950 0.505290i \(-0.831386\pi\)
0.862950 0.505290i \(-0.168614\pi\)
\(84\) 4.01125e6i 0.738417i
\(85\) − 555286.i − 0.0980733i
\(86\) 2.19620e6i 0.372329i
\(87\) −5.50971e6 −0.897039
\(88\) 132864. 0.0207835
\(89\) − 1.89261e6i − 0.284574i −0.989825 0.142287i \(-0.954554\pi\)
0.989825 0.142287i \(-0.0454457\pi\)
\(90\) 58721.6 0.00849081
\(91\) 0 0
\(92\) −9.27810e6 −1.24223
\(93\) 3.45570e6i 0.445499i
\(94\) −2.00202e6 −0.248611
\(95\) −385600. −0.0461428
\(96\) − 7.74714e6i − 0.893700i
\(97\) 1.68363e7i 1.87304i 0.350619 + 0.936518i \(0.385971\pi\)
−0.350619 + 0.936518i \(0.614029\pi\)
\(98\) 453276.i 0.0486487i
\(99\) 33102.1i 0.00342872i
\(100\) 8.14720e6 0.814720
\(101\) −1.92121e7 −1.85546 −0.927728 0.373257i \(-0.878241\pi\)
−0.927728 + 0.373257i \(0.878241\pi\)
\(102\) 2.24291e6i 0.209272i
\(103\) 1.21968e7 1.09980 0.549902 0.835229i \(-0.314665\pi\)
0.549902 + 0.835229i \(0.314665\pi\)
\(104\) 0 0
\(105\) −1.82780e6 −0.154087
\(106\) − 6.53801e6i − 0.533181i
\(107\) −6.84075e6 −0.539834 −0.269917 0.962884i \(-0.586996\pi\)
−0.269917 + 0.962884i \(0.586996\pi\)
\(108\) 1.15664e7 0.883514
\(109\) − 3.26600e6i − 0.241559i −0.992679 0.120779i \(-0.961461\pi\)
0.992679 0.120779i \(-0.0385394\pi\)
\(110\) 27649.2i 0.00198065i
\(111\) − 7.36819e6i − 0.511364i
\(112\) − 7.62366e6i − 0.512744i
\(113\) 173551. 0.0113150 0.00565748 0.999984i \(-0.498199\pi\)
0.00565748 + 0.999984i \(0.498199\pi\)
\(114\) 1.55751e6 0.0984610
\(115\) − 4.22774e6i − 0.259218i
\(116\) 1.35226e7 0.804370
\(117\) 0 0
\(118\) −1.20340e7 −0.674254
\(119\) 9.63178e6i 0.523953i
\(120\) 2.28738e6 0.120838
\(121\) 1.94716e7 0.999200
\(122\) − 5.85853e6i − 0.292098i
\(123\) 1.52049e7i 0.736741i
\(124\) − 8.48138e6i − 0.399476i
\(125\) 7.54269e6i 0.345415i
\(126\) −1.01856e6 −0.0453619
\(127\) 1.80804e7 0.783239 0.391620 0.920127i \(-0.371915\pi\)
0.391620 + 0.920127i \(0.371915\pi\)
\(128\) 2.41973e7i 1.01984i
\(129\) −2.13137e7 −0.874166
\(130\) 0 0
\(131\) 1.46819e7 0.570601 0.285301 0.958438i \(-0.407907\pi\)
0.285301 + 0.958438i \(0.407907\pi\)
\(132\) 588871.i 0.0222849i
\(133\) 6.68846e6 0.246516
\(134\) −2.10241e7 −0.754834
\(135\) 5.27043e6i 0.184365i
\(136\) − 1.20536e7i − 0.410894i
\(137\) 4.91779e7i 1.63399i 0.576648 + 0.816993i \(0.304360\pi\)
−0.576648 + 0.816993i \(0.695640\pi\)
\(138\) 1.70767e7i 0.553128i
\(139\) −2.30684e7 −0.728561 −0.364280 0.931289i \(-0.618685\pi\)
−0.364280 + 0.931289i \(0.618685\pi\)
\(140\) 4.48599e6 0.138169
\(141\) − 1.94292e7i − 0.583698i
\(142\) −1.84789e7 −0.541584
\(143\) 0 0
\(144\) −2.37695e6 −0.0663363
\(145\) 6.16180e6i 0.167849i
\(146\) −2.75200e7 −0.731836
\(147\) −4.39895e6 −0.114219
\(148\) 1.80838e7i 0.458537i
\(149\) − 5.02309e7i − 1.24400i −0.783018 0.621998i \(-0.786321\pi\)
0.783018 0.621998i \(-0.213679\pi\)
\(150\) − 1.49952e7i − 0.362771i
\(151\) 2.96842e7i 0.701626i 0.936446 + 0.350813i \(0.114095\pi\)
−0.936446 + 0.350813i \(0.885905\pi\)
\(152\) −8.37020e6 −0.193323
\(153\) 3.00305e6 0.0677864
\(154\) − 479593.i − 0.0105816i
\(155\) 3.86470e6 0.0833595
\(156\) 0 0
\(157\) 3.56376e7 0.734952 0.367476 0.930033i \(-0.380222\pi\)
0.367476 + 0.930033i \(0.380222\pi\)
\(158\) − 5108.99i 0 0.000103047i
\(159\) 6.34500e7 1.25182
\(160\) −8.66404e6 −0.167225
\(161\) 7.33328e7i 1.38487i
\(162\) − 1.86688e7i − 0.344996i
\(163\) 1.04922e7i 0.189763i 0.995489 + 0.0948814i \(0.0302472\pi\)
−0.995489 + 0.0948814i \(0.969753\pi\)
\(164\) − 3.73175e7i − 0.660631i
\(165\) −268330. −0.00465025
\(166\) 2.37803e7 0.403496
\(167\) − 1.94057e7i − 0.322419i −0.986920 0.161210i \(-0.948460\pi\)
0.986920 0.161210i \(-0.0515395\pi\)
\(168\) −3.96760e7 −0.645573
\(169\) 0 0
\(170\) 2.50836e6 0.0391579
\(171\) − 2.08537e6i − 0.0318930i
\(172\) 5.23104e7 0.783860
\(173\) −4.57500e7 −0.671785 −0.335892 0.941900i \(-0.609038\pi\)
−0.335892 + 0.941900i \(0.609038\pi\)
\(174\) − 2.48887e7i − 0.358162i
\(175\) − 6.43943e7i − 0.908268i
\(176\) − 1.11919e6i − 0.0154743i
\(177\) − 1.16788e8i − 1.58304i
\(178\) 8.54938e6 0.113623
\(179\) 3.92270e7 0.511211 0.255605 0.966781i \(-0.417725\pi\)
0.255605 + 0.966781i \(0.417725\pi\)
\(180\) − 1.39867e6i − 0.0178756i
\(181\) 6.74932e7 0.846029 0.423015 0.906123i \(-0.360972\pi\)
0.423015 + 0.906123i \(0.360972\pi\)
\(182\) 0 0
\(183\) 5.68558e7 0.685798
\(184\) − 9.17715e7i − 1.08604i
\(185\) −8.24024e6 −0.0956839
\(186\) −1.56103e7 −0.177875
\(187\) 1.41399e6i 0.0158126i
\(188\) 4.76853e7i 0.523398i
\(189\) − 9.14188e7i − 0.984962i
\(190\) − 1.74185e6i − 0.0184235i
\(191\) 1.71927e8 1.78536 0.892682 0.450688i \(-0.148821\pi\)
0.892682 + 0.450688i \(0.148821\pi\)
\(192\) −1.53085e7 −0.156092
\(193\) 2.48491e7i 0.248806i 0.992232 + 0.124403i \(0.0397016\pi\)
