Properties

Label 169.8.b.e.168.1
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1591 x^{14} + 998837 x^{12} + 319862003 x^{10} + 57017400035 x^{8} + 5819167911653 x^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 13^{8} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.1
Root \(-20.7945i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.e.168.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-21.7945i q^{2} -67.8320 q^{3} -346.998 q^{4} -157.804i q^{5} +1478.36i q^{6} +842.108i q^{7} +4772.94i q^{8} +2414.17 q^{9} -3439.24 q^{10} -1991.16i q^{11} +23537.6 q^{12} +18353.3 q^{14} +10704.1i q^{15} +59607.9 q^{16} -9620.90 q^{17} -52615.6i q^{18} +8439.25i q^{19} +54757.5i q^{20} -57121.8i q^{21} -43396.3 q^{22} -34132.3 q^{23} -323758. i q^{24} +53223.0 q^{25} -15409.7 q^{27} -292210. i q^{28} -9672.89 q^{29} +233290. q^{30} -205412. i q^{31} -688185. i q^{32} +135065. i q^{33} +209682. i q^{34} +132888. q^{35} -837714. q^{36} +432002. i q^{37} +183929. q^{38} +753187. q^{40} -113586. i q^{41} -1.24494e6 q^{42} +400363. q^{43} +690930. i q^{44} -380965. i q^{45} +743896. i q^{46} +1.32924e6i q^{47} -4.04332e6 q^{48} +114397. q^{49} -1.15997e6i q^{50} +652605. q^{51} +298608. q^{53} +335846. i q^{54} -314213. q^{55} -4.01933e6 q^{56} -572451. i q^{57} +210815. i q^{58} -1.63424e6i q^{59} -3.71431e6i q^{60} +1.66237e6 q^{61} -4.47685e6 q^{62} +2.03300e6i q^{63} -7.36880e6 q^{64} +2.94366e6 q^{66} -1.42305e6i q^{67} +3.33844e6 q^{68} +2.31526e6 q^{69} -2.89621e6i q^{70} +1.03961e6i q^{71} +1.15227e7i q^{72} +4.43080e6i q^{73} +9.41526e6 q^{74} -3.61022e6 q^{75} -2.92840e6i q^{76} +1.67678e6 q^{77} -7.40813e6 q^{79} -9.40634e6i q^{80} -4.23453e6 q^{81} -2.47556e6 q^{82} -753809. i q^{83} +1.98212e7i q^{84} +1.51821e6i q^{85} -8.72569e6i q^{86} +656131. q^{87} +9.50371e6 q^{88} -2.49177e6i q^{89} -8.30293e6 q^{90} +1.18439e7 q^{92} +1.39335e7i q^{93} +2.89701e7 q^{94} +1.33174e6 q^{95} +4.66809e7i q^{96} -6.38799e6i q^{97} -2.49322e6i q^{98} -4.80702e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{3} - 1154 q^{4} + 11976 q^{9} - 13626 q^{10} + 15816 q^{12} + 14484 q^{14} + 122754 q^{16} - 45648 q^{17} + 147452 q^{22} - 144936 q^{23} - 58488 q^{25} + 358616 q^{27} + 443544 q^{29} - 516232 q^{30}+ \cdots - 32534160 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 21.7945i − 1.92638i −0.268830 0.963188i \(-0.586637\pi\)
0.268830 0.963188i \(-0.413363\pi\)
\(3\) −67.8320 −1.45047 −0.725237 0.688499i \(-0.758270\pi\)
−0.725237 + 0.688499i \(0.758270\pi\)
\(4\) −346.998 −2.71092
\(5\) − 157.804i − 0.564575i −0.959330 0.282288i \(-0.908907\pi\)
0.959330 0.282288i \(-0.0910932\pi\)
\(6\) 1478.36i 2.79416i
\(7\) 842.108i 0.927950i 0.885848 + 0.463975i \(0.153577\pi\)
−0.885848 + 0.463975i \(0.846423\pi\)
\(8\) 4772.94i 3.29588i
\(9\) 2414.17 1.10387
\(10\) −3439.24 −1.08758
\(11\) − 1991.16i − 0.451058i −0.974236 0.225529i \(-0.927589\pi\)
0.974236 0.225529i \(-0.0724111\pi\)
\(12\) 23537.6 3.93212
\(13\) 0 0
\(14\) 18353.3 1.78758
\(15\) 10704.1i 0.818902i
\(16\) 59607.9 3.63818
\(17\) −9620.90 −0.474946 −0.237473 0.971394i \(-0.576319\pi\)
−0.237473 + 0.971394i \(0.576319\pi\)
\(18\) − 52615.6i − 2.12648i
\(19\) 8439.25i 0.282271i 0.989990 + 0.141135i \(0.0450753\pi\)
−0.989990 + 0.141135i \(0.954925\pi\)
\(20\) 54757.5i 1.53052i
\(21\) − 57121.8i − 1.34597i
\(22\) −43396.3 −0.868908
\(23\) −34132.3 −0.584950 −0.292475 0.956273i \(-0.594479\pi\)
−0.292475 + 0.956273i \(0.594479\pi\)
\(24\) − 323758.i − 4.78059i
\(25\) 53223.0 0.681255
\(26\) 0 0
\(27\) −15409.7 −0.150668
\(28\) − 292210.i − 2.51560i
\(29\) −9672.89 −0.0736484 −0.0368242 0.999322i \(-0.511724\pi\)
−0.0368242 + 0.999322i \(0.511724\pi\)
\(30\) 233290. 1.57751
\(31\) − 205412.i − 1.23840i −0.785234 0.619199i \(-0.787457\pi\)
0.785234 0.619199i \(-0.212543\pi\)
\(32\) − 688185.i − 3.71262i
\(33\) 135065.i 0.654248i
\(34\) 209682.i 0.914925i
\(35\) 132888. 0.523898
\(36\) −837714. −2.99252
\(37\) 432002.i 1.40210i 0.713110 + 0.701052i \(0.247286\pi\)
−0.713110 + 0.701052i \(0.752714\pi\)
\(38\) 183929. 0.543760
\(39\) 0 0
\(40\) 753187. 1.86077
\(41\) − 113586.i − 0.257385i −0.991685 0.128692i \(-0.958922\pi\)
0.991685 0.128692i \(-0.0410780\pi\)
\(42\) −1.24494e6 −2.59284
\(43\) 400363. 0.767917 0.383958 0.923350i \(-0.374561\pi\)
0.383958 + 0.923350i \(0.374561\pi\)
\(44\) 690930.i 1.22278i
\(45\) − 380965.i − 0.623220i
\(46\) 743896.i 1.12683i
\(47\) 1.32924e6i 1.86750i 0.357920 + 0.933752i \(0.383486\pi\)
−0.357920 + 0.933752i \(0.616514\pi\)
\(48\) −4.04332e6 −5.27708
\(49\) 114397. 0.138909
\(50\) − 1.15997e6i − 1.31235i
\(51\) 652605. 0.688898
\(52\) 0 0
\(53\) 298608. 0.275509 0.137755 0.990466i \(-0.456011\pi\)
0.137755 + 0.990466i \(0.456011\pi\)
\(54\) 335846.i 0.290243i
\(55\) −314213. −0.254656
\(56\) −4.01933e6 −3.05841
\(57\) − 572451.i − 0.409427i
\(58\) 210815.i 0.141874i
\(59\) − 1.63424e6i − 1.03594i −0.855399 0.517970i \(-0.826688\pi\)
0.855399 0.517970i \(-0.173312\pi\)
\(60\) − 3.71431e6i − 2.21998i
\(61\) 1.66237e6 0.937722 0.468861 0.883272i \(-0.344665\pi\)
0.468861 + 0.883272i \(0.344665\pi\)
\(62\) −4.47685e6 −2.38562
\(63\) 2.03300e6i 1.02434i
\(64\) −7.36880e6 −3.51372
\(65\) 0 0
\(66\) 2.94366e6 1.26033
\(67\) − 1.42305e6i − 0.578042i −0.957323 0.289021i \(-0.906670\pi\)
0.957323 0.289021i \(-0.0933298\pi\)
\(68\) 3.33844e6 1.28754
\(69\) 2.31526e6 0.848455
\(70\) − 2.89621e6i − 1.00922i
