Properties

Label 169.8.b.e.168.12
Level $169$
Weight $8$
Character 169.168
Analytic conductor $52.793$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,8,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 169.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(52.7930693068\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 1591 x^{14} + 998837 x^{12} + 319862003 x^{10} + 57017400035 x^{8} + 5819167911653 x^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{15}\cdot 13^{8} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 168.12
Root \(11.1141i\) of defining polynomial
Character \(\chi\) \(=\) 169.168
Dual form 169.8.b.e.168.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.1141i q^{2} -70.4106 q^{3} +25.7042 q^{4} +163.930i q^{5} -712.143i q^{6} +246.938i q^{7} +1554.59i q^{8} +2770.65 q^{9} -1658.01 q^{10} +2031.13i q^{11} -1809.85 q^{12} -2497.57 q^{14} -11542.4i q^{15} -12433.2 q^{16} +34969.8 q^{17} +28022.8i q^{18} -21478.2i q^{19} +4213.68i q^{20} -17387.1i q^{21} -20543.1 q^{22} +70293.3 q^{23} -109459. i q^{24} +51252.0 q^{25} -41095.4 q^{27} +6347.33i q^{28} +206196. q^{29} +116742. q^{30} +304382. i q^{31} +73236.2i q^{32} -143013. i q^{33} +353690. i q^{34} -40480.5 q^{35} +71217.3 q^{36} -122656. i q^{37} +217233. q^{38} -254843. q^{40} -235517. i q^{41} +175855. q^{42} -91350.2 q^{43} +52208.5i q^{44} +454193. i q^{45} +710956. i q^{46} -967683. i q^{47} +875427. q^{48} +762565. q^{49} +518370. i q^{50} -2.46225e6 q^{51} +28768.9 q^{53} -415645. i q^{54} -332963. q^{55} -383886. q^{56} +1.51229e6i q^{57} +2.08550e6i q^{58} +76497.0i q^{59} -296688. i q^{60} -593112. q^{61} -3.07857e6 q^{62} +684180. i q^{63} -2.33217e6 q^{64} +1.44645e6 q^{66} +1.83002e6i q^{67} +898870. q^{68} -4.94939e6 q^{69} -409426. i q^{70} +2.83878e6i q^{71} +4.30722e6i q^{72} +1.74309e6i q^{73} +1.24056e6 q^{74} -3.60868e6 q^{75} -552079. i q^{76} -501563. q^{77} +3.23539e6 q^{79} -2.03817e6i q^{80} -3.16587e6 q^{81} +2.38206e6 q^{82} +4.95198e6i q^{83} -446920. i q^{84} +5.73260e6i q^{85} -923929. i q^{86} -1.45184e7 q^{87} -3.15756e6 q^{88} -5.08510e6i q^{89} -4.59377e6 q^{90} +1.80683e6 q^{92} -2.14317e7i q^{93} +9.78728e6 q^{94} +3.52092e6 q^{95} -5.15660e6i q^{96} -1.50757e7i q^{97} +7.71269e6i q^{98} +5.62756e6i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 56 q^{3} - 1154 q^{4} + 11976 q^{9} - 13626 q^{10} + 15816 q^{12} + 14484 q^{14} + 122754 q^{16} - 45648 q^{17} + 147452 q^{22} - 144936 q^{23} - 58488 q^{25} + 358616 q^{27} + 443544 q^{29} - 516232 q^{30}+ \cdots - 32534160 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 10.1141i 0.893972i 0.894541 + 0.446986i \(0.147503\pi\)
−0.894541 + 0.446986i \(0.852497\pi\)
\(3\) −70.4106 −1.50561 −0.752807 0.658241i \(-0.771301\pi\)
−0.752807 + 0.658241i \(0.771301\pi\)
\(4\) 25.7042 0.200814
\(5\) 163.930i 0.586494i 0.956037 + 0.293247i \(0.0947358\pi\)
−0.956037 + 0.293247i \(0.905264\pi\)
\(6\) − 712.143i − 1.34598i
\(7\) 246.938i 0.272110i 0.990701 + 0.136055i \(0.0434424\pi\)
−0.990701 + 0.136055i \(0.956558\pi\)
\(8\) 1554.59i 1.07349i
\(9\) 2770.65 1.26687
\(10\) −1658.01 −0.524309
\(11\) 2031.13i 0.460112i 0.973177 + 0.230056i \(0.0738909\pi\)
−0.973177 + 0.230056i \(0.926109\pi\)
\(12\) −1809.85 −0.302348
\(13\) 0 0
\(14\) −2497.57 −0.243259
\(15\) − 11542.4i − 0.883033i
\(16\) −12433.2 −0.758860
\(17\) 34969.8 1.72632 0.863162 0.504927i \(-0.168481\pi\)
0.863162 + 0.504927i \(0.168481\pi\)
\(18\) 28022.8i 1.13255i
\(19\) − 21478.2i − 0.718389i −0.933263 0.359195i \(-0.883051\pi\)
0.933263 0.359195i \(-0.116949\pi\)
\(20\) 4213.68i 0.117776i
\(21\) − 17387.1i − 0.409693i
\(22\) −20543.1 −0.411327
\(23\) 70293.3 1.20467 0.602333 0.798245i \(-0.294238\pi\)
0.602333 + 0.798245i \(0.294238\pi\)
\(24\) − 109459.i − 1.61627i
\(25\) 51252.0 0.656025
\(26\) 0 0
\(27\) −41095.4 −0.401810
\(28\) 6347.33i 0.0546434i
\(29\) 206196. 1.56996 0.784979 0.619523i \(-0.212674\pi\)
0.784979 + 0.619523i \(0.212674\pi\)
\(30\) 116742. 0.789407
\(31\) 304382.i 1.83507i 0.397651 + 0.917537i \(0.369825\pi\)
−0.397651 + 0.917537i \(0.630175\pi\)
\(32\) 73236.2i 0.395094i
\(33\) − 143013.i − 0.692751i
\(34\) 353690.i 1.54329i