−0.992232 + 0.124403i \(0.960298\pi\)
\(194\) −7.60538e7 −0.747850
\(195\) 0 0
\(196\) 1.07964e7 0.102420
\(197\) − 1.37653e8i − 1.28279i −0.767213 0.641393i \(-0.778357\pi\)
0.767213 0.641393i \(-0.221643\pi\)
\(198\) −149530. −0.00136899
\(199\) −9.81839e7 −0.883190 −0.441595 0.897214i \(-0.645587\pi\)
−0.441595 + 0.897214i \(0.645587\pi\)
\(200\) 8.05855e7i 0.712282i
\(201\) − 2.04035e8i − 1.77222i
\(202\) − 8.67859e7i − 0.740831i
\(203\) − 1.06880e8i − 0.896730i
\(204\) 5.34229e7 0.440577
\(205\) 1.70044e7 0.137855
\(206\) 5.50959e7i 0.439121i
\(207\) 2.28641e7 0.179167
\(208\) 0 0
\(209\) 981900. 0.00743970
\(210\) − 8.25662e6i − 0.0615226i
\(211\) −9.35140e7 −0.685312 −0.342656 0.939461i \(-0.611326\pi\)
−0.342656 + 0.939461i \(0.611326\pi\)
\(212\) −1.55726e8 −1.12250
\(213\) − 1.79334e8i − 1.27155i
\(214\) − 3.09013e7i − 0.215541i
\(215\) 2.38362e7i 0.163570i
\(216\) 1.14405e8i 0.772426i
\(217\) −6.70356e7 −0.445345
\(218\) 1.47533e7 0.0964477
\(219\) − 2.67076e8i − 1.71823i
\(220\) 658566. 0.00416985
\(221\) 0 0
\(222\) 3.32839e7 0.204173
\(223\) − 6.52040e7i − 0.393738i −0.980430 0.196869i \(-0.936923\pi\)
0.980430 0.196869i \(-0.0630774\pi\)
\(224\) 1.50283e8 0.893392
\(225\) −2.00772e7 −0.117507
\(226\) 783973.i 0.00451774i
\(227\) 1.31044e8i 0.743578i 0.928317 + 0.371789i \(0.121255\pi\)
−0.928317 + 0.371789i \(0.878745\pi\)
\(228\) − 3.70977e7i − 0.207289i
\(229\) − 1.87132e8i − 1.02973i −0.857272 0.514864i \(-0.827842\pi\)
0.857272 0.514864i \(-0.172158\pi\)
\(230\) 1.90977e7 0.103499
\(231\) 4.65435e6 0.0248438
\(232\) 1.33754e8i 0.703233i
\(233\) −8.77467e7 −0.454449 −0.227225 0.973842i \(-0.572965\pi\)
−0.227225 + 0.973842i \(0.572965\pi\)
\(234\) 0 0
\(235\) −2.17287e7 −0.109219
\(236\) 2.86634e8i 1.41950i
\(237\) 49581.7 0.000241937 0
\(238\) −4.35091e7 −0.209200
\(239\) 2.99804e8i 1.42051i 0.703943 + 0.710257i \(0.251421\pi\)
−0.703943 + 0.710257i \(0.748579\pi\)
\(240\) − 1.92679e7i − 0.0899694i
\(241\) 1.20929e8i 0.556509i 0.960507 + 0.278254i \(0.0897558\pi\)
−0.960507 + 0.278254i \(0.910244\pi\)
\(242\) 8.79579e7i 0.398952i
\(243\) −5.39242e7 −0.241080
\(244\) −1.39542e8 −0.614951
\(245\) 4.91958e6i 0.0213721i
\(246\) −6.86841e7 −0.294160
\(247\) 0 0
\(248\) 8.38910e7 0.349248
\(249\) 2.30783e8i 0.947341i
\(250\) −3.40722e7 −0.137915
\(251\) 3.42122e8 1.36560 0.682800 0.730606i \(-0.260762\pi\)
0.682800 + 0.730606i \(0.260762\pi\)
\(252\) 2.42608e7i 0.0954998i
\(253\) 1.07656e7i 0.0417943i
\(254\) 8.16735e7i 0.312725i
\(255\) 2.43432e7i 0.0919362i
\(256\) −6.46077e7 −0.240682
\(257\) 1.33787e8 0.491641 0.245820 0.969315i \(-0.420943\pi\)
0.245820 + 0.969315i \(0.420943\pi\)
\(258\) − 9.62790e7i − 0.349030i
\(259\) 1.42932e8 0.511188
\(260\) 0 0
\(261\) −3.33237e7 −0.116014
\(262\) 6.63217e7i 0.227825i
\(263\) −4.16302e8 −1.41112 −0.705559 0.708651i \(-0.749304\pi\)
−0.705559 + 0.708651i \(0.749304\pi\)
\(264\) −5.82464e6 −0.0194830
\(265\) − 7.09596e7i − 0.234234i
\(266\) 3.02134e7i 0.0984270i
\(267\) 8.29700e7i 0.266767i
\(268\) 5.00766e8i 1.58914i
\(269\) −2.98622e8 −0.935381 −0.467690 0.883892i \(-0.654914\pi\)
−0.467690 + 0.883892i \(0.654914\pi\)
\(270\) −2.38078e7 −0.0736116
\(271\) 5.32417e7i 0.162502i 0.996694 + 0.0812512i \(0.0258916\pi\)
−0.996694 + 0.0812512i \(0.974108\pi\)
\(272\) −1.01534e8 −0.305929
\(273\) 0 0
\(274\) −2.22149e8 −0.652404
\(275\) − 9.45340e6i − 0.0274109i
\(276\) 4.06742e8 1.16449
\(277\) 1.94332e8 0.549369 0.274685 0.961534i \(-0.411427\pi\)
0.274685 + 0.961534i \(0.411427\pi\)
\(278\) − 1.04206e8i − 0.290894i
\(279\) 2.09007e7i 0.0576165i
\(280\) 4.43718e7i 0.120796i
\(281\) − 7.35301e7i − 0.197694i −0.995103 0.0988468i \(-0.968485\pi\)
0.995103 0.0988468i \(-0.0315154\pi\)
\(282\) 8.77665e7 0.233054
\(283\) 2.77363e8 0.727437 0.363719 0.931509i \(-0.381507\pi\)
0.363719 + 0.931509i \(0.381507\pi\)
\(284\) 4.40141e8i 1.14019i
\(285\) 1.69043e7 0.0432554
\(286\) 0 0
\(287\) −2.94952e8 −0.736486
\(288\) − 4.68561e7i − 0.115583i
\(289\) −2.82060e8 −0.687383
\(290\) −2.78344e7 −0.0670175
\(291\) − 7.38087e8i − 1.75583i
\(292\) 6.55489e8i 1.54073i
\(293\) 8.92358e7i 0.207254i 0.994616 + 0.103627i \(0.0330448\pi\)
−0.994616 + 0.103627i \(0.966955\pi\)
\(294\) − 1.98711e7i − 0.0456044i
\(295\) −1.30610e8 −0.296210
\(296\) −1.78871e8 −0.400883
\(297\) − 1.34207e7i − 0.0297255i
\(298\) 2.26905e8 0.496693
\(299\) 0 0
\(300\) −3.57165e8 −0.763737
\(301\) − 4.13454e8i − 0.873864i
\(302\) −1.34091e8 −0.280140
\(303\) 8.42240e8 1.73935
\(304\) 7.05069e7i 0.143938i
\(305\) − 6.35849e7i − 0.128323i
\(306\) 1.35655e7i 0.0270652i
\(307\) 2.03142e8i 0.400696i 0.979725 + 0.200348i \(0.0642072\pi\)
−0.979725 + 0.200348i \(0.935793\pi\)
\(308\) −1.14232e7 −0.0222773