\(71\) 1.03961e6i 0.344720i 0.985034 + 0.172360i \(0.0551392\pi\)
−0.985034 + 0.172360i \(0.944861\pi\)
\(72\) 1.15227e7i 3.63824i
\(73\) 4.43080e6i 1.33307i 0.745475 + 0.666533i \(0.232222\pi\)
−0.745475 + 0.666533i \(0.767778\pi\)
\(74\) 9.41526e6 2.70098
\(75\) −3.61022e6 −0.988143
\(76\) − 2.92840e6i − 0.765215i
\(77\) 1.67678e6 0.418560
\(78\) 0 0
\(79\) −7.40813e6 −1.69049 −0.845247 0.534376i \(-0.820547\pi\)
−0.845247 + 0.534376i \(0.820547\pi\)
\(80\) − 9.40634e6i − 2.05402i
\(81\) −4.23453e6 −0.885335
\(82\) −2.47556e6 −0.495820
\(83\) − 753809.i − 0.144706i −0.997379 0.0723532i \(-0.976949\pi\)
0.997379 0.0723532i \(-0.0230509\pi\)
\(84\) 1.98212e7i 3.64881i
\(85\) 1.51821e6i 0.268143i
\(86\) − 8.72569e6i − 1.47930i
\(87\) 656131. 0.106825
\(88\) 9.50371e6 1.48663
\(89\) − 2.49177e6i − 0.374664i −0.982297 0.187332i \(-0.940016\pi\)
0.982297 0.187332i \(-0.0599841\pi\)
\(90\) −8.30293e6 −1.20056
\(91\) 0 0
\(92\) 1.18439e7 1.58575
\(93\) 1.39335e7i 1.79626i
\(94\) 2.89701e7 3.59751
\(95\) 1.33174e6 0.159363
\(96\) 4.66809e7i 5.38505i
\(97\) − 6.38799e6i − 0.710662i −0.934741 0.355331i \(-0.884368\pi\)
0.934741 0.355331i \(-0.115632\pi\)
\(98\) − 2.49322e6i − 0.267590i
\(99\) − 4.80702e6i − 0.497912i
\(100\) −1.84683e7 −1.84683
\(101\) 1.37901e7 1.33182 0.665908 0.746034i \(-0.268044\pi\)
0.665908 + 0.746034i \(0.268044\pi\)
\(102\) − 1.42232e7i − 1.32708i
\(103\) −1.00557e7 −0.906740 −0.453370 0.891322i \(-0.649778\pi\)
−0.453370 + 0.891322i \(0.649778\pi\)
\(104\) 0 0
\(105\) −9.01403e6 −0.759900
\(106\) − 6.50800e6i − 0.530734i
\(107\) −6.62417e6 −0.522743 −0.261372 0.965238i \(-0.584175\pi\)
−0.261372 + 0.965238i \(0.584175\pi\)
\(108\) 5.34713e6 0.408449
\(109\) 2.15505e7i 1.59391i 0.604036 + 0.796957i \(0.293558\pi\)
−0.604036 + 0.796957i \(0.706442\pi\)
\(110\) 6.84809e6i 0.490564i
\(111\) − 2.93036e7i − 2.03372i
\(112\) 5.01963e7i 3.37605i
\(113\) −1.30333e7 −0.849725 −0.424863 0.905258i \(-0.639678\pi\)
−0.424863 + 0.905258i \(0.639678\pi\)
\(114\) −1.24763e7 −0.788710
\(115\) 5.38620e6i 0.330248i
\(116\) 3.35647e6 0.199655
\(117\) 0 0
\(118\) −3.56174e7 −1.99561
\(119\) − 8.10184e6i − 0.440727i
\(120\) −5.10902e7 −2.69900
\(121\) 1.55224e7 0.796546
\(122\) − 3.62305e7i − 1.80640i
\(123\) 7.70479e6i 0.373330i
\(124\) 7.12776e7i 3.35720i
\(125\) − 2.07272e7i − 0.949195i
\(126\) 4.43080e7 1.97327
\(127\) −7.43440e6 −0.322057 −0.161029 0.986950i \(-0.551481\pi\)
−0.161029 + 0.986950i \(0.551481\pi\)
\(128\) 7.25113e7i 3.05612i
\(129\) −2.71574e7 −1.11384
\(130\) 0 0
\(131\) 1.19177e7 0.463173 0.231586 0.972814i \(-0.425608\pi\)
0.231586 + 0.972814i \(0.425608\pi\)
\(132\) − 4.68671e7i − 1.77362i
\(133\) −7.10676e6 −0.261933
\(134\) −3.10147e7 −1.11353
\(135\) 2.43170e6i 0.0850633i
\(136\) − 4.59200e7i − 1.56537i
\(137\) − 4.91202e7i − 1.63207i −0.578004 0.816034i \(-0.696168\pi\)
0.578004 0.816034i \(-0.303832\pi\)
\(138\) − 5.04599e7i − 1.63444i
\(139\) −1.87624e7 −0.592566 −0.296283 0.955100i \(-0.595747\pi\)
−0.296283 + 0.955100i \(0.595747\pi\)
\(140\) −4.61117e7 −1.42025
\(141\) − 9.01651e7i − 2.70877i
\(142\) 2.26577e7 0.664060
\(143\) 0 0
\(144\) 1.43904e8 4.01609
\(145\) 1.52642e6i 0.0415801i
\(146\) 9.65668e7 2.56799
\(147\) −7.75978e6 −0.201483
\(148\) − 1.49904e8i − 3.80099i
\(149\) − 4.55981e7i − 1.12926i −0.825344 0.564631i \(-0.809019\pi\)
0.825344 0.564631i \(-0.190981\pi\)
\(150\) 7.86828e7i 1.90353i
\(151\) − 3.04360e7i − 0.719397i −0.933069 0.359699i \(-0.882880\pi\)
0.933069 0.359699i \(-0.117120\pi\)
\(152\) −4.02801e7 −0.930331
\(153\) −2.32265e7 −0.524281
\(154\) − 3.65444e7i − 0.806303i
\(155\) −3.24148e7 −0.699169
\(156\) 0 0
\(157\) −7.21167e7 −1.48726 −0.743631 0.668591i \(-0.766898\pi\)
−0.743631 + 0.668591i \(0.766898\pi\)
\(158\) 1.61456e8i 3.25653i
\(159\) −2.02552e7 −0.399619
\(160\) −1.08598e8 −2.09605
\(161\) − 2.87431e7i − 0.542804i
\(162\) 9.22893e7i 1.70549i
\(163\) − 2.74591e7i − 0.496626i −0.968680 0.248313i \(-0.920124\pi\)
0.968680 0.248313i \(-0.0798762\pi\)
\(164\) 3.94143e7i 0.697751i
\(165\) 2.13137e7 0.369372
\(166\) −1.64289e7 −0.278759
\(167\) 5.65534e6i 0.0939618i 0.998896 + 0.0469809i \(0.0149600\pi\)
−0.998896 + 0.0469809i \(0.985040\pi\)
\(168\) 2.72639e8 4.43615
\(169\) 0 0
\(170\) 3.30886e7 0.516544
\(171\) 2.03738e7i 0.311592i
\(172\) −1.38925e8 −2.08176
\(173\) 6.27713e7 0.921722 0.460861 0.887472i \(-0.347541\pi\)
0.460861 + 0.887472i \(0.347541\pi\)
\(174\) − 1.43000e7i − 0.205785i
\(175\) 4.48195e7i 0.632171i
\(176\) − 1.18689e8i − 1.64103i
\(177\) 1.10854e8i 1.50260i
\(178\) −5.43067e7 −0.721744
\(179\) −1.33940e8 −1.74551 −0.872757 0.488156i \(-0.837670\pi\)
−0.872757 + 0.488156i \(0.837670\pi\)
\(180\) 1.32194e8i 1.68950i
\(181\) 7.06325e6 0.0885379 0.0442690 0.999020i \(-0.485904\pi\)
0.0442690 + 0.999020i \(0.485904\pi\)
\(182\) 0 0
\(183\) −1.12762e8 −1.36014
\(184\) − 1.62912e8i − 1.92792i
\(185\) 6.81715e7 0.791593
\(186\) 3.03673e8 3.46028
\(187\) 1.91568e7i 0.214229i
\(188\) − 4.61245e8i − 5.06266i
\(189\) − 1.29766e7i − 0.139812i
\(190\) − 2.90246e7i − 0.306993i
\(191\) 1.64080e8 1.70388 0.851938 0.523643i \(-0.175427\pi\)
0.851938 + 0.523643i \(0.175427\pi\)
\(192\) 4.99840e8 5.09656
\(193\) 7.93644e6i 0.0794649i 0.999210 + 0.0397324i \(0.0126506\pi\)
−0.999210 + 0.0397324i \(0.987349\pi\)
\(194\) −1.39223e8 −1.36900
\(195\) 0 0
\(196\) −3.96956e7 −0.376570
\(197\) − 5.02645e7i − 0.468414i −0.972187 0.234207i \(-0.924751\pi\)