\(35\) −40480.5 −0.159591
\(36\) 71217.3 0.254406
\(37\) − 122656.i − 0.398090i −0.979990 0.199045i \(-0.936216\pi\)
0.979990 0.199045i \(-0.0637840\pi\)
\(38\) 217233. 0.642220
\(39\) 0 0
\(40\) −254843. −0.629598
\(41\) − 235517.i − 0.533678i −0.963741 0.266839i \(-0.914021\pi\)
0.963741 0.266839i \(-0.0859792\pi\)
\(42\) 175855. 0.366254
\(43\) −91350.2 −0.175214 −0.0876072 0.996155i \(-0.527922\pi\)
−0.0876072 + 0.996155i \(0.527922\pi\)
\(44\) 52208.5i 0.0923967i
\(45\) 454193.i 0.743014i
\(46\) 710956.i 1.07694i
\(47\) − 967683.i − 1.35954i −0.733427 0.679768i \(-0.762081\pi\)
0.733427 0.679768i \(-0.237919\pi\)
\(48\) 875427. 1.14255
\(49\) 762565. 0.925956
\(50\) 518370.i 0.586468i
\(51\) −2.46225e6 −2.59918
\(52\) 0 0
\(53\) 28768.9 0.0265435 0.0132717 0.999912i \(-0.495775\pi\)
0.0132717 + 0.999912i \(0.495775\pi\)
\(54\) − 415645.i − 0.359207i
\(55\) −332963. −0.269853
\(56\) −383886. −0.292109
\(57\) 1.51229e6i 1.08162i
\(58\) 2.08550e6i 1.40350i
\(59\) 76497.0i 0.0484912i 0.999706 + 0.0242456i \(0.00771836\pi\)
−0.999706 + 0.0242456i \(0.992282\pi\)
\(60\) − 296688.i − 0.177325i
\(61\) −593112. −0.334567 −0.167283 0.985909i \(-0.553499\pi\)
−0.167283 + 0.985909i \(0.553499\pi\)
\(62\) −3.07857e6 −1.64050
\(63\) 684180.i 0.344729i
\(64\) −2.33217e6 −1.11206
\(65\) 0 0
\(66\) 1.44645e6 0.619300
\(67\) 1.83002e6i 0.743353i 0.928362 + 0.371676i \(0.121217\pi\)
−0.928362 + 0.371676i \(0.878783\pi\)
\(68\) 898870. 0.346670
\(69\) −4.94939e6 −1.81376
\(70\) − 409426.i − 0.142670i
\(71\) 2.83878e6i 0.941298i 0.882321 + 0.470649i \(0.155980\pi\)
−0.882321 + 0.470649i \(0.844020\pi\)
\(72\) 4.30722e6i 1.35998i
\(73\) 1.74309e6i 0.524434i 0.965009 + 0.262217i \(0.0844536\pi\)
−0.965009 + 0.262217i \(0.915546\pi\)
\(74\) 1.24056e6 0.355881
\(75\) −3.60868e6 −0.987721
\(76\) − 552079.i − 0.144262i
\(77\) −501563. −0.125201
\(78\) 0 0
\(79\) 3.23539e6 0.738298 0.369149 0.929370i \(-0.379649\pi\)
0.369149 + 0.929370i \(0.379649\pi\)
\(80\) − 2.03817e6i − 0.445067i
\(81\) −3.16587e6 −0.661904
\(82\) 2.38206e6 0.477094
\(83\) 4.95198e6i 0.950617i 0.879819 + 0.475309i \(0.157664\pi\)
−0.879819 + 0.475309i \(0.842336\pi\)
\(84\) − 446920.i − 0.0822720i
\(85\) 5.73260e6i 1.01248i
\(86\) − 923929.i − 0.156637i
\(87\) −1.45184e7 −2.36375
\(88\) −3.15756e6 −0.493927
\(89\) − 5.08510e6i − 0.764600i −0.924038 0.382300i \(-0.875132\pi\)
0.924038 0.382300i \(-0.124868\pi\)
\(90\) −4.59377e6 −0.664234
\(91\) 0 0
\(92\) 1.80683e6 0.241913
\(93\) − 2.14317e7i − 2.76291i
\(94\) 9.78728e6 1.21539
\(95\) 3.52092e6 0.421331
\(96\) − 5.15660e6i − 0.594860i
\(97\) − 1.50757e7i − 1.67717i −0.544774 0.838583i \(-0.683385\pi\)
0.544774 0.838583i \(-0.316615\pi\)
\(98\) 7.71269e6i 0.827779i
\(99\) 5.62756e6i 0.582904i
\(100\) 1.31739e6 0.131739
\(101\) −1.16655e7 −1.12662 −0.563312 0.826244i \(-0.690473\pi\)
−0.563312 + 0.826244i \(0.690473\pi\)
\(102\) − 2.49035e7i − 2.32359i
\(103\) −6.15835e6 −0.555308 −0.277654 0.960681i \(-0.589557\pi\)
−0.277654 + 0.960681i \(0.589557\pi\)
\(104\) 0 0
\(105\) 2.85026e6 0.240282
\(106\) 290973.i 0.0237291i
\(107\) −1.61162e7 −1.27180 −0.635902 0.771770i \(-0.719372\pi\)
−0.635902 + 0.771770i \(0.719372\pi\)
\(108\) −1.05632e6 −0.0806889
\(109\) 2.48704e7i 1.83946i 0.392553 + 0.919729i \(0.371592\pi\)
−0.392553 + 0.919729i \(0.628408\pi\)
\(110\) − 3.36763e6i − 0.241241i
\(111\) 8.63625e6i 0.599370i
\(112\) − 3.07022e6i − 0.206494i
\(113\) −1.45555e6 −0.0948972 −0.0474486 0.998874i \(-0.515109\pi\)
−0.0474486 + 0.998874i \(0.515109\pi\)
\(114\) −1.52955e7 −0.966936
\(115\) 1.15232e7i 0.706529i
\(116\) 5.30010e6 0.315269
\(117\) 0 0
\(118\) −773702. −0.0433497
\(119\) 8.63538e6i 0.469750i
\(120\) 1.79437e7 0.947931
\(121\) 1.53617e7 0.788297
\(122\) − 5.99882e6i − 0.299093i
\(123\) 1.65829e7i 0.803514i
\(124\) 7.82389e6i 0.368508i
\(125\) 2.12088e7i 0.971248i
\(126\) −6.91989e6 −0.308178
\(127\) 1.39029e7 0.602271 0.301136 0.953581i \(-0.402634\pi\)
0.301136 + 0.953581i \(0.402634\pi\)
\(128\) − 1.42136e7i − 0.599059i
\(129\) 6.43202e6 0.263805
\(130\) 0 0
\(131\) 2.68014e7 1.04162 0.520809 0.853673i \(-0.325631\pi\)
0.520809 + 0.853673i \(0.325631\pi\)