\(309\) −5.34694e8 −1.03098
\(310\) 1.74578e7i 0.0332831i
\(311\) 7.82046e8 1.47425 0.737125 0.675757i \(-0.236183\pi\)
0.737125 + 0.675757i \(0.236183\pi\)
\(312\) 0 0
\(313\) 3.84527e8 0.708797 0.354399 0.935094i \(-0.384686\pi\)
0.354399 + 0.935094i \(0.384686\pi\)
\(314\) 1.60984e8i 0.293446i
\(315\) −1.10549e7 −0.0199281
\(316\) −121689. −0.000216944 0
\(317\) 4.19845e8i 0.740256i 0.928981 + 0.370128i \(0.120686\pi\)
−0.928981 + 0.370128i \(0.879314\pi\)
\(318\) 2.86619e8i 0.499817i
\(319\) − 1.56906e7i − 0.0270627i
\(320\) 1.71204e7i 0.0292071i
\(321\) 2.99891e8 0.506053
\(322\) −3.31262e8 −0.552938
\(323\) − 8.90789e7i − 0.147084i
\(324\) −4.44666e8 −0.726317
\(325\) 0 0
\(326\) −4.73960e7 −0.0757669
\(327\) 1.43178e8i 0.226443i
\(328\) 3.69114e8 0.577567
\(329\) 3.76898e8 0.583497
\(330\) − 1.21211e6i − 0.00185671i
\(331\) 8.18268e8i 1.24022i 0.784516 + 0.620109i \(0.212911\pi\)
−0.784516 + 0.620109i \(0.787089\pi\)
\(332\) − 5.66414e8i − 0.849475i
\(333\) − 4.45641e7i − 0.0661349i
\(334\) 8.76601e7 0.128733
\(335\) −2.28183e8 −0.331610
\(336\) 3.34213e8i 0.480658i
\(337\) 4.50190e8 0.640753 0.320377 0.947290i \(-0.396191\pi\)
0.320377 + 0.947290i \(0.396191\pi\)
\(338\) 0 0
\(339\) −7.60830e6 −0.0106069
\(340\) − 5.97458e7i − 0.0824386i
\(341\) −9.84117e6 −0.0134402
\(342\) 9.42011e6 0.0127340
\(343\) − 7.85684e8i − 1.05128i
\(344\) 5.17412e8i 0.685302i
\(345\) 1.85340e8i 0.242997i
\(346\) − 2.06664e8i − 0.268225i
\(347\) −1.12644e9 −1.44729 −0.723647 0.690170i \(-0.757536\pi\)
−0.723647 + 0.690170i \(0.757536\pi\)
\(348\) −5.92815e8 −0.754035
\(349\) − 1.02048e9i − 1.28504i −0.766269 0.642520i \(-0.777889\pi\)
0.766269 0.642520i \(-0.222111\pi\)
\(350\) 2.90885e8 0.362646
\(351\) 0 0
\(352\) 2.20623e7 0.0269620
\(353\) − 3.28291e6i − 0.00397235i −0.999998 0.00198618i \(-0.999368\pi\)
0.999998 0.00198618i \(-0.000632220\pi\)
\(354\) 5.27559e8 0.632062
\(355\) −2.00558e8 −0.237926
\(356\) − 2.03634e8i − 0.239208i
\(357\) − 4.22247e8i − 0.491166i
\(358\) 1.77198e8i 0.204112i
\(359\) 1.01744e9i 1.16059i 0.814406 + 0.580296i \(0.197063\pi\)
−0.814406 + 0.580296i \(0.802937\pi\)
\(360\) 1.38345e7 0.0156280
\(361\) 8.32014e8 0.930798
\(362\) 3.04883e8i 0.337795i
\(363\) −8.53614e8 −0.936674
\(364\) 0 0
\(365\) −2.98686e8 −0.321507
\(366\) 2.56832e8i 0.273820i
\(367\) −1.36503e9 −1.44149 −0.720743 0.693202i \(-0.756199\pi\)
−0.720743 + 0.693202i \(0.756199\pi\)
\(368\) −7.73043e8 −0.808604
\(369\) 9.19618e7i 0.0952829i
\(370\) − 3.72232e7i − 0.0382039i
\(371\) 1.23084e9i 1.25139i
\(372\) 3.71815e8i 0.374478i
\(373\) 9.65141e8 0.962963 0.481482 0.876456i \(-0.340099\pi\)
0.481482 + 0.876456i \(0.340099\pi\)
\(374\) −6.38736e6 −0.00631351
\(375\) − 3.30664e8i − 0.323800i
\(376\) −4.71665e8 −0.457590
\(377\) 0 0
\(378\) 4.12961e8 0.393267
\(379\) 8.15097e8i 0.769081i 0.923108 + 0.384540i \(0.125640\pi\)
−0.923108 + 0.384540i \(0.874360\pi\)
\(380\) −4.14884e7 −0.0387868
\(381\) −7.92625e8 −0.734227
\(382\) 7.76635e8i 0.712845i
\(383\) − 1.28104e9i − 1.16511i −0.812790 0.582556i \(-0.802053\pi\)
0.812790 0.582556i \(-0.197947\pi\)
\(384\) − 1.06079e9i − 0.956023i
\(385\) − 5.20521e6i − 0.00464864i
\(386\) −1.12250e8 −0.0993412
\(387\) −1.28909e8 −0.113056
\(388\) 1.81150e9i 1.57444i
\(389\) −9.51453e8 −0.819528 −0.409764 0.912192i \(-0.634389\pi\)
−0.409764 + 0.912192i \(0.634389\pi\)
\(390\) 0 0
\(391\) 9.76667e8 0.826281
\(392\) 1.06789e8i 0.0895419i
\(393\) −6.43639e8 −0.534895
\(394\) 6.21812e8 0.512180
\(395\) − 55449.9i 0 4.52701e-5i
\(396\) 3.56160e6i 0.00288212i
\(397\) − 2.46693e8i − 0.197875i −0.995094 0.0989375i \(-0.968456\pi\)
0.995094 0.0989375i \(-0.0315444\pi\)
\(398\) − 4.43520e8i − 0.352633i
\(399\) −2.93215e8 −0.231090
\(400\) 6.78817e8 0.530326
\(401\) − 2.02504e9i − 1.56830i −0.620571 0.784150i \(-0.713099\pi\)
0.620571 0.784150i \(-0.286901\pi\)
\(402\) 9.21676e8 0.707599
\(403\) 0 0
\(404\) −2.06712e9 −1.55966
\(405\) − 2.02620e8i − 0.151562i
\(406\) 4.82804e8 0.358039
\(407\) 2.09831e7 0.0154273
\(408\) 5.28417e8i 0.385182i
\(409\) − 1.45005e9i − 1.04798i −0.851725 0.523989i \(-0.824443\pi\)
0.851725 0.523989i \(-0.175557\pi\)
\(410\) 7.68131e7i 0.0550417i
\(411\) − 2.15591e9i − 1.53174i
\(412\) 1.31231e9 0.924475
\(413\) 2.26551e9 1.58249
\(414\) 1.03283e8i 0.0715363i
\(415\) 2.58097e8 0.177262
\(416\) 0 0
\(417\) 1.01129e9 0.682970
\(418\) 4.43548e6i 0.00297046i
\(419\) 7.01637e8 0.465976 0.232988 0.972480i \(-0.425150\pi\)
0.232988 + 0.972480i \(0.425150\pi\)
\(420\) −1.96661e8 −0.129523
\(421\) 6.04587e8i 0.394886i 0.980314 + 0.197443i \(0.0632637\pi\)
−0.980314 + 0.197443i \(0.936736\pi\)
\(422\) − 4.22426e8i − 0.273626i
\(423\) − 1.17511e8i − 0.0754899i
\(424\) − 1.54032e9i − 0.981364i