0.972187 0.234207i \(-0.0752493\pi\)
\(198\) −1.04766e8 −0.959165
\(199\) −6.83961e7 −0.615242 −0.307621 0.951509i \(-0.599533\pi\)
−0.307621 + 0.951509i \(0.599533\pi\)
\(200\) 2.54031e8i 2.24533i
\(201\) 9.65286e7i 0.838435i
\(202\) − 3.00549e8i − 2.56558i
\(203\) − 8.14562e6i − 0.0683420i
\(204\) −2.26453e8 −1.86755
\(205\) −1.79243e7 −0.145313
\(206\) 2.19159e8i 1.74672i
\(207\) −8.24014e7 −0.645712
\(208\) 0 0
\(209\) 1.68039e7 0.127321
\(210\) 1.96456e8i 1.46385i
\(211\) −2.52116e8 −1.84762 −0.923810 0.382852i \(-0.874942\pi\)
−0.923810 + 0.382852i \(0.874942\pi\)
\(212\) −1.03617e8 −0.746884
\(213\) − 7.05188e7i − 0.500007i
\(214\) 1.44370e8i 1.00700i
\(215\) − 6.31787e7i − 0.433547i
\(216\) − 7.35495e7i − 0.496583i
\(217\) 1.72979e8 1.14917
\(218\) 4.69682e8 3.07048
\(219\) − 3.00550e8i − 1.93358i
\(220\) 1.09031e8 0.690353
\(221\) 0 0
\(222\) −6.38655e8 −3.91770
\(223\) − 1.24043e8i − 0.749041i −0.927219 0.374520i \(-0.877807\pi\)
0.927219 0.374520i \(-0.122193\pi\)
\(224\) 5.79526e8 3.44512
\(225\) 1.28490e8 0.752020
\(226\) 2.84053e8i 1.63689i
\(227\) 1.30892e8i 0.742715i 0.928490 + 0.371358i \(0.121108\pi\)
−0.928490 + 0.371358i \(0.878892\pi\)
\(228\) 1.98639e8i 1.10992i
\(229\) 1.06750e8i 0.587414i 0.955895 + 0.293707i \(0.0948890\pi\)
−0.955895 + 0.293707i \(0.905111\pi\)
\(230\) 1.17389e8 0.636182
\(231\) −1.13739e8 −0.607110
\(232\) − 4.61682e7i − 0.242736i
\(233\) 2.23039e8 1.15514 0.577571 0.816340i \(-0.304001\pi\)
0.577571 + 0.816340i \(0.304001\pi\)
\(234\) 0 0
\(235\) 2.09759e8 1.05435
\(236\) 5.67079e8i 2.80835i
\(237\) 5.02508e8 2.45202
\(238\) −1.76575e8 −0.849005
\(239\) − 1.68042e8i − 0.796204i −0.917341 0.398102i \(-0.869669\pi\)
0.917341 0.398102i \(-0.130331\pi\)
\(240\) 6.38050e8i 2.97931i
\(241\) − 6.22539e7i − 0.286488i −0.989687 0.143244i \(-0.954247\pi\)
0.989687 0.143244i \(-0.0457534\pi\)
\(242\) − 3.38303e8i − 1.53445i
\(243\) 3.20937e8 1.43482
\(244\) −5.76840e8 −2.54209
\(245\) − 1.80523e7i − 0.0784243i
\(246\) 1.67922e8 0.719174
\(247\) 0 0
\(248\) 9.80421e8 4.08161
\(249\) 5.11323e7i 0.209893i
\(250\) −4.51738e8 −1.82851
\(251\) 2.27779e8 0.909192 0.454596 0.890698i \(-0.349784\pi\)
0.454596 + 0.890698i \(0.349784\pi\)
\(252\) − 7.05445e8i − 2.77691i
\(253\) 6.79631e7i 0.263846i
\(254\) 1.62029e8i 0.620403i
\(255\) − 1.02983e8i − 0.388934i
\(256\) 6.37137e8 2.37352
\(257\) 1.21757e7 0.0447435 0.0223717 0.999750i \(-0.492878\pi\)
0.0223717 + 0.999750i \(0.492878\pi\)
\(258\) 5.91880e8i 2.14568i
\(259\) −3.63793e8 −1.30108
\(260\) 0 0
\(261\) −2.33520e7 −0.0812986
\(262\) − 2.59740e8i − 0.892245i
\(263\) 3.47616e8 1.17830 0.589149 0.808024i \(-0.299463\pi\)
0.589149 + 0.808024i \(0.299463\pi\)
\(264\) −6.44655e8 −2.15632
\(265\) − 4.71214e7i − 0.155546i
\(266\) 1.54888e8i 0.504582i
\(267\) 1.69021e8i 0.543441i
\(268\) 4.93797e8i 1.56703i
\(269\) −4.98930e7 −0.156281 −0.0781406 0.996942i \(-0.524898\pi\)
−0.0781406 + 0.996942i \(0.524898\pi\)
\(270\) 5.29976e7 0.163864
\(271\) − 3.59296e8i − 1.09663i −0.836272 0.548315i \(-0.815269\pi\)
0.836272 0.548315i \(-0.184731\pi\)
\(272\) −5.73482e8 −1.72794
\(273\) 0 0
\(274\) −1.07055e9 −3.14398
\(275\) − 1.05976e8i − 0.307286i
\(276\) −8.03392e8 −2.30009
\(277\) 1.25432e7 0.0354591 0.0177296 0.999843i \(-0.494356\pi\)
0.0177296 + 0.999843i \(0.494356\pi\)
\(278\) 4.08917e8i 1.14151i
\(279\) − 4.95901e8i − 1.36704i
\(280\) 6.34265e8i 1.72670i
\(281\) − 4.40328e8i − 1.18387i −0.805986 0.591935i \(-0.798364\pi\)
0.805986 0.591935i \(-0.201636\pi\)
\(282\) −1.96510e9 −5.21810
\(283\) 3.05223e8 0.800507 0.400254 0.916404i \(-0.368922\pi\)
0.400254 + 0.916404i \(0.368922\pi\)
\(284\) − 3.60743e8i − 0.934509i
\(285\) −9.03348e7 −0.231152
\(286\) 0 0
\(287\) 9.56521e7 0.238840
\(288\) − 1.66140e9i − 4.09826i
\(289\) −3.17777e8 −0.774426
\(290\) 3.32674e7 0.0800988
\(291\) 4.33310e8i 1.03080i
\(292\) − 1.53748e9i − 3.61384i
\(293\) − 4.61504e8i − 1.07186i −0.844262 0.535931i \(-0.819961\pi\)
0.844262 0.535931i \(-0.180039\pi\)
\(294\) 1.69120e8i 0.388132i
\(295\) −2.57889e8 −0.584865
\(296\) −2.06192e9 −4.62116
\(297\) 3.06832e7i 0.0679600i
\(298\) −9.93784e8 −2.17538
\(299\) 0 0
\(300\) 1.25274e9 2.67878
\(301\) 3.37149e8i 0.712588i
\(302\) −6.63337e8 −1.38583
\(303\) −9.35413e8 −1.93176
\(304\) 5.03046e8i 1.02695i
\(305\) − 2.62328e8i − 0.529415i
\(306\) 5.06210e8i 1.00996i
\(307\) − 5.05856e7i − 0.0997797i −0.998755 0.0498899i \(-0.984113\pi\)
0.998755 0.0498899i \(-0.0158870\pi\)
\(308\) −5.81838e8 −1.13468
\(309\) 6.82099e8 1.31520
\(310\) 7.06462e8i 1.34686i
\(311\) 3.43240e8 0.647049 0.323524 0.946220i \(-0.395132\pi\)
0.323524 + 0.946220i \(0.395132\pi\)
\(312\) 0 0
\(313\) 4.91976e8 0.906856 0.453428 0.891293i \(-0.350201\pi\)
0.453428 + 0.891293i \(0.350201\pi\)
\(314\) 1.57174e9i 2.86502i
\(315\) 3.20814e8 0.578317
\(316\) 2.57061e9 4.58280
\(317\) − 2.73731e8i − 0.482633i −0.970447 0.241316i \(-0.922421\pi\)
0.970447 0.241316i \(-0.0775791\pi\)
\(318\) 4.41451e8i 0.769817i
\(319\) 1.92603e7i 0.0332197i
\(320\) 1.16282e9i 1.98376i
\(321\) 4.49331e8 0.758226
\(322\) −6.26440e8 −1.04564
\(323\) − 8.11932e7i − 0.134064i
\(324\) 1.46937e9 2.40007
\(325\) 0 0
\(326\) −5.98456e8 −0.956689
\(327\) − 1.46181e9i − 2.31193i
\(328\) 5.42142e8 0.848310
\(329\) −1.11937e9 −1.73295
\(330\) − 4.64520e8i − 0.711550i
\(331\) 9.35569e7i 0.141800i 0.997483 + 0.0709002i \(0.0225872\pi\)
−0.997483 + 0.0709002i \(0.977413\pi\)