\(132\) − 3.67603e6i − 0.139114i
\(133\) 5.30378e6 0.195481
\(134\) −1.85091e7 −0.664537
\(135\) − 6.73678e6i − 0.235659i
\(136\) 5.43636e7i 1.85320i
\(137\) − 7.18419e6i − 0.238702i −0.992852 0.119351i \(-0.961919\pi\)
0.992852 0.119351i \(-0.0380813\pi\)
\(138\) − 5.00589e7i − 1.62145i
\(139\) 1.83360e7 0.579098 0.289549 0.957163i \(-0.406495\pi\)
0.289549 + 0.957163i \(0.406495\pi\)
\(140\) −1.04052e6 −0.0320480
\(141\) 6.81351e7i 2.04694i
\(142\) −2.87118e7 −0.841494
\(143\) 0 0
\(144\) −3.44480e7 −0.961380
\(145\) 3.38018e7i 0.920770i
\(146\) −1.76299e7 −0.468829
\(147\) −5.36926e7 −1.39413
\(148\) − 3.15276e6i − 0.0799419i
\(149\) − 1.02171e7i − 0.253033i −0.991965 0.126516i \(-0.959620\pi\)
0.991965 0.126516i \(-0.0403796\pi\)
\(150\) − 3.64987e7i − 0.882995i
\(151\) 1.08524e7i 0.256512i 0.991741 + 0.128256i \(0.0409379\pi\)
−0.991741 + 0.128256i \(0.959062\pi\)
\(152\) 3.33897e7 0.771187
\(153\) 9.68893e7 2.18704
\(154\) − 5.07288e6i − 0.111926i
\(155\) −4.98974e7 −1.07626
\(156\) 0 0
\(157\) −3.58959e7 −0.740280 −0.370140 0.928976i \(-0.620690\pi\)
−0.370140 + 0.928976i \(0.620690\pi\)
\(158\) 3.27232e7i 0.660018i
\(159\) −2.02564e6 −0.0399642
\(160\) −1.20056e7 −0.231720
\(161\) 1.73581e7i 0.327802i
\(162\) − 3.20200e7i − 0.591724i
\(163\) − 5.18364e7i − 0.937515i −0.883327 0.468758i \(-0.844702\pi\)
0.883327 0.468758i \(-0.155298\pi\)
\(164\) − 6.05378e6i − 0.107170i
\(165\) 2.34441e7 0.406294
\(166\) −5.00850e7 −0.849825
\(167\) 6.97475e7i 1.15883i 0.815031 + 0.579417i \(0.196720\pi\)
−0.815031 + 0.579417i \(0.803280\pi\)
\(168\) 2.70297e7 0.439803
\(169\) 0 0
\(170\) −5.79804e7 −0.905127
\(171\) − 5.95086e7i − 0.910109i
\(172\) −2.34808e6 −0.0351855
\(173\) 4.34880e7 0.638570 0.319285 0.947659i \(-0.396557\pi\)
0.319285 + 0.947659i \(0.396557\pi\)
\(174\) − 1.46841e8i − 2.11313i
\(175\) 1.26561e7i 0.178511i
\(176\) − 2.52534e7i − 0.349160i
\(177\) − 5.38620e6i − 0.0730090i
\(178\) 5.14314e7 0.683531
\(179\) 3.08734e7 0.402345 0.201173 0.979556i \(-0.435525\pi\)
0.201173 + 0.979556i \(0.435525\pi\)
\(180\) 1.16747e7i 0.149207i
\(181\) 1.39507e8 1.74872 0.874360 0.485278i \(-0.161282\pi\)
0.874360 + 0.485278i \(0.161282\pi\)
\(182\) 0 0
\(183\) 4.17614e7 0.503728
\(184\) 1.09277e8i 1.29320i
\(185\) 2.01069e7 0.233477
\(186\) 2.16764e8 2.46997
\(187\) 7.10282e7i 0.794302i
\(188\) − 2.48735e7i − 0.273013i
\(189\) − 1.01480e7i − 0.109336i
\(190\) 3.56111e7i 0.376658i
\(191\) −4.12386e7 −0.428240 −0.214120 0.976807i \(-0.568688\pi\)
−0.214120 + 0.976807i \(0.568688\pi\)
\(192\) 1.64209e8 1.67434
\(193\) − 1.38800e8i − 1.38976i −0.719127 0.694879i \(-0.755458\pi\)
0.719127 0.694879i \(-0.244542\pi\)
\(194\) 1.52478e8 1.49934
\(195\) 0 0
\(196\) 1.96011e7 0.185945
\(197\) − 5.13435e6i − 0.0478468i −0.999714 0.0239234i \(-0.992384\pi\)
0.999714 0.0239234i \(-0.00761579\pi\)
\(198\) −5.69179e7 −0.521100
\(199\) −9.62755e7 −0.866024 −0.433012 0.901388i \(-0.642549\pi\)
−0.433012 + 0.901388i \(0.642549\pi\)
\(200\) 7.96756e7i 0.704239i
\(201\) − 1.28853e8i − 1.11920i
\(202\) − 1.17987e8i − 1.00717i
\(203\) 5.09177e7i 0.427201i
\(204\) −6.32900e7 −0.521951
\(205\) 3.86084e7 0.312999
\(206\) − 6.22864e7i − 0.496430i
\(207\) 1.94758e8 1.52616
\(208\) 0 0
\(209\) 4.36250e7 0.330539
\(210\) 2.88279e7i 0.214806i
\(211\) 1.07796e8 0.789976 0.394988 0.918686i \(-0.370749\pi\)
0.394988 + 0.918686i \(0.370749\pi\)
\(212\) 739480. 0.00533029
\(213\) − 1.99880e8i − 1.41723i
\(214\) − 1.63002e8i − 1.13696i
\(215\) − 1.49750e7i − 0.102762i
\(216\) − 6.38864e7i − 0.431340i
\(217\) −7.51635e7 −0.499342
\(218\) −2.51543e8 −1.64442
\(219\) − 1.22732e8i − 0.789595i
\(220\) −8.55853e6 −0.0541901
\(221\) 0 0
\(222\) −8.73483e7 −0.535820
\(223\) − 7.54899e6i − 0.0455850i −0.999740 0.0227925i \(-0.992744\pi\)
0.999740 0.0227925i \(-0.00725570\pi\)
\(224\) −1.80848e7 −0.107509
\(225\) 1.42001e8 0.831101
\(226\) − 1.47217e7i − 0.0848355i
\(227\) − 1.61179e8i − 0.914572i −0.889320 0.457286i \(-0.848822\pi\)
0.889320 0.457286i \(-0.151178\pi\)
\(228\) 3.88722e7i 0.217204i
\(229\) 4.77059e7i 0.262511i 0.991349 + 0.131256i \(0.0419009\pi\)
−0.991349 + 0.131256i \(0.958099\pi\)
\(230\) −1.16547e8 −0.631617