\(425\) −8.57622e8 −0.541919
\(426\) 8.10094e8 0.507693
\(427\) 1.10292e9i 0.685561i
\(428\) −7.36027e8 −0.453775
\(429\) 0 0
\(430\) −1.07674e8 −0.0653087
\(431\) 4.89565e7i 0.0294537i 0.999892 + 0.0147269i \(0.00468788\pi\)
−0.999892 + 0.0147269i \(0.995312\pi\)
\(432\) 9.63698e8 0.575106
\(433\) −1.63499e9 −0.967851 −0.483925 0.875109i \(-0.660789\pi\)
−0.483925 + 0.875109i \(0.660789\pi\)
\(434\) − 3.02816e8i − 0.177814i
\(435\) − 2.70127e8i − 0.157346i
\(436\) − 3.51403e8i − 0.203050i
\(437\) − 6.78213e8i − 0.388760i
\(438\) 1.20645e9 0.686041
\(439\) −1.47539e9 −0.832304 −0.416152 0.909295i \(-0.636622\pi\)
−0.416152 + 0.909295i \(0.636622\pi\)
\(440\) 6.51401e6i 0.00364556i
\(441\) −2.66057e7 −0.0147720
\(442\) 0 0
\(443\) 2.19329e8 0.119863 0.0599313 0.998203i \(-0.480912\pi\)
0.0599313 + 0.998203i \(0.480912\pi\)
\(444\) − 7.92776e8i − 0.429843i
\(445\) 9.27898e7 0.0499161
\(446\) 2.94542e8 0.157208
\(447\) 2.20207e9i 1.16615i
\(448\) − 2.96963e8i − 0.156038i
\(449\) − 1.00005e9i − 0.521387i −0.965422 0.260693i \(-0.916049\pi\)
0.965422 0.260693i \(-0.0839512\pi\)
\(450\) − 9.06936e7i − 0.0469173i
\(451\) −4.33004e7 −0.0222267
\(452\) 1.86731e7 0.00951115
\(453\) − 1.30132e9i − 0.657721i
\(454\) −5.91957e8 −0.296890
\(455\) 0 0
\(456\) 3.66941e8 0.181225
\(457\) − 3.30790e9i − 1.62123i −0.585578 0.810616i \(-0.699132\pi\)
0.585578 0.810616i \(-0.300868\pi\)
\(458\) 8.45319e8 0.411142
\(459\) −1.21754e9 −0.587678
\(460\) − 4.54882e8i − 0.217894i
\(461\) − 3.94229e9i − 1.87411i −0.349180 0.937056i \(-0.613540\pi\)
0.349180 0.937056i \(-0.386460\pi\)
\(462\) 2.10249e7i 0.00991941i
\(463\) 5.62775e8i 0.263513i 0.991282 + 0.131756i \(0.0420616\pi\)
−0.991282 + 0.131756i \(0.957938\pi\)
\(464\) 1.12669e9 0.523589
\(465\) −1.69424e8 −0.0781431
\(466\) − 3.96373e8i − 0.181449i
\(467\) 1.78505e7 0.00811038 0.00405519 0.999992i \(-0.498709\pi\)
0.00405519 + 0.999992i \(0.498709\pi\)
\(468\) 0 0
\(469\) 3.95798e9 1.77161
\(470\) − 9.81540e7i − 0.0436079i
\(471\) −1.56231e9 −0.688961
\(472\) −2.83515e9 −1.24102
\(473\) − 6.06971e7i − 0.0263727i
\(474\) 223973.i 0 9.65987e-5i
\(475\) 5.95546e8i 0.254969i
\(476\) 1.03633e9i 0.440425i
\(477\) 3.83758e8 0.161898
\(478\) −1.35429e9 −0.567171
\(479\) − 6.41286e8i − 0.266611i −0.991075 0.133305i \(-0.957441\pi\)
0.991075 0.133305i \(-0.0425591\pi\)
\(480\) 3.79822e8 0.156760
\(481\) 0 0
\(482\) −5.46267e8 −0.222198
\(483\) − 3.21483e9i − 1.29820i
\(484\) 2.09504e9 0.839910
\(485\) −8.25442e8 −0.328542
\(486\) − 2.43589e8i − 0.0962565i
\(487\) 2.14300e9i 0.840759i 0.907348 + 0.420380i \(0.138103\pi\)
−0.907348 + 0.420380i \(0.861897\pi\)
\(488\) − 1.38024e9i − 0.537631i
\(489\) − 4.59968e8i − 0.177888i
\(490\) −2.22230e7 −0.00853327
\(491\) 1.50315e9 0.573084 0.286542 0.958068i \(-0.407494\pi\)
0.286542 + 0.958068i \(0.407494\pi\)
\(492\) 1.63596e9i 0.619291i
\(493\) −1.42346e9 −0.535035
\(494\) 0 0
\(495\) −1.62291e6 −0.000601418 0
\(496\) − 7.06661e8i − 0.260031i
\(497\) 3.47881e9 1.27111
\(498\) −1.04250e9 −0.378247
\(499\) − 3.29943e9i − 1.18874i −0.804192 0.594369i \(-0.797402\pi\)
0.804192 0.594369i \(-0.202598\pi\)
\(500\) 8.11552e8i 0.290350i
\(501\) 8.50724e8i 0.302243i
\(502\) 1.54545e9i 0.545245i
\(503\) −1.85586e9 −0.650215 −0.325107 0.945677i \(-0.605400\pi\)
−0.325107 + 0.945677i \(0.605400\pi\)
\(504\) −2.39968e8 −0.0834922
\(505\) − 9.41922e8i − 0.325458i
\(506\) −4.86309e7 −0.0166873
\(507\) 0 0
\(508\) 1.94535e9 0.658377
\(509\) 4.17614e9i 1.40366i 0.712342 + 0.701832i \(0.247634\pi\)
−0.712342 + 0.701832i \(0.752366\pi\)
\(510\) −1.09964e8 −0.0367075
\(511\) 5.18089e9 1.71764
\(512\) 2.80541e9i 0.923744i
\(513\) 8.45481e8i 0.276499i
\(514\) 6.04348e8i 0.196298i
\(515\) 5.97978e8i 0.192912i
\(516\) −2.29323e9 −0.734808
\(517\) 5.53305e7 0.0176095
\(518\) 6.45659e8i 0.204103i
\(519\) 2.00563e9 0.629747
\(520\) 0 0
\(521\) 1.46095e9 0.452589 0.226295 0.974059i \(-0.427339\pi\)
0.226295 + 0.974059i \(0.427339\pi\)
\(522\) − 1.50531e8i − 0.0463213i
\(523\) 6.21674e8 0.190023 0.0950116 0.995476i \(-0.469711\pi\)
0.0950116 + 0.995476i \(0.469711\pi\)
\(524\) 1.57969e9 0.479637
\(525\) 2.82298e9i 0.851432i
\(526\) − 1.88054e9i − 0.563420i
\(527\) 8.92800e8i 0.265715i
\(528\) 4.90642e7i 0.0145059i
\(529\) 4.03115e9 1.18395
\(530\) 3.20542e8 0.0935232
\(531\) − 7.06354e8i − 0.204735i
\(532\) 7.19642e8 0.207217
\(533\) 0 0
\(534\) −3.74796e8 −0.106512
\(535\) − 3.35385e8i − 0.0946902i
\(536\) −4.95317e9 −1.38933
\(537\) −1.71967e9 −0.479221
\(538\) − 1.34895e9i − 0.373471i
\(539\) − 1.25273e7i − 0.00344587i
\(540\) 5.67069e8i 0.154974i
\(541\) − 3.06369e9i − 0.831868i −0.909395 0.415934i \(-0.863455\pi\)
0.909395 0.415934i \(-0.136545\pi\)