\(332\) 2.61570e8i 0.392288i
\(333\) 1.04293e9i 1.54775i
\(334\) 1.23255e8 0.181006
\(335\) −2.24563e8 −0.326348
\(336\) − 3.40491e9i − 4.89687i
\(337\) 5.83618e8 0.830661 0.415331 0.909671i \(-0.363666\pi\)
0.415331 + 0.909671i \(0.363666\pi\)
\(338\) 0 0
\(339\) 8.84072e8 1.23250
\(340\) − 5.26817e8i − 0.726915i
\(341\) −4.09009e8 −0.558590
\(342\) 4.44036e8 0.600243
\(343\) 7.89847e8i 1.05685i
\(344\) 1.91091e9i 2.53096i
\(345\) − 3.65357e8i − 0.479016i
\(346\) − 1.36807e9i − 1.77558i
\(347\) −5.57877e8 −0.716779 −0.358389 0.933572i \(-0.616674\pi\)
−0.358389 + 0.933572i \(0.616674\pi\)
\(348\) −2.27676e8 −0.289595
\(349\) 5.47638e8i 0.689611i 0.938674 + 0.344806i \(0.112055\pi\)
−0.938674 + 0.344806i \(0.887945\pi\)
\(350\) 9.76817e8 1.21780
\(351\) 0 0
\(352\) −1.37029e9 −1.67461
\(353\) − 2.36367e8i − 0.286006i −0.989722 0.143003i \(-0.954324\pi\)
0.989722 0.143003i \(-0.0456759\pi\)
\(354\) 2.41600e9 2.89458
\(355\) 1.64054e8 0.194620
\(356\) 8.64638e8i 1.01569i
\(357\) 5.49564e8i 0.639263i
\(358\) 2.91914e9i 3.36251i
\(359\) 9.18618e8i 1.04786i 0.851761 + 0.523931i \(0.175535\pi\)
−0.851761 + 0.523931i \(0.824465\pi\)
\(360\) 1.81833e9 2.05406
\(361\) 8.22651e8 0.920323
\(362\) − 1.53940e8i − 0.170557i
\(363\) −1.05292e9 −1.15537
\(364\) 0 0
\(365\) 6.99195e8 0.752616
\(366\) 2.45759e9i 2.62014i
\(367\) 7.36607e8 0.777866 0.388933 0.921266i \(-0.372844\pi\)
0.388933 + 0.921266i \(0.372844\pi\)
\(368\) −2.03456e9 −2.12815
\(369\) − 2.74218e8i − 0.284121i
\(370\) − 1.48576e9i − 1.52491i
\(371\) 2.51460e8i 0.255659i
\(372\) − 4.83490e9i − 4.86953i
\(373\) 1.03083e9 1.02851 0.514254 0.857638i \(-0.328069\pi\)
0.514254 + 0.857638i \(0.328069\pi\)
\(374\) 4.17512e8 0.412685
\(375\) 1.40597e9i 1.37678i
\(376\) −6.34440e9 −6.15507
\(377\) 0 0
\(378\) −2.82818e8 −0.269331
\(379\) − 1.51511e9i − 1.42958i −0.699341 0.714788i \(-0.746523\pi\)
0.699341 0.714788i \(-0.253477\pi\)
\(380\) −4.62112e8 −0.432021
\(381\) 5.04290e8 0.467135
\(382\) − 3.57603e9i − 3.28230i
\(383\) 3.96579e8i 0.360690i 0.983603 + 0.180345i \(0.0577214\pi\)
−0.983603 + 0.180345i \(0.942279\pi\)
\(384\) − 4.91858e9i − 4.43282i
\(385\) − 2.64601e8i − 0.236308i
\(386\) 1.72970e8 0.153079
\(387\) 9.66546e8 0.847684
\(388\) 2.21662e9i 1.92655i
\(389\) 2.09780e9 1.80693 0.903464 0.428664i \(-0.141016\pi\)
0.903464 + 0.428664i \(0.141016\pi\)
\(390\) 0 0
\(391\) 3.28384e8 0.277820
\(392\) 5.46011e8i 0.457826i
\(393\) −8.08401e8 −0.671820
\(394\) −1.09549e9 −0.902341
\(395\) 1.16903e9i 0.954411i
\(396\) 1.66803e9i 1.34980i
\(397\) − 6.19410e8i − 0.496834i −0.968653 0.248417i \(-0.920090\pi\)
0.968653 0.248417i \(-0.0799104\pi\)
\(398\) 1.49066e9i 1.18519i
\(399\) 4.82065e8 0.379928
\(400\) 3.17251e9 2.47853
\(401\) 7.25576e8i 0.561924i 0.959719 + 0.280962i \(0.0906534\pi\)
−0.959719 + 0.280962i \(0.909347\pi\)
\(402\) 2.10379e9 1.61514
\(403\) 0 0
\(404\) −4.78515e9 −3.61045
\(405\) 6.68224e8i 0.499838i
\(406\) −1.77529e8 −0.131652
\(407\) 8.60188e8 0.632431
\(408\) 3.11484e9i 2.27052i
\(409\) − 1.27241e9i − 0.919595i −0.888024 0.459797i \(-0.847922\pi\)
0.888024 0.459797i \(-0.152078\pi\)
\(410\) 3.90651e8i 0.279928i
\(411\) 3.33192e9i 2.36727i
\(412\) 3.48932e9 2.45810
\(413\) 1.37621e9 0.961300
\(414\) 1.79589e9i 1.24388i
\(415\) −1.18954e8 −0.0816977
\(416\) 0 0
\(417\) 1.27269e9 0.859502
\(418\) − 3.66232e8i − 0.245267i
\(419\) −2.62230e9 −1.74154 −0.870768 0.491693i \(-0.836378\pi\)
−0.870768 + 0.491693i \(0.836378\pi\)
\(420\) 3.12785e9 2.06003
\(421\) 1.20869e9i 0.789457i 0.918798 + 0.394729i \(0.129161\pi\)
−0.918798 + 0.394729i \(0.870839\pi\)
\(422\) 5.49474e9i 3.55921i
\(423\) 3.20902e9i 2.06149i
\(424\) 1.42524e9i 0.908045i
\(425\) −5.12054e8 −0.323560
\(426\) −1.53692e9 −0.963201
\(427\) 1.39990e9i 0.870159i
\(428\) 2.29858e9 1.41712
\(429\) 0 0
\(430\) −1.37694e9 −0.835174
\(431\) − 9.63979e8i − 0.579959i −0.957033 0.289979i \(-0.906352\pi\)
0.957033 0.289979i \(-0.0936484\pi\)
\(432\) −9.18539e8 −0.548156
\(433\) −1.85478e9 −1.09796 −0.548978 0.835837i \(-0.684983\pi\)
−0.548978 + 0.835837i \(0.684983\pi\)
\(434\) − 3.76999e9i − 2.21374i
\(435\) − 1.03540e8i − 0.0603108i
\(436\) − 7.47799e9i − 4.32098i
\(437\) − 2.88051e8i − 0.165114i
\(438\) −6.55031e9 −3.72480
\(439\) −3.20512e9 −1.80808 −0.904041 0.427445i \(-0.859414\pi\)
−0.904041 + 0.427445i \(0.859414\pi\)
\(440\) − 1.49972e9i − 0.839316i
\(441\) 2.76175e8 0.153338
\(442\) 0 0
\(443\) 1.69743e9 0.927639 0.463819 0.885930i \(-0.346479\pi\)
0.463819 + 0.885930i \(0.346479\pi\)
\(444\) 1.01683e10i 5.51324i
\(445\) −3.93210e8 −0.211526
\(446\) −2.70345e9 −1.44293
\(447\) 3.09301e9i 1.63796i
\(448\) − 6.20532e9i − 3.26055i
\(449\) − 3.01390e9i − 1.57133i −0.618655 0.785663i \(-0.712322\pi\)
0.618655 0.785663i \(-0.287678\pi\)
\(450\) − 2.80036e9i − 1.44867i
\(451\) −2.26169e8 −0.116096
\(452\) 4.52252e9 2.30354
\(453\) 2.06454e9i 1.04347i
\(454\) 2.85272e9 1.43075
\(455\) 0 0
\(456\) 2.73227e9 1.34942
\(457\) − 2.13694e9i − 1.04734i −0.851922 0.523668i \(-0.824563\pi\)
0.851922 0.523668i \(-0.175437\pi\)
\(458\) 2.32656e9 1.13158
\(459\) 1.48255e8 0.0715592
\(460\) − 1.86900e9i − 0.895277i
\(461\) − 1.75396e9i − 0.833809i −0.908950 0.416904i \(-0.863115\pi\)
0.908950 0.416904i \(-0.136885\pi\)
\(462\) 2.47888e9i 1.16952i
\(463\) − 2.44183e9i − 1.14336i −0.820477 0.571679i \(-0.806292\pi\)
0.820477 0.571679i \(-0.193708\pi\)
\(464\) −5.76581e8 −0.267946