\(231\) 3.53153e7 0.188504
\(232\) 3.20550e8i 1.68534i
\(233\) −1.71967e8 −0.890632 −0.445316 0.895373i \(-0.646909\pi\)
−0.445316 + 0.895373i \(0.646909\pi\)
\(234\) 0 0
\(235\) 1.58632e8 0.797359
\(236\) 1.96629e6i 0.00973769i
\(237\) −2.27806e8 −1.11159
\(238\) −8.73394e7 −0.419944
\(239\) − 2.50000e8i − 1.18453i −0.805743 0.592266i \(-0.798234\pi\)
0.805743 0.592266i \(-0.201766\pi\)
\(240\) 1.43509e8i 0.670099i
\(241\) − 7.12253e7i − 0.327774i −0.986479 0.163887i \(-0.947597\pi\)
0.986479 0.163887i \(-0.0524032\pi\)
\(242\) 1.55370e8i 0.704716i
\(243\) 3.12786e8 1.39838
\(244\) −1.52455e7 −0.0671856
\(245\) 1.25007e8i 0.543067i
\(246\) −1.67722e8 −0.718319
\(247\) 0 0
\(248\) −4.73188e8 −1.96994
\(249\) − 3.48672e8i − 1.43126i
\(250\) −2.14508e8 −0.868269
\(251\) −3.80815e8 −1.52004 −0.760022 0.649898i \(-0.774812\pi\)
−0.760022 + 0.649898i \(0.774812\pi\)
\(252\) 1.75863e7i 0.0692264i
\(253\) 1.42775e8i 0.554281i
\(254\) 1.40616e8i 0.538414i
\(255\) − 4.03636e8i − 1.52440i
\(256\) −1.54759e8 −0.576521
\(257\) −4.85828e7 −0.178532 −0.0892662 0.996008i \(-0.528452\pi\)
−0.0892662 + 0.996008i \(0.528452\pi\)
\(258\) 6.50544e7i 0.235835i
\(259\) 3.02883e7 0.108324
\(260\) 0 0
\(261\) 5.71299e8 1.98894
\(262\) 2.71073e8i 0.931177i
\(263\) 2.49404e8 0.845393 0.422697 0.906271i \(-0.361084\pi\)
0.422697 + 0.906271i \(0.361084\pi\)
\(264\) 2.22326e8 0.743664
\(265\) 4.71609e6i 0.0155676i
\(266\) 5.36432e7i 0.174755i
\(267\) 3.58045e8i 1.15119i
\(268\) 4.70392e7i 0.149275i
\(269\) 4.73557e8 1.48333 0.741667 0.670768i \(-0.234036\pi\)
0.741667 + 0.670768i \(0.234036\pi\)
\(270\) 6.81367e7 0.210673
\(271\) − 1.44445e8i − 0.440871i −0.975402 0.220435i \(-0.929252\pi\)
0.975402 0.220435i \(-0.0707478\pi\)
\(272\) −4.34786e8 −1.31004
\(273\) 0 0
\(274\) 7.26619e7 0.213393
\(275\) 1.04099e8i 0.301845i
\(276\) −1.27220e8 −0.364228
\(277\) −4.52170e8 −1.27827 −0.639134 0.769095i \(-0.720707\pi\)
−0.639134 + 0.769095i \(0.720707\pi\)
\(278\) 1.85453e8i 0.517697i
\(279\) 8.43338e8i 2.32481i
\(280\) − 6.29304e7i − 0.171320i
\(281\) 1.80819e8i 0.486151i 0.970007 + 0.243075i \(0.0781563\pi\)
−0.970007 + 0.243075i \(0.921844\pi\)
\(282\) −6.89128e8 −1.82990
\(283\) −5.59469e8 −1.46732 −0.733658 0.679519i \(-0.762188\pi\)
−0.733658 + 0.679519i \(0.762188\pi\)
\(284\) 7.29684e7i 0.189026i
\(285\) −2.47910e8 −0.634362
\(286\) 0 0
\(287\) 5.81582e7 0.145219
\(288\) 2.02912e8i 0.500535i
\(289\) 8.12550e8 1.98019
\(290\) −3.41876e8 −0.823143
\(291\) 1.06149e9i 2.52517i
\(292\) 4.48048e7i 0.105314i
\(293\) − 3.79042e8i − 0.880340i −0.897914 0.440170i \(-0.854918\pi\)
0.897914 0.440170i \(-0.145082\pi\)
\(294\) − 5.43055e8i − 1.24632i
\(295\) −1.25402e7 −0.0284398
\(296\) 1.90679e8 0.427347
\(297\) − 8.34702e7i − 0.184877i
\(298\) 1.03337e8 0.226204
\(299\) 0 0
\(300\) −9.27581e7 −0.198348
\(301\) − 2.25578e7i − 0.0476776i
\(302\) −1.09763e8 −0.229315
\(303\) 8.21375e8 1.69626
\(304\) 2.67042e8i 0.545157i
\(305\) − 9.72289e7i − 0.196221i
\(306\) 9.79952e8i 1.95515i
\(307\) 1.00446e9i 1.98130i 0.136433 + 0.990649i \(0.456436\pi\)
−0.136433 + 0.990649i \(0.543564\pi\)
\(308\) −1.28923e7 −0.0251421
\(309\) 4.33613e8 0.836080
\(310\) − 5.04669e8i − 0.962146i
\(311\) −4.57084e8 −0.861658 −0.430829 0.902434i \(-0.641779\pi\)
−0.430829 + 0.902434i \(0.641779\pi\)
\(312\) 0 0
\(313\) −6.79628e8 −1.25275 −0.626377 0.779520i \(-0.715463\pi\)
−0.626377 + 0.779520i \(0.715463\pi\)
\(314\) − 3.63056e8i − 0.661790i
\(315\) −1.12158e8 −0.202182
\(316\) 8.31630e7 0.148260
\(317\) − 1.42499e8i − 0.251249i −0.992078 0.125625i \(-0.959907\pi\)
0.992078 0.125625i \(-0.0400935\pi\)
\(318\) − 2.04876e7i − 0.0357269i
\(319\) 4.18811e8i 0.722356i
\(320\) − 3.82312e8i − 0.652218i
\(321\) 1.13475e9 1.91485
\(322\) −1.75562e8 −0.293046
\(323\) − 7.51088e8i − 1.24017i
\(324\) −8.13759e7 −0.132919
\(325\) 0 0
\(326\) 5.24281e8 0.838113
\(327\) − 1.75114e9i − 2.76952i
\(328\) 3.66132e8 0.572900
\(329\) 2.38958e8 0.369943
\(330\) 2.37117e8i 0.363215i
\(331\) − 1.19105e8i − 0.180523i −0.995918 0.0902614i \(-0.971230\pi\)
0.995918 0.0902614i \(-0.0287703\pi\)
\(332\) 1.27287e8i 0.190897i
\(333\) − 3.39836e8i − 0.504330i
\(334\) −7.05436e8 −1.03596