\(542\) −2.40506e8 −0.0648826
\(543\) −2.95883e9 −0.793087
\(544\) − 2.00151e9i − 0.533043i
\(545\) 1.60124e8 0.0423709
\(546\) 0 0
\(547\) −7.27564e9 −1.90071 −0.950354 0.311171i \(-0.899279\pi\)
−0.950354 + 0.311171i \(0.899279\pi\)
\(548\) 5.29127e9i 1.37350i
\(549\) 3.43875e8 0.0886945
\(550\) 4.27033e7 0.0109444
\(551\) 9.88475e8i 0.251730i
\(552\) 4.02317e9i 1.01808i
\(553\) 961813.i 0 0.000241854i
\(554\) 8.77844e8i 0.219348i
\(555\) 3.61243e8 0.0896963
\(556\) −2.48203e9 −0.612415
\(557\) 5.92128e9i 1.45185i 0.687773 + 0.725926i \(0.258589\pi\)
−0.687773 + 0.725926i \(0.741411\pi\)
\(558\) −9.44137e7 −0.0230046
\(559\) 0 0
\(560\) 3.73769e8 0.0899383
\(561\) − 6.19880e7i − 0.0148231i
\(562\) 3.32153e8 0.0789335
\(563\) 6.42377e9 1.51709 0.758543 0.651623i \(-0.225911\pi\)
0.758543 + 0.651623i \(0.225911\pi\)
\(564\) − 2.09048e9i − 0.490646i
\(565\) 8.50877e6i 0.00198471i
\(566\) 1.25292e9i 0.290445i
\(567\) 3.51457e9i 0.809715i
\(568\) −4.35352e9 −0.996830
\(569\) 5.59404e9 1.27301 0.636506 0.771272i \(-0.280379\pi\)
0.636506 + 0.771272i \(0.280379\pi\)
\(570\) 7.63608e7i 0.0172706i
\(571\) 2.51307e9 0.564908 0.282454 0.959281i \(-0.408852\pi\)
0.282454 + 0.959281i \(0.408852\pi\)
\(572\) 0 0
\(573\) −7.53709e9 −1.67364
\(574\) − 1.33237e9i − 0.294058i
\(575\) −6.52961e9 −1.43235
\(576\) −9.25889e7 −0.0201874
\(577\) − 5.64709e9i − 1.22380i −0.790936 0.611899i \(-0.790406\pi\)
0.790936 0.611899i \(-0.209594\pi\)
\(578\) − 1.27413e9i − 0.274453i
\(579\) − 1.08936e9i − 0.233237i
\(580\) 6.62976e8i 0.141091i
\(581\) −4.47686e9 −0.947014
\(582\) 3.33412e9 0.701052
\(583\) 1.80693e8i 0.0377661i
\(584\) −6.48357e9 −1.34700
\(585\) 0 0
\(586\) −4.03100e8 −0.0827506
\(587\) 8.31882e9i 1.69757i 0.528736 + 0.848786i \(0.322666\pi\)
−0.528736 + 0.848786i \(0.677334\pi\)
\(588\) −4.73303e8 −0.0960105
\(589\) 6.19974e8 0.125017
\(590\) − 5.89998e8i − 0.118268i
\(591\) 6.03456e9i 1.20251i
\(592\) 1.50673e9i 0.298476i
\(593\) − 2.05874e9i − 0.405425i −0.979238 0.202713i \(-0.935024\pi\)
0.979238 0.202713i \(-0.0649757\pi\)
\(594\) 6.06248e7 0.0118685
\(595\) −4.72222e8 −0.0919045
\(596\) − 5.40457e9i − 1.04568i
\(597\) 4.30428e9 0.827923
\(598\) 0 0
\(599\) −3.14417e9 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(600\) − 3.53278e9i − 0.667710i
\(601\) −4.17491e9 −0.784489 −0.392244 0.919861i \(-0.628301\pi\)
−0.392244 + 0.919861i \(0.628301\pi\)
\(602\) 1.86767e9 0.348909
\(603\) − 1.23404e9i − 0.229202i
\(604\) 3.19385e9i 0.589774i
\(605\) 9.54642e8i 0.175266i
\(606\) 3.80460e9i 0.694473i
\(607\) 1.55868e9 0.282877 0.141438 0.989947i \(-0.454827\pi\)
0.141438 + 0.989947i \(0.454827\pi\)
\(608\) −1.38988e9 −0.250793
\(609\) 4.68552e9i 0.840615i
\(610\) 2.87229e8 0.0512358
\(611\) 0 0
\(612\) 3.23112e8 0.0569801
\(613\) 2.10767e9i 0.369566i 0.982779 + 0.184783i \(0.0591582\pi\)
−0.982779 + 0.184783i \(0.940842\pi\)
\(614\) −9.17641e8 −0.159987
\(615\) −7.45456e8 −0.129229
\(616\) − 1.12989e8i − 0.0194763i
\(617\) 3.64167e9i 0.624169i 0.950054 + 0.312084i \(0.101027\pi\)
−0.950054 + 0.312084i \(0.898973\pi\)
\(618\) − 2.41535e9i − 0.411642i
\(619\) 3.99887e9i 0.677672i 0.940845 + 0.338836i \(0.110033\pi\)
−0.940845 + 0.338836i \(0.889967\pi\)
\(620\) 4.15821e8 0.0700705
\(621\) −9.26991e9 −1.55330
\(622\) 3.53269e9i 0.588626i
\(623\) −1.60950e9 −0.266675
\(624\) 0 0
\(625\) 5.54593e9 0.908645
\(626\) 1.73700e9i 0.283003i
\(627\) −4.30455e7 −0.00697415
\(628\) 3.83440e9 0.617788
\(629\) − 1.90361e9i − 0.305001i
\(630\) − 4.99375e7i − 0.00795674i
\(631\) − 5.76033e9i − 0.912735i −0.889791 0.456368i \(-0.849150\pi\)
0.889791 0.456368i \(-0.150850\pi\)
\(632\) − 1.20365e6i 0 0.000189666i
\(633\) 4.09956e9 0.642427
\(634\) −1.89654e9 −0.295563
\(635\) 8.86435e8i 0.137385i
\(636\) 6.82688e9 1.05226
\(637\) 0 0
\(638\) 7.08781e7 0.0108054
\(639\) − 1.08464e9i − 0.164450i
\(640\) −1.18633e9 −0.178886
\(641\) 6.04766e9 0.906952 0.453476 0.891268i \(-0.350184\pi\)
0.453476 + 0.891268i \(0.350184\pi\)
\(642\) 1.35468e9i 0.202053i
\(643\) 9.02692e9i 1.33906i 0.742784 + 0.669532i \(0.233505\pi\)
−0.742784 + 0.669532i \(0.766495\pi\)
\(644\) 7.89020e9i 1.16409i
\(645\) − 1.04495e9i − 0.153334i
\(646\) 4.02391e8 0.0587266
\(647\) −1.99531e9 −0.289631 −0.144816 0.989459i \(-0.546259\pi\)
−0.144816 + 0.989459i \(0.546259\pi\)
\(648\) − 4.39827e9i − 0.634994i
\(649\) 3.32589e8 0.0477585
\(650\) 0 0
\(651\) 2.93877e9 0.417477
\(652\) 1.12891e9i 0.159511i
\(653\) 5.54932e9 0.779909 0.389954 0.920834i \(-0.372491\pi\)
0.389954 + 0.920834i \(0.372491\pi\)
\(654\) −6.46770e8 −0.0904123
\(655\) 7.19816e8i 0.100087i
\(656\) − 3.10926e9i − 0.430025i
\(657\) − 1.61533e9i − 0.222219i
\(658\) 1.70254e9i 0.232974i
\(659\) −8.54955e7 −0.0116371 −0.00581854 0.999983i \(-0.501852\pi\)