\(465\) 2.19876e9 1.01413
\(466\) − 4.86102e9i − 2.22524i
\(467\) −3.10574e9 −1.41110 −0.705548 0.708662i \(-0.749299\pi\)
−0.705548 + 0.708662i \(0.749299\pi\)
\(468\) 0 0
\(469\) 1.19837e9 0.536394
\(470\) − 4.57159e9i − 2.03107i
\(471\) 4.89182e9 2.15723
\(472\) 7.80014e9 3.41433
\(473\) − 7.97188e8i − 0.346375i
\(474\) − 1.09519e10i − 4.72351i
\(475\) 4.49163e8i 0.192299i
\(476\) 2.81132e9i 1.19478i
\(477\) 7.20893e8 0.304128
\(478\) −3.66237e9 −1.53379
\(479\) − 3.89354e9i − 1.61871i −0.587317 0.809357i \(-0.699816\pi\)
0.587317 0.809357i \(-0.300184\pi\)
\(480\) 7.36641e9 3.04027
\(481\) 0 0
\(482\) −1.35679e9 −0.551884
\(483\) 1.94970e9i 0.787324i
\(484\) −5.38626e9 −2.15938
\(485\) −1.00805e9 −0.401222
\(486\) − 6.99466e9i − 2.76401i
\(487\) 1.80816e9i 0.709390i 0.934982 + 0.354695i \(0.115415\pi\)
−0.934982 + 0.354695i \(0.884585\pi\)
\(488\) 7.93441e9i 3.09062i
\(489\) 1.86260e9i 0.720344i
\(490\) −3.93439e8 −0.151075
\(491\) −7.46799e8 −0.284720 −0.142360 0.989815i \(-0.545469\pi\)
−0.142360 + 0.989815i \(0.545469\pi\)
\(492\) − 2.67355e9i − 1.01207i
\(493\) 9.30620e7 0.0349791
\(494\) 0 0
\(495\) −7.58564e8 −0.281109
\(496\) − 1.22442e10i − 4.50551i
\(497\) −8.75464e8 −0.319883
\(498\) 1.11440e9 0.404333
\(499\) − 8.17396e8i − 0.294497i −0.989100 0.147248i \(-0.952958\pi\)
0.989100 0.147248i \(-0.0470417\pi\)
\(500\) 7.19229e9i 2.57319i
\(501\) − 3.83613e8i − 0.136289i
\(502\) − 4.96432e9i − 1.75144i
\(503\) 1.31337e9 0.460149 0.230075 0.973173i \(-0.426103\pi\)
0.230075 + 0.973173i \(0.426103\pi\)
\(504\) −9.70337e9 −3.37610
\(505\) − 2.17613e9i − 0.751910i
\(506\) 1.48122e9 0.508267
\(507\) 0 0
\(508\) 2.57972e9 0.873072
\(509\) 2.35199e8i 0.0790539i 0.999219 + 0.0395270i \(0.0125851\pi\)
−0.999219 + 0.0395270i \(0.987415\pi\)
\(510\) −2.24447e9 −0.749234
\(511\) −3.73121e9 −1.23702
\(512\) − 4.60460e9i − 1.51617i
\(513\) − 1.30046e8i − 0.0425292i
\(514\) − 2.65364e8i − 0.0861927i
\(515\) 1.58683e9i 0.511923i
\(516\) 9.42356e9 3.01954
\(517\) 2.64674e9 0.842353
\(518\) 7.92866e9i 2.50637i
\(519\) −4.25790e9 −1.33693
\(520\) 0 0
\(521\) −3.47965e9 −1.07796 −0.538982 0.842318i \(-0.681191\pi\)
−0.538982 + 0.842318i \(0.681191\pi\)
\(522\) 5.08945e8i 0.156612i
\(523\) 3.91498e8 0.119667 0.0598335 0.998208i \(-0.480943\pi\)
0.0598335 + 0.998208i \(0.480943\pi\)
\(524\) −4.13542e9 −1.25563
\(525\) − 3.04020e9i − 0.916947i
\(526\) − 7.57611e9i − 2.26984i
\(527\) 1.97625e9i 0.588173i
\(528\) 8.05091e9i 2.38027i
\(529\) −2.23981e9 −0.657834
\(530\) −1.02699e9 −0.299639
\(531\) − 3.94534e9i − 1.14355i
\(532\) 2.46603e9 0.710081
\(533\) 0 0
\(534\) 3.68373e9 1.04687
\(535\) 1.04532e9i 0.295128i
\(536\) 6.79216e9 1.90516
\(537\) 9.08538e9 2.53182
\(538\) 1.08739e9i 0.301056i
\(539\) − 2.27784e8i − 0.0626559i
\(540\) − 8.43796e8i − 0.230600i
\(541\) − 5.01138e9i − 1.36071i −0.732881 0.680357i \(-0.761825\pi\)
0.732881 0.680357i \(-0.238175\pi\)
\(542\) −7.83066e9 −2.11252
\(543\) −4.79114e8 −0.128422
\(544\) 6.62096e9i 1.76329i
\(545\) 3.40075e9 0.899884
\(546\) 0 0
\(547\) 1.06296e9 0.277692 0.138846 0.990314i \(-0.455661\pi\)
0.138846 + 0.990314i \(0.455661\pi\)
\(548\) 1.70446e10i 4.42441i
\(549\) 4.01326e9 1.03513
\(550\) −2.30968e9 −0.591948
\(551\) − 8.16320e7i − 0.0207888i
\(552\) 1.10506e10i 2.79640i
\(553\) − 6.23844e9i − 1.56869i
\(554\) − 2.73371e8i − 0.0683076i
\(555\) −4.62421e9 −1.14819
\(556\) 6.51052e9 1.60640
\(557\) − 4.27007e9i − 1.04699i −0.852029 0.523495i \(-0.824628\pi\)
0.852029 0.523495i \(-0.175372\pi\)
\(558\) −1.08079e10 −2.63343
\(559\) 0 0
\(560\) 7.92115e9 1.90603
\(561\) − 1.29944e9i − 0.310733i
\(562\) −9.59671e9 −2.28058
\(563\) −4.92488e9 −1.16310 −0.581549 0.813511i \(-0.697553\pi\)
−0.581549 + 0.813511i \(0.697553\pi\)
\(564\) 3.12871e10i 7.34326i
\(565\) 2.05669e9i 0.479734i
\(566\) − 6.65217e9i − 1.54208i
\(567\) − 3.56593e9i − 0.821547i
\(568\) −4.96200e9 −1.13615
\(569\) −4.91765e9 −1.11909 −0.559545 0.828800i \(-0.689024\pi\)
−0.559545 + 0.828800i \(0.689024\pi\)
\(570\) 1.96880e9i 0.445286i
\(571\) −1.02161e9 −0.229647 −0.114823 0.993386i \(-0.536630\pi\)
−0.114823 + 0.993386i \(0.536630\pi\)
\(572\) 0 0
\(573\) −1.11298e10 −2.47143
\(574\) − 2.08468e9i − 0.460096i
\(575\) −1.81663e9 −0.398500
\(576\) −1.77896e10 −3.87870
\(577\) − 4.24754e9i − 0.920496i −0.887790 0.460248i \(-0.847761\pi\)
0.887790 0.460248i \(-0.152239\pi\)
\(578\) 6.92577e9i 1.49183i
\(579\) − 5.38344e8i − 0.115262i
\(580\) − 5.29664e8i − 0.112720i
\(581\) 6.34789e8 0.134280
\(582\) 9.44375e9 1.98570
\(583\) − 5.94578e8i − 0.124271i
\(584\) −2.11479e10 −4.39362
\(585\) 0 0
\(586\) −1.00582e10 −2.06481
\(587\) 5.10152e8i 0.104104i 0.998644 + 0.0520519i \(0.0165761\pi\)
−0.998644 + 0.0520519i \(0.983424\pi\)
\(588\) 2.69263e9 0.546205
\(589\) 1.73353e9 0.349564
\(590\) 5.62055e9i 1.12667i
\(591\) 3.40954e9i 0.679422i
\(592\) 2.57508e10i 5.10110i
\(593\) − 5.55218e9i − 1.09338i −0.837334 0.546691i \(-0.815887\pi\)
0.837334 0.546691i \(-0.184113\pi\)
\(594\) 6.68724e8 0.130916
\(595\) −1.27850e9 −0.248823
\(596\) 1.58224e10i 3.06134i
\(597\) 4.63944e9 0.892392
\(598\) 0 0
\(599\) 2.67091e9 0.507769 0.253884 0.967235i \(-0.418292\pi\)
0.253884 + 0.967235i \(0.418292\pi\)
\(600\) − 1.72314e10i − 3.25680i
\(601\) −2.33696e9 −0.439127 −0.219563 0.975598i \(-0.570463\pi\)
−0.219563 + 0.975598i \(0.570463\pi\)
\(602\) 7.34797e9 1.37271
\(603\) − 3.43550e9i − 0.638086i
\(604\) 1.05612e10i 1.95023i