\(335\) −2.99996e8 −0.435972
\(336\) 2.16176e8i 0.310900i
\(337\) 3.15254e8 0.448700 0.224350 0.974509i \(-0.427974\pi\)
0.224350 + 0.974509i \(0.427974\pi\)
\(338\) 0 0
\(339\) 1.02486e8 0.142879
\(340\) 1.47352e8i 0.203320i
\(341\) −6.18240e8 −0.844339
\(342\) 6.01879e8 0.813612
\(343\) 3.91670e8i 0.524072i
\(344\) − 1.42012e8i − 0.188092i
\(345\) − 8.11354e8i − 1.06376i
\(346\) 4.39844e8i 0.570864i
\(347\) −5.40640e8 −0.694632 −0.347316 0.937748i \(-0.612907\pi\)
−0.347316 + 0.937748i \(0.612907\pi\)
\(348\) −3.73183e8 −0.474674
\(349\) − 2.77488e8i − 0.349426i −0.984619 0.174713i \(-0.944100\pi\)
0.984619 0.174713i \(-0.0558998\pi\)
\(350\) −1.28005e8 −0.159584
\(351\) 0 0
\(352\) −1.48752e8 −0.181787
\(353\) − 6.59769e6i − 0.00798327i −0.999992 0.00399163i \(-0.998729\pi\)
0.999992 0.00399163i \(-0.00127058\pi\)
\(354\) 5.44768e7 0.0652680
\(355\) −4.65361e8 −0.552065
\(356\) − 1.30708e8i − 0.153542i
\(357\) − 6.08022e8i − 0.707263i
\(358\) 3.12258e8i 0.359686i
\(359\) 6.67727e8i 0.761672i 0.924643 + 0.380836i \(0.124364\pi\)
−0.924643 + 0.380836i \(0.875636\pi\)
\(360\) −7.06082e8 −0.797621
\(361\) 4.32559e8 0.483917
\(362\) 1.41099e9i 1.56331i
\(363\) −1.08163e9 −1.18687
\(364\) 0 0
\(365\) −2.85745e8 −0.307577
\(366\) 4.22381e8i 0.450319i
\(367\) 8.10048e8 0.855421 0.427710 0.903916i \(-0.359320\pi\)
0.427710 + 0.903916i \(0.359320\pi\)
\(368\) −8.73968e8 −0.914173
\(369\) − 6.52537e8i − 0.676103i
\(370\) 2.03364e8i 0.208722i
\(371\) 7.10413e6i 0.00722275i
\(372\) − 5.50885e8i − 0.554831i
\(373\) −6.52847e8 −0.651374 −0.325687 0.945478i \(-0.605596\pi\)
−0.325687 + 0.945478i \(0.605596\pi\)
\(374\) −7.18390e8 −0.710084
\(375\) − 1.49332e9i − 1.46233i
\(376\) 1.50435e9 1.45945
\(377\) 0 0
\(378\) 1.02639e8 0.0977438
\(379\) 1.48973e9i 1.40563i 0.711372 + 0.702816i \(0.248074\pi\)
−0.711372 + 0.702816i \(0.751926\pi\)
\(380\) 9.05022e7 0.0846090
\(381\) −9.78911e8 −0.906788
\(382\) − 4.17093e8i − 0.382834i
\(383\) 4.40576e7i 0.0400705i 0.999799 + 0.0200353i \(0.00637785\pi\)
−0.999799 + 0.0200353i \(0.993622\pi\)
\(384\) 1.00079e9i 0.901952i
\(385\) − 8.22212e7i − 0.0734296i
\(386\) 1.40384e9 1.24241
\(387\) −2.53100e8 −0.221975
\(388\) − 3.87508e8i − 0.336798i
\(389\) 742221. 0.000639307 0 0.000319654 1.00000i \(-0.499898\pi\)
0.000319654 1.00000i \(0.499898\pi\)
\(390\) 0 0
\(391\) 2.45814e9 2.07964
\(392\) 1.18547e9i 0.994008i
\(393\) −1.88710e9 −1.56827
\(394\) 5.19295e7 0.0427737
\(395\) 5.30377e8i 0.433007i
\(396\) 1.44652e8i 0.117055i
\(397\) − 1.29390e9i − 1.03785i −0.854819 0.518926i \(-0.826332\pi\)
0.854819 0.518926i \(-0.173668\pi\)
\(398\) − 9.73744e8i − 0.774201i
\(399\) −3.73442e8 −0.294319
\(400\) −6.37224e8 −0.497831
\(401\) 2.27693e9i 1.76338i 0.471834 + 0.881688i \(0.343592\pi\)
−0.471834 + 0.881688i \(0.656408\pi\)
\(402\) 1.30324e9 1.00054
\(403\) 0 0
\(404\) −2.99852e8 −0.226241
\(405\) − 5.18980e8i − 0.388202i
\(406\) −5.14989e8 −0.381906
\(407\) 2.49129e8 0.183166
\(408\) − 3.82777e9i − 2.79020i
\(409\) − 2.43493e8i − 0.175976i −0.996122 0.0879882i \(-0.971956\pi\)
0.996122 0.0879882i \(-0.0280438\pi\)
\(410\) 3.90490e8i 0.279812i
\(411\) 5.05843e8i 0.359393i
\(412\) −1.58295e8 −0.111513
\(413\) −1.88900e7 −0.0131949
\(414\) 1.96981e9i 1.36434i
\(415\) −8.11778e8 −0.557531
\(416\) 0 0
\(417\) −1.29105e9 −0.871898
\(418\) 4.41229e8i 0.295493i
\(419\) −8.61060e8 −0.571853 −0.285926 0.958252i \(-0.592301\pi\)
−0.285926 + 0.958252i \(0.592301\pi\)
\(420\) 7.32635e7 0.0482520
\(421\) − 3.23521e8i − 0.211308i −0.994403 0.105654i \(-0.966306\pi\)
0.994403 0.105654i \(-0.0336936\pi\)
\(422\) 1.09026e9i 0.706217i
\(423\) − 2.68111e9i − 1.72236i
\(424\) 4.47237e7i 0.0284943i
\(425\) 1.79227e9 1.13251
\(426\) 2.02161e9 1.26697
\(427\) − 1.46462e8i − 0.0910390i
\(428\) −4.14254e8 −0.255396
\(429\) 0 0
\(430\) 1.51460e8 0.0918665
\(431\) − 2.22285e9i − 1.33733i −0.743562 0.668667i \(-0.766865\pi\)
0.743562 0.668667i \(-0.233135\pi\)
\(432\) 5.10946e8 0.304917
\(433\) 2.05441e9 1.21613 0.608066 0.793887i \(-0.291946\pi\)
0.608066 + 0.793887i \(0.291946\pi\)
\(434\) − 7.60215e8i − 0.446398i
\(435\) − 2.38000e9i − 1.38632i
\(436\) 6.39273e8i 0.369389i