−0.00581854 + 0.999983i \(0.501852\pi\)
\(660\) −2.88709e7 −0.00390891
\(661\) − 1.03382e10i − 1.39233i −0.717882 0.696164i \(-0.754888\pi\)
0.717882 0.696164i \(-0.245112\pi\)
\(662\) −3.69632e9 −0.495184
\(663\) 0 0
\(664\) 5.60251e9 0.742667
\(665\) 3.27918e8i 0.0432404i
\(666\) 2.01307e8 0.0264058
\(667\) −1.08377e10 −1.41416
\(668\) − 2.08794e9i − 0.271020i
\(669\) 2.85848e9i 0.369099i
\(670\) − 1.03076e9i − 0.132402i
\(671\) 1.61914e8i 0.0206898i
\(672\) −6.58825e9 −0.837486
\(673\) −8.90146e9 −1.12566 −0.562832 0.826571i \(-0.690288\pi\)
−0.562832 + 0.826571i \(0.690288\pi\)
\(674\) 2.03362e9i 0.255835i
\(675\) 8.14000e9 1.01874
\(676\) 0 0
\(677\) −8.37714e9 −1.03761 −0.518807 0.854892i \(-0.673624\pi\)
−0.518807 + 0.854892i \(0.673624\pi\)
\(678\) − 3.43685e7i − 0.00423504i
\(679\) 1.43178e10 1.75522
\(680\) 5.90957e8 0.0720733
\(681\) − 5.74483e9i − 0.697047i
\(682\) − 4.44549e7i − 0.00536630i
\(683\) 1.08780e10i 1.30640i 0.757185 + 0.653200i \(0.226574\pi\)
−0.757185 + 0.653200i \(0.773426\pi\)
\(684\) − 2.24374e8i − 0.0268087i
\(685\) −2.41107e9 −0.286611
\(686\) 3.54912e9 0.419746
\(687\) 8.20365e9i 0.965292i
\(688\) 4.35845e9 0.510238
\(689\) 0 0
\(690\) −8.37225e8 −0.0970220
\(691\) − 1.00168e10i − 1.15493i −0.816414 0.577467i \(-0.804041\pi\)
0.816414 0.577467i \(-0.195959\pi\)
\(692\) −4.92245e9 −0.564690
\(693\) 2.81504e7 0.00321305
\(694\) − 5.08843e9i − 0.577864i
\(695\) − 1.13099e9i − 0.127794i
\(696\) − 5.86364e9i − 0.659227i
\(697\) 3.92826e9i 0.439425i
\(698\) 4.60977e9 0.513080
\(699\) 3.84673e9 0.426011
\(700\) − 6.92847e9i − 0.763474i
\(701\) −1.48395e10 −1.62707 −0.813537 0.581513i \(-0.802461\pi\)
−0.813537 + 0.581513i \(0.802461\pi\)
\(702\) 0 0
\(703\) −1.32190e9 −0.143501
\(704\) − 4.35957e7i − 0.00470912i
\(705\) 9.52565e8 0.102384
\(706\) 1.48297e7 0.00158605
\(707\) 1.63382e10i 1.73875i
\(708\) − 1.25657e10i − 1.33067i
\(709\) − 1.35650e10i − 1.42941i −0.699424 0.714707i \(-0.746560\pi\)
0.699424 0.714707i \(-0.253440\pi\)
\(710\) − 9.05971e8i − 0.0949971i
\(711\) 299879. 3.12898e−5 0
\(712\) 2.01419e9 0.209132
\(713\) 6.79744e9i 0.702315i
\(714\) 1.90739e9 0.196109
\(715\) 0 0
\(716\) 4.22061e9 0.429715
\(717\) − 1.31431e10i − 1.33162i
\(718\) −4.59604e9 −0.463392
\(719\) −8.17292e9 −0.820023 −0.410011 0.912080i \(-0.634475\pi\)
−0.410011 + 0.912080i \(0.634475\pi\)
\(720\) − 1.16536e8i − 0.0116358i
\(721\) − 1.03723e10i − 1.03063i
\(722\) 3.75841e9i 0.371641i
\(723\) − 5.30141e9i − 0.521684i
\(724\) 7.26190e9 0.711157
\(725\) 9.51671e9 0.927478
\(726\) − 3.85598e9i − 0.373987i
\(727\) −7.62775e8 −0.0736251 −0.0368126 0.999322i \(-0.511720\pi\)
−0.0368126 + 0.999322i \(0.511720\pi\)
\(728\) 0 0
\(729\) 1.14024e10 1.09006
\(730\) − 1.34924e9i − 0.128368i
\(731\) −5.50650e9 −0.521392
\(732\) 6.11738e9 0.576470
\(733\) 8.21437e9i 0.770389i 0.922835 + 0.385195i \(0.125866\pi\)
−0.922835 + 0.385195i \(0.874134\pi\)
\(734\) − 6.16617e9i − 0.575545i
\(735\) − 2.15669e8i − 0.0200347i
\(736\) − 1.52388e10i − 1.40889i
\(737\) 5.81052e8 0.0534661
\(738\) −4.15414e8 −0.0380438
\(739\) 8.22305e9i 0.749510i 0.927124 + 0.374755i \(0.122273\pi\)
−0.927124 + 0.374755i \(0.877727\pi\)
\(740\) −8.86604e8 −0.0804301
\(741\) 0 0
\(742\) −5.56000e9 −0.499644
\(743\) 1.37678e10i 1.23142i 0.787975 + 0.615708i \(0.211130\pi\)
−0.787975 + 0.615708i \(0.788870\pi\)
\(744\) −3.67769e9 −0.327394
\(745\) 2.46269e9 0.218204
\(746\) 4.35978e9i 0.384484i
\(747\) 1.39582e9i 0.122520i
\(748\) 1.52138e8i 0.0132917i
\(749\) 5.81745e9i 0.505879i
\(750\) 1.49369e9 0.129284
\(751\) 1.23300e10 1.06224 0.531119 0.847297i \(-0.321772\pi\)
0.531119 + 0.847297i \(0.321772\pi\)
\(752\) 3.97310e9i 0.340696i
\(753\) −1.49983e10 −1.28014
\(754\) 0 0
\(755\) −1.45534e9 −0.123069
\(756\) − 9.83616e9i − 0.827941i
\(757\) 1.84529e10 1.54607 0.773036 0.634362i \(-0.218737\pi\)
0.773036 + 0.634362i \(0.218737\pi\)
\(758\) −3.68199e9 −0.307072
\(759\) − 4.71954e8i − 0.0391790i
\(760\) − 4.10370e8i − 0.0339100i
\(761\) 1.45618e10i 1.19776i 0.800839 + 0.598880i \(0.204387\pi\)
−0.800839 + 0.598880i \(0.795613\pi\)
\(762\) − 3.58048e9i − 0.293156i
\(763\) −2.77744e9 −0.226365
\(764\) 1.84984e10 1.50074
\(765\) 1.47232e8i 0.0118901i
\(766\) 5.78678e9 0.465196
\(767\) 0 0
\(768\) 2.83233e9 0.225621
\(769\) 4.69706e9i 0.372464i 0.982506 + 0.186232i \(0.0596276\pi\)
−0.982506 + 0.186232i \(0.940372\pi\)
\(770\) 2.35132e7 0.00185607
\(771\) −5.86508e9 −0.460876
\(772\) 2.67363e9i 0.209142i
\(773\) − 1.42447e10i − 1.10924i −0.832104 0.554619i \(-0.812864\pi\)
0.832104 0.554619i \(-0.187136\pi\)
\(774\) − 5.82313e8i − 0.0451402i
\(775\) − 5.96890e9i − 0.460616i
\(776\) −1.79179e10 −1.37648