\(605\) − 2.44950e9i − 0.449710i
\(606\) 2.03868e10i 3.72130i
\(607\) 8.57060e9 1.55543 0.777715 0.628617i \(-0.216379\pi\)
0.777715 + 0.628617i \(0.216379\pi\)
\(608\) 5.80776e9 1.04796
\(609\) 5.52533e8i 0.0991284i
\(610\) −5.71730e9 −1.01985
\(611\) 0 0
\(612\) 8.05956e9 1.42129
\(613\) 5.83442e9i 1.02303i 0.859276 + 0.511513i \(0.170915\pi\)
−0.859276 + 0.511513i \(0.829085\pi\)
\(614\) −1.10248e9 −0.192213
\(615\) 1.21584e9 0.210773
\(616\) 8.00315e9i 1.37952i
\(617\) − 5.65382e9i − 0.969045i −0.874779 0.484523i \(-0.838993\pi\)
0.874779 0.484523i \(-0.161007\pi\)
\(618\) − 1.48660e10i − 2.53358i
\(619\) 2.81131e9i 0.476422i 0.971213 + 0.238211i \(0.0765609\pi\)
−0.971213 + 0.238211i \(0.923439\pi\)
\(620\) 1.12479e10 1.89539
\(621\) 5.25969e8 0.0881331
\(622\) − 7.48073e9i − 1.24646i
\(623\) 2.09834e9 0.347670
\(624\) 0 0
\(625\) 8.87227e8 0.145363
\(626\) − 1.07223e10i − 1.74695i
\(627\) −1.13984e9 −0.184675
\(628\) 2.50244e10 4.03185
\(629\) − 4.15625e9i − 0.665924i
\(630\) − 6.99196e9i − 1.11406i
\(631\) 1.40442e9i 0.222533i 0.993791 + 0.111267i \(0.0354907\pi\)
−0.993791 + 0.111267i \(0.964509\pi\)
\(632\) − 3.53586e10i − 5.57166i
\(633\) 1.71016e10 2.67992
\(634\) −5.96582e9 −0.929732
\(635\) 1.17317e9i 0.181825i
\(636\) 7.02851e9 1.08334
\(637\) 0 0
\(638\) 4.19768e8 0.0639937
\(639\) 2.50980e9i 0.380528i
\(640\) 1.14425e10 1.72541
\(641\) 9.29598e9 1.39409 0.697047 0.717025i \(-0.254497\pi\)
0.697047 + 0.717025i \(0.254497\pi\)
\(642\) − 9.79292e9i − 1.46063i
\(643\) 2.01890e9i 0.299487i 0.988725 + 0.149743i \(0.0478447\pi\)
−0.988725 + 0.149743i \(0.952155\pi\)
\(644\) 9.97381e9i 1.47150i
\(645\) 4.28553e9i 0.628848i
\(646\) −1.76956e9 −0.258257
\(647\) −1.14928e10 −1.66825 −0.834125 0.551575i \(-0.814027\pi\)
−0.834125 + 0.551575i \(0.814027\pi\)
\(648\) − 2.02112e10i − 2.91796i
\(649\) −3.25404e9 −0.467269
\(650\) 0 0
\(651\) −1.17335e10 −1.66684
\(652\) 9.52826e9i 1.34632i
\(653\) 3.76318e9 0.528882 0.264441 0.964402i \(-0.414813\pi\)
0.264441 + 0.964402i \(0.414813\pi\)
\(654\) −3.18594e10 −4.45365
\(655\) − 1.88066e9i − 0.261496i
\(656\) − 6.77065e9i − 0.936412i
\(657\) 1.06967e10i 1.47154i
\(658\) 2.43960e10i 3.33831i
\(659\) 1.97143e9 0.268338 0.134169 0.990958i \(-0.457164\pi\)
0.134169 + 0.990958i \(0.457164\pi\)
\(660\) −7.39580e9 −1.00134
\(661\) 9.23391e8i 0.124360i 0.998065 + 0.0621800i \(0.0198053\pi\)
−0.998065 + 0.0621800i \(0.980195\pi\)
\(662\) 2.03902e9 0.273161
\(663\) 0 0
\(664\) 3.59789e9 0.476935
\(665\) 1.12147e9i 0.147881i
\(666\) 2.27301e10 2.98154
\(667\) 3.30158e8 0.0430806
\(668\) − 1.96239e9i − 0.254723i
\(669\) 8.41408e9i 1.08646i
\(670\) 4.89423e9i 0.628669i
\(671\) − 3.31006e9i − 0.422967i
\(672\) −3.93104e10 −4.99706
\(673\) −6.88575e8 −0.0870760 −0.0435380 0.999052i \(-0.513863\pi\)
−0.0435380 + 0.999052i \(0.513863\pi\)
\(674\) − 1.27196e10i − 1.60017i
\(675\) −8.20150e8 −0.102643
\(676\) 0 0
\(677\) 8.91263e9 1.10394 0.551970 0.833864i \(-0.313876\pi\)
0.551970 + 0.833864i \(0.313876\pi\)
\(678\) − 1.92679e10i − 2.37427i
\(679\) 5.37938e9 0.659459
\(680\) −7.24634e9 −0.883767
\(681\) − 8.87865e9i − 1.07729i
\(682\) 8.91414e9i 1.07605i
\(683\) − 1.01970e10i − 1.22461i −0.790621 0.612305i \(-0.790242\pi\)
0.790621 0.612305i \(-0.209758\pi\)
\(684\) − 7.06968e9i − 0.844701i
\(685\) −7.75135e9 −0.921425
\(686\) 1.72143e10 2.03589
\(687\) − 7.24107e9i − 0.852029i
\(688\) 2.38648e10 2.79382
\(689\) 0 0
\(690\) −7.96275e9 −0.922765
\(691\) 3.83838e9i 0.442563i 0.975210 + 0.221282i \(0.0710240\pi\)
−0.975210 + 0.221282i \(0.928976\pi\)
\(692\) −2.17815e10 −2.49872
\(693\) 4.04803e9 0.462037
\(694\) 1.21586e10i 1.38079i
\(695\) 2.96078e9i 0.334548i
\(696\) 3.13168e9i 0.352083i
\(697\) 1.09280e9i 0.122244i
\(698\) 1.19355e10 1.32845
\(699\) −1.51292e10 −1.67550
\(700\) − 1.55523e10i − 1.71377i
\(701\) 1.78976e9 0.196237 0.0981185 0.995175i \(-0.468718\pi\)
0.0981185 + 0.995175i \(0.468718\pi\)
\(702\) 0 0
\(703\) −3.64578e9 −0.395773
\(704\) 1.46725e10i 1.58489i
\(705\) −1.42284e10 −1.52930
\(706\) −5.15149e9 −0.550955
\(707\) 1.16128e10i 1.23586i
\(708\) − 3.84661e10i − 4.07344i
\(709\) − 5.29716e9i − 0.558189i −0.960264 0.279094i \(-0.909966\pi\)
0.960264 0.279094i \(-0.0900342\pi\)
\(710\) − 3.57547e9i − 0.374912i
\(711\) −1.78845e10 −1.86609
\(712\) 1.18931e10 1.23485
\(713\) 7.01120e9i 0.724401i
\(714\) 1.19774e10 1.23146
\(715\) 0 0
\(716\) 4.64768e10 4.73195
\(717\) 1.13986e10i 1.15487i
\(718\) 2.00208e10 2.01858
\(719\) 5.91972e9 0.593950 0.296975 0.954885i \(-0.404022\pi\)
0.296975 + 0.954885i \(0.404022\pi\)
\(720\) − 2.27085e10i − 2.26739i
\(721\) − 8.46800e9i − 0.841410i
\(722\) − 1.79292e10i − 1.77289i
\(723\) 4.22280e9i 0.415544i
\(724\) −2.45093e9 −0.240020
\(725\) −5.14821e8 −0.0501733
\(726\) 2.29478e10i 2.22568i
\(727\) 6.36378e9 0.614249 0.307125 0.951669i \(-0.400633\pi\)
0.307125 + 0.951669i \(0.400633\pi\)
\(728\) 0 0
\(729\) −1.25089e10 −1.19584
\(730\) − 1.52386e10i − 1.44982i
\(731\) −3.85185e9 −0.364719
\(732\) 3.91282e10 3.68724
\(733\) 2.70194e9i 0.253403i 0.991941 + 0.126702i \(0.0404391\pi\)
−0.991941 + 0.126702i \(0.959561\pi\)
\(734\) − 1.60540e10i − 1.49846i
\(735\) 1.22452e9i 0.113752i
\(736\) 2.34894e10i 2.17170i
\(737\) −2.83353e9 −0.260731
\(738\) −5.97642e9 −0.547323
\(739\) 8.27826e9i 0.754543i 0.926103 + 0.377271i \(0.123138\pi\)
−0.926103 + 0.377271i \(0.876862\pi\)
\(740\) −2.36554e10 −2.14595
\(741\) 0 0
\(742\) 5.48044e9 0.492495