\(437\) − 1.50977e9i − 0.865419i
\(438\) 1.24133e9 0.705876
\(439\) 2.35136e8 0.132646 0.0663229 0.997798i \(-0.478873\pi\)
0.0663229 + 0.997798i \(0.478873\pi\)
\(440\) − 5.17619e8i − 0.289685i
\(441\) 2.11280e9 1.17307
\(442\) 0 0
\(443\) −1.35426e9 −0.740100 −0.370050 0.929012i \(-0.620659\pi\)
−0.370050 + 0.929012i \(0.620659\pi\)
\(444\) 2.21988e8i 0.120362i
\(445\) 8.33600e8 0.448433
\(446\) 7.63516e7 0.0407517
\(447\) 7.19394e8i 0.380970i
\(448\) − 5.75900e8i − 0.302604i
\(449\) − 1.91377e9i − 0.997764i −0.866670 0.498882i \(-0.833744\pi\)
0.866670 0.498882i \(-0.166256\pi\)
\(450\) 1.43622e9i 0.742981i
\(451\) 4.78366e8 0.245552
\(452\) −3.74138e7 −0.0190567
\(453\) − 7.64126e8i − 0.386208i
\(454\) 1.63019e9 0.817602
\(455\) 0 0
\(456\) −2.35099e9 −1.16111
\(457\) 3.29110e9i 1.61300i 0.591234 + 0.806500i \(0.298641\pi\)
−0.591234 + 0.806500i \(0.701359\pi\)
\(458\) −4.82504e8 −0.234678
\(459\) −1.43710e9 −0.693654
\(460\) 2.96194e8i 0.141881i
\(461\) − 1.74075e9i − 0.827530i −0.910384 0.413765i \(-0.864214\pi\)
0.910384 0.413765i \(-0.135786\pi\)
\(462\) 3.57184e8i 0.168518i
\(463\) 5.88177e7i 0.0275407i 0.999905 + 0.0137703i \(0.00438337\pi\)
−0.999905 + 0.0137703i \(0.995617\pi\)
\(464\) −2.56367e9 −1.19138
\(465\) 3.51331e9 1.62043
\(466\) − 1.73929e9i − 0.796200i
\(467\) −1.47573e9 −0.670499 −0.335249 0.942129i \(-0.608821\pi\)
−0.335249 + 0.942129i \(0.608821\pi\)
\(468\) 0 0
\(469\) −4.51902e8 −0.202274
\(470\) 1.60443e9i 0.712817i
\(471\) 2.52745e9 1.11458
\(472\) −1.18921e8 −0.0520550
\(473\) − 1.85544e8i − 0.0806182i
\(474\) − 2.30406e9i − 0.993732i
\(475\) − 1.10080e9i − 0.471281i
\(476\) 2.21965e8i 0.0943323i
\(477\) 7.97087e7 0.0336272
\(478\) 2.52853e9 1.05894
\(479\) 1.15115e9i 0.478581i 0.970948 + 0.239291i \(0.0769149\pi\)
−0.970948 + 0.239291i \(0.923085\pi\)
\(480\) 8.45322e8 0.348881
\(481\) 0 0
\(482\) 7.20382e8 0.293021
\(483\) − 1.22219e9i − 0.493543i
\(484\) 3.94859e8 0.158301
\(485\) 2.47136e9 0.983647
\(486\) 3.16356e9i 1.25011i
\(487\) 4.88210e9i 1.91538i 0.287796 + 0.957692i \(0.407077\pi\)
−0.287796 + 0.957692i \(0.592923\pi\)
\(488\) − 9.22044e8i − 0.359155i
\(489\) 3.64983e9i 1.41154i
\(490\) −1.26434e9 −0.485487
\(491\) 1.20367e9 0.458903 0.229452 0.973320i \(-0.426307\pi\)
0.229452 + 0.973320i \(0.426307\pi\)
\(492\) 4.26250e8i 0.161357i
\(493\) 7.21065e9 2.71025
\(494\) 0 0
\(495\) −9.22525e8 −0.341869
\(496\) − 3.78443e9i − 1.39256i
\(497\) −7.01002e8 −0.256137
\(498\) 3.52652e9 1.27951
\(499\) 3.64043e9i 1.31160i 0.754935 + 0.655799i \(0.227668\pi\)
−0.754935 + 0.655799i \(0.772332\pi\)
\(500\) 5.45153e8i 0.195040i
\(501\) − 4.91096e9i − 1.74476i
\(502\) − 3.85162e9i − 1.35888i
\(503\) 3.30636e9 1.15841 0.579206 0.815181i \(-0.303363\pi\)
0.579206 + 0.815181i \(0.303363\pi\)
\(504\) −1.06362e9 −0.370065
\(505\) − 1.91233e9i − 0.660758i
\(506\) −1.44404e9 −0.495512
\(507\) 0 0
\(508\) 3.57362e8 0.120944
\(509\) 1.10135e9i 0.370179i 0.982722 + 0.185089i \(0.0592575\pi\)
−0.982722 + 0.185089i \(0.940743\pi\)
\(510\) 4.08243e9 1.36277
\(511\) −4.30436e8 −0.142704
\(512\) − 3.38459e9i − 1.11445i
\(513\) 8.82655e8i 0.288656i
\(514\) − 4.91374e8i − 0.159603i
\(515\) − 1.00954e9i − 0.325685i
\(516\) 1.65330e8 0.0529757
\(517\) 1.96549e9 0.625538
\(518\) 3.06340e8i 0.0968389i
\(519\) −3.06202e9 −0.961440
\(520\) 0 0
\(521\) 4.27358e9 1.32391 0.661957 0.749541i \(-0.269726\pi\)
0.661957 + 0.749541i \(0.269726\pi\)
\(522\) 5.77819e9i 1.77806i
\(523\) −3.01897e9 −0.922790 −0.461395 0.887195i \(-0.652651\pi\)
−0.461395 + 0.887195i \(0.652651\pi\)
\(524\) 6.88908e8 0.209171
\(525\) − 8.91120e8i − 0.268769i
\(526\) 2.52251e9i 0.755758i
\(527\) 1.06442e10i 3.16793i
\(528\) 1.77810e9i 0.525701i
\(529\) 1.53632e9 0.451220
\(530\) −4.76992e7 −0.0139170
\(531\) 2.11947e8i 0.0614322i
\(532\) 1.36329e8 0.0392553
\(533\) 0 0
\(534\) −3.62132e9 −1.02913
\(535\) − 2.64193e9i − 0.745905i
\(536\) −2.84493e9 −0.797985
\(537\) −2.17382e9 −0.605777
\(538\) 4.78962e9i 1.32606i
\(539\) 1.54887e9i 0.426043i
\(540\) − 1.73163e8i − 0.0473235i
\(541\) 2.08205e9i 0.565329i 0.959219 + 0.282664i \(0.0912183\pi\)
−0.959219 + 0.282664i \(0.908782\pi\)
\(542\) 1.46094e9 0.394126
\(543\) −9.82275e9 −2.63290