\(777\) −6.26599e9 −0.479199
\(778\) − 4.29795e9i − 0.327214i
\(779\) 2.72784e9 0.206747
\(780\) 0 0
\(781\) 5.10707e8 0.0383613
\(782\) 4.41184e9i 0.329911i
\(783\) 1.35106e10 1.00579
\(784\) 8.99546e8 0.0666680
\(785\) 1.74722e9i 0.128915i
\(786\) − 2.90747e9i − 0.213568i
\(787\) − 2.03693e10i − 1.48958i −0.667300 0.744789i \(-0.732550\pi\)
0.667300 0.744789i \(-0.267450\pi\)
\(788\) − 1.48107e10i − 1.07829i
\(789\) 1.82502e10 1.32282
\(790\) 250481. 1.80751e−5 0
\(791\) − 1.47590e8i − 0.0106032i
\(792\) −3.52285e7 −0.00251974
\(793\) 0 0
\(794\) 1.11437e9 0.0790059
\(795\) 3.11079e9i 0.219577i
\(796\) −1.05640e10 −0.742394
\(797\) −1.18633e10 −0.830045 −0.415022 0.909811i \(-0.636226\pi\)
−0.415022 + 0.909811i \(0.636226\pi\)
\(798\) − 1.32452e9i − 0.0922678i
\(799\) − 5.01964e9i − 0.348144i
\(800\) 1.33813e10i 0.924026i
\(801\) 5.01818e8i 0.0345011i
\(802\) 9.14762e9 0.626178
\(803\) 7.60581e8 0.0518371
\(804\) − 2.19531e10i − 1.48970i
\(805\) −3.59532e9 −0.242914
\(806\) 0 0
\(807\) 1.30913e10 0.876848
\(808\) − 2.04463e10i − 1.36356i
\(809\) −8.79991e9 −0.584330 −0.292165 0.956368i \(-0.594376\pi\)
−0.292165 + 0.956368i \(0.594376\pi\)
\(810\) 9.15285e8 0.0605144
\(811\) 6.04080e9i 0.397669i 0.980033 + 0.198834i \(0.0637156\pi\)
−0.980033 + 0.198834i \(0.936284\pi\)
\(812\) − 1.14997e10i − 0.753775i
\(813\) − 2.33406e9i − 0.152333i
\(814\) 9.47860e7i 0.00615969i
\(815\) −5.14407e8 −0.0332855
\(816\) 4.45115e9 0.286785
\(817\) 3.82380e9i 0.245311i
\(818\) 6.55024e9 0.418428
\(819\) 0 0
\(820\) 1.82958e9 0.115879
\(821\) 1.79851e10i 1.13426i 0.823629 + 0.567129i \(0.191946\pi\)
−0.823629 + 0.567129i \(0.808054\pi\)
\(822\) 9.73877e9 0.611579
\(823\) −2.38986e10 −1.49442 −0.747210 0.664588i \(-0.768607\pi\)
−0.747210 + 0.664588i \(0.768607\pi\)
\(824\) 1.29803e10i 0.808237i
\(825\) 4.14427e8i 0.0256956i
\(826\) 1.02339e10i 0.631844i
\(827\) 2.40368e10i 1.47777i 0.673829 + 0.738887i \(0.264648\pi\)
−0.673829 + 0.738887i \(0.735352\pi\)
\(828\) 2.46005e9 0.150605
\(829\) −2.77111e10 −1.68933 −0.844663 0.535298i \(-0.820199\pi\)
−0.844663 + 0.535298i \(0.820199\pi\)
\(830\) 1.16589e9i 0.0707756i
\(831\) −8.51930e9 −0.514992
\(832\) 0 0
\(833\) −1.13649e9 −0.0681254
\(834\) 4.56827e9i 0.272691i
\(835\) 9.51411e8 0.0565543
\(836\) 1.05647e8 0.00625368
\(837\) − 8.47389e9i − 0.499510i
\(838\) 3.16947e9i 0.186051i
\(839\) − 5.42082e9i − 0.316883i −0.987368 0.158441i \(-0.949353\pi\)
0.987368 0.158441i \(-0.0506469\pi\)
\(840\) − 1.94521e9i − 0.113237i
\(841\) −1.45424e9 −0.0843045
\(842\) −2.73107e9 −0.157667
\(843\) 3.22348e9i 0.185323i
\(844\) −1.00616e10 −0.576061
\(845\) 0 0
\(846\) 5.30828e8 0.0301410
\(847\) − 1.65589e10i − 0.936350i
\(848\) −1.29750e10 −0.730669
\(849\) −1.21593e10 −0.681917
\(850\) − 3.87409e9i − 0.216373i
\(851\) − 1.44934e10i − 0.806150i
\(852\) − 1.92953e10i − 1.06884i
\(853\) 9.15495e8i 0.0505050i 0.999681 + 0.0252525i \(0.00803898\pi\)
−0.999681 + 0.0252525i \(0.991961\pi\)
\(854\) −4.98216e9 −0.273725
\(855\) 1.02240e8 0.00559423
\(856\) − 7.28019e9i − 0.396720i
\(857\) −5.57192e9 −0.302393 −0.151197 0.988504i \(-0.548313\pi\)
−0.151197 + 0.988504i \(0.548313\pi\)
\(858\) 0 0
\(859\) −3.79832e9 −0.204463 −0.102232 0.994761i \(-0.532598\pi\)
−0.102232 + 0.994761i \(0.532598\pi\)
\(860\) 2.56464e9i 0.137494i
\(861\) 1.29304e10 0.690400
\(862\) −2.21149e8 −0.0117600
\(863\) 8.87979e9i 0.470289i 0.971960 + 0.235145i \(0.0755563\pi\)
−0.971960 + 0.235145i \(0.924444\pi\)
\(864\) 1.89971e10i 1.00205i
\(865\) − 2.24301e9i − 0.117835i
\(866\) − 7.38566e9i − 0.386435i
\(867\) 1.23652e10 0.644369
\(868\) −7.21266e9 −0.374349
\(869\) 141199.i 0 7.29899e-6i
\(870\) 1.22023e9 0.0628238
\(871\) 0 0
\(872\) 3.47580e9 0.177520
\(873\) − 4.46408e9i − 0.227082i
\(874\) 3.06365e9 0.155221
\(875\) 6.41439e9 0.323689
\(876\) − 2.87360e10i − 1.44431i
\(877\) 2.78832e10i 1.39587i 0.716162 + 0.697934i \(0.245897\pi\)
−0.716162 + 0.697934i \(0.754103\pi\)
\(878\) − 6.66471e9i − 0.332315i
\(879\) − 3.91200e9i − 0.194285i
\(880\) 5.48711e7 0.00271428
\(881\) 3.07787e10 1.51647 0.758237 0.651979i \(-0.226061\pi\)
0.758237 + 0.651979i \(0.226061\pi\)
\(882\) − 1.20184e8i − 0.00589804i
\(883\) 1.45010e9 0.0708820 0.0354410 0.999372i \(-0.488716\pi\)
0.0354410 + 0.999372i \(0.488716\pi\)
\(884\) 0 0
\(885\) 5.72581e9 0.277674
\(886\) 9.90763e8i 0.0478577i
\(887\) −9.25333e9 −0.445211 −0.222605 0.974909i \(-0.571456\pi\)
−0.222605 + 0.974909i \(0.571456\pi\)
\(888\) 7.84150e9 0.375798
\(889\) − 1.53758e10i − 0.733973i
\(890\) 4.19154e8i 0.0199301i
\(891\) 5.15957e8i 0.0244367i
\(892\) − 7.01559e9i − 0.330969i
\(893\) −3.48572e9 −0.163799
\(894\) −9.94729e9 −0.465611
\(895\) 1.92320e9i 0.0896694i
\(896\) 2.05777e10 0.955693