\(743\) 3.31677e9i 0.296657i 0.988938 + 0.148329i \(0.0473893\pi\)
−0.988938 + 0.148329i \(0.952611\pi\)
\(744\) −6.65039e10 −5.92027
\(745\) −7.19553e9 −0.637553
\(746\) − 2.24665e10i − 1.98129i
\(747\) − 1.81983e9i − 0.159738i
\(748\) − 6.64737e9i − 0.580757i
\(749\) − 5.57827e9i − 0.485080i
\(750\) 3.06422e10 2.65220
\(751\) 6.94085e9 0.597961 0.298980 0.954259i \(-0.403353\pi\)
0.298980 + 0.954259i \(0.403353\pi\)
\(752\) 7.92333e10i 6.79431i
\(753\) −1.54507e10 −1.31876
\(754\) 0 0
\(755\) −4.80291e9 −0.406154
\(756\) 4.50286e9i 0.379020i
\(757\) −1.29261e10 −1.08301 −0.541503 0.840699i \(-0.682145\pi\)
−0.541503 + 0.840699i \(0.682145\pi\)
\(758\) −3.30210e10 −2.75390
\(759\) − 4.61007e9i − 0.382702i
\(760\) 6.35633e9i 0.525242i
\(761\) 2.15262e10i 1.77060i 0.465019 + 0.885301i \(0.346048\pi\)
−0.465019 + 0.885301i \(0.653952\pi\)
\(762\) − 1.09907e10i − 0.899878i
\(763\) −1.81479e10 −1.47907
\(764\) −5.69353e10 −4.61907
\(765\) 3.66523e9i 0.295996i
\(766\) 8.64322e9 0.694824
\(767\) 0 0
\(768\) −4.32182e10 −3.44273
\(769\) − 9.97009e9i − 0.790600i −0.918552 0.395300i \(-0.870641\pi\)
0.918552 0.395300i \(-0.129359\pi\)
\(770\) −5.76683e9 −0.455219
\(771\) −8.25905e8 −0.0648992
\(772\) − 2.75393e9i − 0.215423i
\(773\) 1.24324e9i 0.0968115i 0.998828 + 0.0484057i \(0.0154141\pi\)
−0.998828 + 0.0484057i \(0.984586\pi\)
\(774\) − 2.10653e10i − 1.63296i
\(775\) − 1.09327e10i − 0.843665i
\(776\) 3.04895e10 2.34226
\(777\) 2.46768e10 1.88719
\(778\) − 4.57204e10i − 3.48082i
\(779\) 9.58585e8 0.0726523
\(780\) 0 0
\(781\) 2.07003e9 0.155489
\(782\) − 7.15695e9i − 0.535185i
\(783\) 1.49056e8 0.0110964
\(784\) 6.81898e9 0.505374
\(785\) 1.13803e10i 0.839671i
\(786\) 1.76187e10i 1.29418i
\(787\) 5.42091e9i 0.396425i 0.980159 + 0.198212i \(0.0635136\pi\)
−0.980159 + 0.198212i \(0.936486\pi\)
\(788\) 1.74417e10i 1.26983i
\(789\) −2.35795e10 −1.70909
\(790\) 2.54783e10 1.83855
\(791\) − 1.09754e10i − 0.788503i
\(792\) 2.29436e10 1.64106
\(793\) 0 0
\(794\) −1.34997e10 −0.957090
\(795\) 3.19634e9i 0.225615i
\(796\) 2.37333e10 1.66787
\(797\) −1.30870e9 −0.0915667 −0.0457834 0.998951i \(-0.514578\pi\)
−0.0457834 + 0.998951i \(0.514578\pi\)
\(798\) − 1.05064e10i − 0.731883i
\(799\) − 1.27885e10i − 0.886965i
\(800\) − 3.66273e10i − 2.52924i
\(801\) − 6.01556e9i − 0.413583i
\(802\) 1.58135e10 1.08248
\(803\) 8.82244e9 0.601291
\(804\) − 3.34952e10i − 2.27293i
\(805\) −4.53577e9 −0.306454
\(806\) 0 0
\(807\) 3.38434e9 0.226682
\(808\) 6.58196e10i 4.38950i
\(809\) 2.37346e10 1.57602 0.788011 0.615661i \(-0.211111\pi\)
0.788011 + 0.615661i \(0.211111\pi\)
\(810\) 1.45636e10 0.962876
\(811\) 2.50297e10i 1.64772i 0.566795 + 0.823859i \(0.308183\pi\)
−0.566795 + 0.823859i \(0.691817\pi\)
\(812\) 2.82651e9i 0.185270i
\(813\) 2.43718e10i 1.59063i
\(814\) − 1.87473e10i − 1.21830i
\(815\) −4.33314e9 −0.280383
\(816\) 3.89004e10 2.50633
\(817\) 3.37876e9i 0.216761i
\(818\) −2.77315e10 −1.77148
\(819\) 0 0
\(820\) 6.21971e9 0.393933
\(821\) − 6.17223e9i − 0.389261i −0.980877 0.194631i \(-0.937649\pi\)
0.980877 0.194631i \(-0.0623508\pi\)
\(822\) 7.26174e10 4.56026
\(823\) −1.08887e10 −0.680891 −0.340445 0.940264i \(-0.610578\pi\)
−0.340445 + 0.940264i \(0.610578\pi\)
\(824\) − 4.79954e10i − 2.98851i
\(825\) 7.18855e9i 0.445710i
\(826\) − 2.99937e10i − 1.85182i
\(827\) 6.98237e9i 0.429273i 0.976694 + 0.214637i \(0.0688567\pi\)
−0.976694 + 0.214637i \(0.931143\pi\)
\(828\) 2.85931e10 1.75047
\(829\) 1.07848e10 0.657464 0.328732 0.944423i \(-0.393379\pi\)
0.328732 + 0.944423i \(0.393379\pi\)
\(830\) 2.59253e9i 0.157380i
\(831\) −8.50827e8 −0.0514325
\(832\) 0 0
\(833\) −1.10060e9 −0.0659741
\(834\) − 2.77376e10i − 1.65572i
\(835\) 8.92433e8 0.0530485
\(836\) −5.83093e9 −0.345156
\(837\) 3.16534e9i 0.186587i
\(838\) 5.71515e10i 3.35485i
\(839\) − 1.41196e10i − 0.825381i −0.910871 0.412691i \(-0.864589\pi\)
0.910871 0.412691i \(-0.135411\pi\)
\(840\) − 4.30234e10i − 2.50454i
\(841\) −1.71563e10 −0.994576
\(842\) 2.63428e10 1.52079
\(843\) 2.98683e10i 1.71717i
\(844\) 8.74839e10 5.00875
\(845\) 0 0
\(846\) 6.99389e10 3.97121
\(847\) 1.30716e10i 0.739155i
\(848\) 1.77994e10 1.00235
\(849\) −2.07039e10 −1.16111
\(850\) 1.11599e10i 0.623297i
\(851\) − 1.47453e10i − 0.820161i
\(852\) 2.44699e10i 1.35548i
\(853\) − 1.78844e10i − 0.986628i −0.869851 0.493314i \(-0.835785\pi\)
0.869851 0.493314i \(-0.164215\pi\)
\(854\) 3.05100e10 1.67625
\(855\) 3.21506e9 0.175917
\(856\) − 3.16168e10i − 1.72290i
\(857\) −1.24146e10 −0.673754 −0.336877 0.941549i \(-0.609371\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(858\) 0 0
\(859\) 4.99039e9 0.268632 0.134316 0.990939i \(-0.457116\pi\)
0.134316 + 0.990939i \(0.457116\pi\)
\(860\) 2.19229e10i 1.17531i
\(861\) −6.48827e9 −0.346432
\(862\) −2.10094e10 −1.11722
\(863\) − 2.82593e10i − 1.49666i −0.663326 0.748331i \(-0.730856\pi\)
0.663326 0.748331i \(-0.269144\pi\)
\(864\) 1.06047e10i 0.559372i
\(865\) − 9.90554e9i − 0.520381i
\(866\) 4.04239e10i 2.11508i
\(867\) 2.15554e10 1.12328
\(868\) −6.00235e10 −3.11532
\(869\) 1.47508e10i 0.762511i
\(870\) −2.25659e9 −0.116181
\(871\) 0 0
\(872\) −1.02859e11 −5.25335
\(873\) − 1.54217e10i − 0.784482i
\(874\) −6.27792e9 −0.318072
\(875\) 1.74545e10 0.880805
\(876\) 1.04290e11i 5.24178i
\(877\) 1.28656e10i 0.644069i 0.946728 + 0.322034i \(0.104367\pi\)
−0.946728 + 0.322034i \(0.895633\pi\)
\(878\) 6.98538e10i 3.48305i
\(879\) 3.13047e10i 1.55471i