\(544\) 2.56106e9i 0.682061i
\(545\) −4.07700e9 −1.07883
\(546\) 0 0
\(547\) −1.26947e9 −0.331641 −0.165820 0.986156i \(-0.553027\pi\)
−0.165820 + 0.986156i \(0.553027\pi\)
\(548\) − 1.84663e8i − 0.0479346i
\(549\) −1.64331e9 −0.423854
\(550\) −1.05288e9 −0.269841
\(551\) − 4.42872e9i − 1.12784i
\(552\) − 7.69426e9i − 1.94706i
\(553\) 7.98940e8i 0.200898i
\(554\) − 4.57331e9i − 1.14274i
\(555\) −1.41574e9 −0.351527
\(556\) 4.71311e8 0.116291
\(557\) 2.92572e9i 0.717365i 0.933460 + 0.358682i \(0.116774\pi\)
−0.933460 + 0.358682i \(0.883226\pi\)
\(558\) −8.52964e9 −2.07831
\(559\) 0 0
\(560\) 5.03301e8 0.121107
\(561\) − 5.00114e9i − 1.19591i
\(562\) −1.82882e9 −0.434605
\(563\) −8.16638e9 −1.92864 −0.964318 0.264746i \(-0.914712\pi\)
−0.964318 + 0.264746i \(0.914712\pi\)
\(564\) 1.75136e9i 0.411053i
\(565\) − 2.38609e8i − 0.0556566i
\(566\) − 5.65855e9i − 1.31174i
\(567\) − 7.81772e8i − 0.180111i
\(568\) −4.41312e9 −1.01048
\(569\) 2.02054e9 0.459805 0.229903 0.973214i \(-0.426159\pi\)
0.229903 + 0.973214i \(0.426159\pi\)
\(570\) − 2.50740e9i − 0.567102i
\(571\) −4.65062e9 −1.04540 −0.522702 0.852515i \(-0.675076\pi\)
−0.522702 + 0.852515i \(0.675076\pi\)
\(572\) 0 0
\(573\) 2.90363e9 0.644764
\(574\) 5.88220e8i 0.129822i
\(575\) 3.60267e9 0.790291
\(576\) −6.46163e9 −1.40884
\(577\) − 5.94249e9i − 1.28781i −0.765104 0.643907i \(-0.777312\pi\)
0.765104 0.643907i \(-0.222688\pi\)
\(578\) 8.21825e9i 1.77024i
\(579\) 9.77300e9i 2.09244i
\(580\) 8.68846e8i 0.184903i
\(581\) −1.22283e9 −0.258673
\(582\) −1.07360e10 −2.25743
\(583\) 5.84334e7i 0.0122130i
\(584\) −2.70979e9 −0.562977
\(585\) 0 0
\(586\) 3.83368e9 0.787000
\(587\) 7.96514e8i 0.162540i 0.996692 + 0.0812700i \(0.0258976\pi\)
−0.996692 + 0.0812700i \(0.974102\pi\)
\(588\) −1.38012e9 −0.279961
\(589\) 6.53758e9 1.31830
\(590\) − 1.26833e8i − 0.0254244i
\(591\) 3.61512e8i 0.0720389i
\(592\) 1.52500e9i 0.302095i
\(593\) − 6.11768e9i − 1.20475i −0.798215 0.602373i \(-0.794222\pi\)
0.798215 0.602373i \(-0.205778\pi\)
\(594\) 8.44229e8 0.165275
\(595\) −1.41560e9 −0.275506
\(596\) − 2.62623e8i − 0.0508125i
\(597\) 6.77881e9 1.30390
\(598\) 0 0
\(599\) 4.08018e9 0.775685 0.387843 0.921726i \(-0.373220\pi\)
0.387843 + 0.921726i \(0.373220\pi\)
\(600\) − 5.61000e9i − 1.06031i
\(601\) 1.01331e10 1.90407 0.952035 0.305990i \(-0.0989875\pi\)
0.952035 + 0.305990i \(0.0989875\pi\)
\(602\) 2.28153e8 0.0426225
\(603\) 5.07036e9i 0.941734i
\(604\) 2.78953e8i 0.0515111i
\(605\) 2.51824e9i 0.462331i
\(606\) 8.30751e9i 1.51641i
\(607\) −4.52529e9 −0.821269 −0.410635 0.911800i \(-0.634693\pi\)
−0.410635 + 0.911800i \(0.634693\pi\)
\(608\) 1.57298e9 0.283832
\(609\) − 3.58515e9i − 0.643200i
\(610\) 9.83387e8 0.175416
\(611\) 0 0
\(612\) 2.49046e9 0.439187
\(613\) − 8.24422e7i − 0.0144557i −0.999974 0.00722783i \(-0.997699\pi\)
0.999974 0.00722783i \(-0.00230071\pi\)
\(614\) −1.01593e10 −1.77123
\(615\) −2.71844e9 −0.471256
\(616\) − 7.79722e8i − 0.134403i
\(617\) 1.06580e9i 0.182674i 0.995820 + 0.0913372i \(0.0291141\pi\)
−0.995820 + 0.0913372i \(0.970886\pi\)
\(618\) 4.38562e9i 0.747432i
\(619\) − 7.35459e8i − 0.124635i −0.998056 0.0623177i \(-0.980151\pi\)
0.998056 0.0623177i \(-0.0198492\pi\)
\(620\) −1.28257e9 −0.216128
\(621\) −2.88873e9 −0.484046
\(622\) − 4.62301e9i − 0.770298i
\(623\) 1.25570e9 0.208055
\(624\) 0 0
\(625\) 5.27307e8 0.0863940
\(626\) − 6.87385e9i − 1.11993i
\(627\) −3.07166e9 −0.497665
\(628\) −9.22674e8 −0.148658
\(629\) − 4.28924e9i − 0.687232i
\(630\) − 1.13438e9i − 0.180745i
\(631\) 4.15983e8i 0.0659132i 0.999457 + 0.0329566i \(0.0104923\pi\)
−0.999457 + 0.0329566i \(0.989508\pi\)
\(632\) 5.02969e9i 0.792559i
\(633\) −7.58998e9 −1.18940
\(634\) 1.44126e9 0.224610
\(635\) 2.27910e9i 0.353228i
\(636\) −5.20673e7 −0.00802537
\(637\) 0 0
\(638\) −4.23592e9 −0.645766
\(639\) 7.86527e9i 1.19251i
\(640\) 2.33004e9 0.351345
\(641\) −5.62314e9 −0.843288 −0.421644 0.906762i \(-0.638547\pi\)
−0.421644 + 0.906762i \(0.638547\pi\)
\(642\) 1.14771e10i 1.71182i
\(643\) − 8.95418e9i − 1.32827i −0.747611 0.664137i \(-0.768799\pi\)
0.747611 0.664137i \(-0.231201\pi\)
\(644\) 4.46175e8i 0.0658271i
\(645\) 1.05440e9i 0.154720i