\(897\) 0 0
\(898\) 4.51748e9 0.208175
\(899\) − 9.90706e9i − 0.454764i
\(900\) −2.16020e9 −0.0987744
\(901\) 1.63927e10 0.746642
\(902\) − 1.95599e8i − 0.00887448i
\(903\) 1.81254e10i 0.819181i
\(904\) 1.84700e8i 0.00831527i
\(905\) 3.30902e9i 0.148399i
\(906\) 5.87840e9 0.262609
\(907\) −2.13718e10 −0.951078 −0.475539 0.879695i \(-0.657747\pi\)
−0.475539 + 0.879695i \(0.657747\pi\)
\(908\) 1.40996e10i 0.625038i
\(909\) 5.09402e9 0.224951
\(910\) 0 0
\(911\) −2.45761e10 −1.07696 −0.538479 0.842639i \(-0.681001\pi\)
−0.538479 + 0.842639i \(0.681001\pi\)
\(912\) − 3.09095e9i − 0.134930i
\(913\) −6.57225e8 −0.0285803
\(914\) 1.49426e10 0.647312
\(915\) 2.78750e9i 0.120293i
\(916\) − 2.01343e10i − 0.865572i
\(917\) − 1.24857e10i − 0.534710i
\(918\) − 5.49994e9i − 0.234643i
\(919\) −1.04226e9 −0.0442966 −0.0221483 0.999755i \(-0.507051\pi\)
−0.0221483 + 0.999755i \(0.507051\pi\)
\(920\) 4.49932e9 0.190498
\(921\) − 8.90552e9i − 0.375622i
\(922\) 1.78083e10 0.748280
\(923\) 0 0
\(924\) 5.00783e8 0.0208832
\(925\) 1.27268e10i 0.528716i
\(926\) −2.54219e9 −0.105213
\(927\) −3.23393e9 −0.133337
\(928\) 2.22100e10i 0.912287i
\(929\) 2.61948e10i 1.07191i 0.844245 + 0.535957i \(0.180049\pi\)
−0.844245 + 0.535957i \(0.819951\pi\)
\(930\) − 7.65331e8i − 0.0312003i
\(931\) 7.89198e8i 0.0320525i
\(932\) −9.44107e9 −0.382002
\(933\) −3.42841e10 −1.38200
\(934\) 8.06350e7i 0.00323824i
\(935\) −6.93245e7 −0.00277362
\(936\) 0 0
\(937\) −1.84464e10 −0.732525 −0.366263 0.930512i \(-0.619363\pi\)
−0.366263 + 0.930512i \(0.619363\pi\)
\(938\) 1.78792e10i 0.707355i
\(939\) −1.68573e10 −0.664443
\(940\) −2.33789e9 −0.0918072
\(941\) − 2.74685e10i − 1.07466i −0.843373 0.537329i \(-0.819433\pi\)
0.843373 0.537329i \(-0.180567\pi\)
\(942\) − 7.05735e9i − 0.275083i
\(943\) 2.99083e10i 1.16145i
\(944\) 2.38821e10i 0.923995i
\(945\) 4.48203e9 0.172768
\(946\) 2.74184e8 0.0105299
\(947\) 1.25081e10i 0.478593i 0.970947 + 0.239297i \(0.0769168\pi\)
−0.970947 + 0.239297i \(0.923083\pi\)
\(948\) 5.33472e6 0.000203368 0
\(949\) 0 0
\(950\) −2.69023e9 −0.101802
\(951\) − 1.84056e10i − 0.693933i
\(952\) −1.02505e10 −0.385049
\(953\) 4.44972e10 1.66536 0.832679 0.553755i \(-0.186806\pi\)
0.832679 + 0.553755i \(0.186806\pi\)
\(954\) 1.73353e9i 0.0646415i
\(955\) 8.42913e9i 0.313163i
\(956\) 3.22573e10i 1.19406i
\(957\) 6.87858e8i 0.0253692i
\(958\) 2.89685e9 0.106450
\(959\) 4.18215e10 1.53121
\(960\) − 7.50539e8i − 0.0273794i
\(961\) 2.12989e10 0.774150
\(962\) 0 0
\(963\) 1.81380e9 0.0654481
\(964\) 1.30113e10i 0.467791i
\(965\) −1.21829e9 −0.0436421
\(966\) 1.45222e10 0.518337
\(967\) 1.03373e10i 0.367632i 0.982961 + 0.183816i \(0.0588450\pi\)
−0.982961 + 0.183816i \(0.941155\pi\)
\(968\) 2.07224e10i 0.734305i
\(969\) 3.90513e9i 0.137880i
\(970\) − 3.72872e9i − 0.131177i
\(971\) −3.56148e10 −1.24843 −0.624214 0.781254i \(-0.714581\pi\)
−0.624214 + 0.781254i \(0.714581\pi\)
\(972\) −5.80194e9 −0.202648
\(973\) 1.96176e10i 0.682734i
\(974\) −9.68047e9 −0.335691
\(975\) 0 0
\(976\) −1.16265e10 −0.400290
\(977\) 4.78316e10i 1.64091i 0.571713 + 0.820454i \(0.306279\pi\)
−0.571713 + 0.820454i \(0.693721\pi\)
\(978\) 2.07779e9 0.0710257
\(979\) −2.36282e8 −0.00804807
\(980\) 5.29320e8i 0.0179650i
\(981\) 8.65966e8i 0.0292860i
\(982\) 6.79011e9i 0.228816i
\(983\) 1.01346e10i 0.340306i 0.985418 + 0.170153i \(0.0544262\pi\)
−0.985418 + 0.170153i \(0.945574\pi\)
\(984\) −1.61816e10 −0.541425
\(985\) 6.74878e9 0.225008
\(986\) − 6.43013e9i − 0.213624i
\(987\) −1.65228e10 −0.546983
\(988\) 0 0
\(989\) −4.19244e10 −1.37810
\(990\) − 7.33108e6i 0 0.000240129i
\(991\) −1.22781e10 −0.400749 −0.200375 0.979719i \(-0.564216\pi\)
−0.200375 + 0.979719i \(0.564216\pi\)
\(992\) 1.39302e10 0.453071
\(993\) − 3.58720e10i − 1.16261i
\(994\) 1.57146e10i 0.507518i
\(995\) − 4.81371e9i − 0.154917i
\(996\) 2.48310e10i 0.796318i
\(997\) −3.28608e10 −1.05013 −0.525067 0.851061i \(-0.675960\pi\)
−0.525067 + 0.851061i \(0.675960\pi\)
\(998\) 1.49043e10 0.474630
\(999\) 1.80679e10i 0.573360i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.d.168.9 14
13.5 odd 4 169.8.a.g.1.9 14
13.8 odd 4 169.8.a.g.1.6 14
13.9 even 3 13.8.e.a.10.5 yes 14
13.10 even 6 13.8.e.a.4.5 14
13.12 even 2 inner 169.8.b.d.168.6 14
39.23 odd 6 117.8.q.b.82.3 14
39.35 odd 6 117.8.q.b.10.3 14
52.23 odd 6 208.8.w.a.17.3 14
52.35 odd 6 208.8.w.a.49.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.5 14 13.10 even 6
13.8.e.a.10.5 yes 14 13.9 even 3
117.8.q.b.10.3 14 39.35 odd 6
117.8.q.b.82.3 14 39.23 odd 6
169.8.a.g.1.6 14 13.8 odd 4
169.8.a.g.1.9 14 13.5 odd 4
169.8.b.d.168.6 14 13.12 even 2 inner
169.8.b.d.168.9 14 1.1 even 1 trivial
208.8.w.a.17.3 14 52.23 odd 6
208.8.w.a.49.3 14 52.35 odd 6