\(880\) −1.87296e10 −0.926485
\(881\) −6.97330e9 −0.343576 −0.171788 0.985134i \(-0.554954\pi\)
−0.171788 + 0.985134i \(0.554954\pi\)
\(882\) − 6.01908e9i − 0.295386i
\(883\) 1.25092e10 0.611458 0.305729 0.952119i \(-0.401100\pi\)
0.305729 + 0.952119i \(0.401100\pi\)
\(884\) 0 0
\(885\) 1.74931e10 0.848332
\(886\) − 3.69946e10i − 1.78698i
\(887\) −7.62507e9 −0.366869 −0.183435 0.983032i \(-0.558722\pi\)
−0.183435 + 0.983032i \(0.558722\pi\)
\(888\) 1.39864e11 6.70288
\(889\) − 6.26057e9i − 0.298853i
\(890\) 8.56979e9i 0.407479i
\(891\) 8.43164e9i 0.399338i
\(892\) 4.30427e10i 2.03059i
\(893\) −1.12178e10 −0.527142
\(894\) 6.74103e10 3.15533
\(895\) 2.11361e10i 0.985473i
\(896\) −6.10623e10 −2.83593
\(897\) 0 0
\(898\) −6.56862e10 −3.02696
\(899\) 1.98693e9i 0.0912061i
\(900\) −4.45857e10 −2.03867
\(901\) −2.87288e9 −0.130852
\(902\) 4.92924e9i 0.223644i
\(903\) − 2.28695e10i − 1.03359i
\(904\) − 6.22070e10i − 2.80059i
\(905\) − 1.11461e9i − 0.0499863i
\(906\) 4.49954e10 2.01011
\(907\) −4.60454e9 −0.204909 −0.102454 0.994738i \(-0.532670\pi\)
−0.102454 + 0.994738i \(0.532670\pi\)
\(908\) − 4.54192e10i − 2.01344i
\(909\) 3.32918e10 1.47016
\(910\) 0 0
\(911\) 3.96389e9 0.173703 0.0868515 0.996221i \(-0.472319\pi\)
0.0868515 + 0.996221i \(0.472319\pi\)
\(912\) − 3.41226e10i − 1.48957i
\(913\) −1.50096e9 −0.0652711
\(914\) −4.65735e10 −2.01756
\(915\) 1.77942e10i 0.767902i
\(916\) − 3.70421e10i − 1.59243i
\(917\) 1.00360e10i 0.429801i
\(918\) − 3.23114e9i − 0.137850i
\(919\) −4.43139e9 −0.188337 −0.0941685 0.995556i \(-0.530019\pi\)
−0.0941685 + 0.995556i \(0.530019\pi\)
\(920\) −2.57080e10 −1.08846
\(921\) 3.43132e9i 0.144728i
\(922\) −3.82266e10 −1.60623
\(923\) 0 0
\(924\) 3.94672e10 1.64583
\(925\) 2.29925e10i 0.955190i
\(926\) −5.32184e10 −2.20254
\(927\) −2.42763e10 −1.00093
\(928\) 6.65674e9i 0.273428i
\(929\) 2.49862e10i 1.02246i 0.859445 + 0.511229i \(0.170810\pi\)
−0.859445 + 0.511229i \(0.829190\pi\)
\(930\) − 4.79207e10i − 1.95359i
\(931\) 9.65426e8i 0.0392099i
\(932\) −7.73942e10 −3.13150
\(933\) −2.32827e10 −0.938527
\(934\) 6.76880e10i 2.71830i
\(935\) 3.02301e9 0.120948
\(936\) 0 0
\(937\) 4.15588e10 1.65034 0.825171 0.564883i \(-0.191079\pi\)
0.825171 + 0.564883i \(0.191079\pi\)
\(938\) − 2.61177e10i − 1.03330i
\(939\) −3.33717e10 −1.31537
\(940\) −7.27860e10 −2.85825
\(941\) 9.79910e9i 0.383374i 0.981456 + 0.191687i \(0.0613958\pi\)
−0.981456 + 0.191687i \(0.938604\pi\)
\(942\) − 1.06615e11i − 4.15564i
\(943\) 3.87697e9i 0.150557i
\(944\) − 9.74137e10i − 3.76893i
\(945\) −2.04776e9 −0.0789345
\(946\) −1.73743e10 −0.667249
\(947\) 3.36446e10i 1.28733i 0.765307 + 0.643666i \(0.222587\pi\)
−0.765307 + 0.643666i \(0.777413\pi\)
\(948\) −1.74369e11 −6.64723
\(949\) 0 0
\(950\) 9.78925e9 0.370439
\(951\) 1.85677e10i 0.700046i
\(952\) 3.86696e10 1.45258
\(953\) 3.32521e10 1.24450 0.622249 0.782819i \(-0.286219\pi\)
0.622249 + 0.782819i \(0.286219\pi\)
\(954\) − 1.57115e10i − 0.585864i
\(955\) − 2.58923e10i − 0.961966i
\(956\) 5.83101e10i 2.15845i
\(957\) − 1.30646e9i − 0.0481843i
\(958\) −8.48575e10 −3.11825
\(959\) 4.13645e10 1.51448
\(960\) − 7.88765e10i − 2.87739i
\(961\) −1.46816e10 −0.533631
\(962\) 0 0
\(963\) −1.59919e10 −0.577043
\(964\) 2.16020e10i 0.776648i
\(965\) 1.25240e9 0.0448639
\(966\) 4.24927e10 1.51668
\(967\) − 4.41653e9i − 0.157068i −0.996911 0.0785341i \(-0.974976\pi\)
0.996911 0.0785341i \(-0.0250239\pi\)
\(968\) 7.40877e10i 2.62532i
\(969\) 5.50749e9i 0.194456i
\(970\) 2.19698e10i 0.772904i
\(971\) 3.91587e10 1.37265 0.686327 0.727293i \(-0.259222\pi\)
0.686327 + 0.727293i \(0.259222\pi\)
\(972\) −1.11365e11 −3.88969
\(973\) − 1.58000e10i − 0.549872i
\(974\) 3.94078e10 1.36655
\(975\) 0 0
\(976\) 9.90906e10 3.41160
\(977\) − 4.27799e10i − 1.46760i −0.679364 0.733801i \(-0.737744\pi\)
0.679364 0.733801i \(-0.262256\pi\)
\(978\) 4.05945e10 1.38765
\(979\) −4.96152e9 −0.168995
\(980\) 6.26411e9i 0.212602i
\(981\) 5.20267e10i 1.75948i
\(982\) 1.62761e10i 0.548478i
\(983\) 4.08692e10i 1.37233i 0.727445 + 0.686166i \(0.240708\pi\)
−0.727445 + 0.686166i \(0.759292\pi\)
\(984\) −3.67745e10 −1.23045
\(985\) −7.93192e9 −0.264455
\(986\) − 2.02823e9i − 0.0673828i
\(987\) 7.59288e10 2.51360
\(988\) 0 0
\(989\) −1.36653e10 −0.449193
\(990\) 1.65325e10i 0.541521i
\(991\) 4.28687e10 1.39921 0.699604 0.714531i \(-0.253360\pi\)
0.699604 + 0.714531i \(0.253360\pi\)
\(992\) −1.41362e11 −4.59770
\(993\) − 6.34614e9i − 0.205678i
\(994\) 1.90803e10i 0.616214i
\(995\) 1.07932e10i 0.347350i
\(996\) − 1.77428e10i − 0.569004i
\(997\) −4.86824e9 −0.155575 −0.0777874 0.996970i \(-0.524786\pi\)
−0.0777874 + 0.996970i \(0.524786\pi\)
\(998\) −1.78147e10 −0.567312
\(999\) − 6.65702e9i − 0.211252i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.e.168.1 16
13.5 odd 4 169.8.a.e.1.1 8
13.7 odd 12 13.8.c.a.3.1 16
13.8 odd 4 169.8.a.f.1.8 8
13.11 odd 12 13.8.c.a.9.1 yes 16
13.12 even 2 inner 169.8.b.e.168.16 16
39.11 even 12 117.8.g.d.100.8 16
39.20 even 12 117.8.g.d.55.8 16
52.7 even 12 208.8.i.d.81.2 16
52.11 even 12 208.8.i.d.113.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.c.a.3.1 16 13.7 odd 12
13.8.c.a.9.1 yes 16 13.11 odd 12
117.8.g.d.55.8 16 39.20 even 12
117.8.g.d.100.8 16 39.11 even 12
169.8.a.e.1.1 8 13.5 odd 4
169.8.a.f.1.8 8 13.8 odd 4
169.8.b.e.168.1 16 1.1 even 1 trivial
169.8.b.e.168.16 16 13.12 even 2 inner
208.8.i.d.81.2 16 52.7 even 12
208.8.i.d.113.2 16 52.11 even 12