\(646\) 7.59661e9 1.10868
\(647\) −8.72793e9 −1.26691 −0.633456 0.773779i \(-0.718364\pi\)
−0.633456 + 0.773779i \(0.718364\pi\)
\(648\) − 4.92161e9i − 0.710550i
\(649\) −1.55375e8 −0.0223113
\(650\) 0 0
\(651\) 5.29231e9 0.751816
\(652\) − 1.33241e9i − 0.188266i
\(653\) 4.03484e9 0.567062 0.283531 0.958963i \(-0.408494\pi\)
0.283531 + 0.958963i \(0.408494\pi\)
\(654\) 1.77113e10 2.47587
\(655\) 4.39355e9i 0.610902i
\(656\) 2.92823e9i 0.404987i
\(657\) 4.82951e9i 0.664392i
\(658\) 2.41685e9i 0.330719i
\(659\) −4.47266e9 −0.608789 −0.304394 0.952546i \(-0.598454\pi\)
−0.304394 + 0.952546i \(0.598454\pi\)
\(660\) 6.02612e8 0.0815894
\(661\) − 9.07867e9i − 1.22269i −0.791363 0.611346i \(-0.790628\pi\)
0.791363 0.611346i \(-0.209372\pi\)
\(662\) 1.20465e9 0.161382
\(663\) 0 0
\(664\) −7.69828e9 −1.02048
\(665\) 8.69448e8i 0.114648i
\(666\) 3.43715e9 0.450857
\(667\) 1.44942e10 1.89127
\(668\) 1.79280e9i 0.232710i
\(669\) 5.31529e8i 0.0686334i
\(670\) − 3.03420e9i − 0.389747i
\(671\) − 1.20469e9i − 0.153938i
\(672\) 1.27336e9 0.161867
\(673\) 8.27137e9 1.04598 0.522991 0.852338i \(-0.324816\pi\)
0.522991 + 0.852338i \(0.324816\pi\)
\(674\) 3.18852e9i 0.401125i
\(675\) −2.10622e9 −0.263597
\(676\) 0 0
\(677\) −7.18333e9 −0.889744 −0.444872 0.895594i \(-0.646751\pi\)
−0.444872 + 0.895594i \(0.646751\pi\)
\(678\) 1.03656e9i 0.127730i
\(679\) 3.72276e9 0.456374
\(680\) −8.91182e9 −1.08689
\(681\) 1.13487e10i 1.37699i
\(682\) − 6.25296e9i − 0.754815i
\(683\) − 4.19859e9i − 0.504233i −0.967697 0.252117i \(-0.918873\pi\)
0.967697 0.252117i \(-0.0811267\pi\)
\(684\) − 1.52962e9i − 0.182762i
\(685\) 1.17770e9 0.139997
\(686\) −3.96141e9 −0.468506
\(687\) − 3.35900e9i − 0.395241i
\(688\) 1.13577e9 0.132963
\(689\) 0 0
\(690\) 8.20615e9 0.950972
\(691\) − 1.39043e10i − 1.60316i −0.597889 0.801579i \(-0.703994\pi\)
0.597889 0.801579i \(-0.296006\pi\)
\(692\) 1.11782e9 0.128234
\(693\) −1.38966e9 −0.158614
\(694\) − 5.46811e9i − 0.620982i
\(695\) 3.00581e9i 0.339637i
\(696\) − 2.25701e10i − 2.53747i
\(697\) − 8.23600e9i − 0.921302i
\(698\) 2.80656e9 0.312377
\(699\) 1.21083e10 1.34095
\(700\) 3.25313e8i 0.0358475i
\(701\) −9.20624e9 −1.00941 −0.504707 0.863291i \(-0.668399\pi\)
−0.504707 + 0.863291i \(0.668399\pi\)
\(702\) 0 0
\(703\) −2.63442e9 −0.285984
\(704\) − 4.73693e9i − 0.511673i
\(705\) −1.11694e10 −1.20052
\(706\) 6.67300e7 0.00713682
\(707\) − 2.88066e9i − 0.306566i
\(708\) − 1.38448e8i − 0.0146612i
\(709\) 1.57099e10i 1.65543i 0.561148 + 0.827716i \(0.310360\pi\)
−0.561148 + 0.827716i \(0.689640\pi\)
\(710\) − 4.70672e9i − 0.493531i
\(711\) 8.96415e9 0.935331
\(712\) 7.90522e9 0.820794
\(713\) 2.13960e10i 2.21065i
\(714\) 6.14962e9 0.632273
\(715\) 0 0
\(716\) 7.93575e8 0.0807965
\(717\) 1.76026e10i 1.78345i
\(718\) −6.75348e9 −0.680914
\(719\) −5.85775e9 −0.587733 −0.293866 0.955846i \(-0.594942\pi\)
−0.293866 + 0.955846i \(0.594942\pi\)
\(720\) − 5.64706e9i − 0.563844i
\(721\) − 1.52073e9i − 0.151105i
\(722\) 4.37497e9i 0.432608i
\(723\) 5.01501e9i 0.493501i
\(724\) 3.58590e9 0.351167
\(725\) 1.05680e10 1.02993
\(726\) − 1.09397e10i − 1.06103i
\(727\) −7.95539e8 −0.0767876 −0.0383938 0.999263i \(-0.512224\pi\)
−0.0383938 + 0.999263i \(0.512224\pi\)
\(728\) 0 0
\(729\) −1.50997e10 −1.44352
\(730\) − 2.89007e9i − 0.274966i
\(731\) −3.19450e9 −0.302477
\(732\) 1.07344e9 0.101156
\(733\) − 5.89067e9i − 0.552460i −0.961092 0.276230i \(-0.910915\pi\)
0.961092 0.276230i \(-0.0890851\pi\)
\(734\) 8.19294e9i 0.764722i
\(735\) − 8.80183e9i − 0.817650i
\(736\) 5.14801e9i 0.475957i
\(737\) −3.71701e9 −0.342025
\(738\) 6.59985e9 0.604418
\(739\) 8.06680e9i 0.735268i 0.929970 + 0.367634i \(0.119832\pi\)
−0.929970 + 0.367634i \(0.880168\pi\)
\(740\) 5.16832e8 0.0468854
\(741\) 0 0
\(742\) −7.18522e7 −0.00645693
\(743\) 1.84697e10i 1.65196i 0.563699 + 0.825980i \(0.309378\pi\)
−0.563699 + 0.825980i \(0.690622\pi\)
\(744\) 3.33175e10 2.96597
\(745\) 1.67489e9 0.148402
\(746\) − 6.60299e9i − 0.582310i
\(747\) 1.37202e10i 1.20431i
\(748\) 1.82572e9i 0.159507i
\(749\) − 3.97971e9i − 0.346071i
\(750\) 1.51037e10 1.30728
\(751\) −4.11526e9 −0.354533 −0.177267 0.984163i \(-0.556726\pi\)
−0.177267 + 0.984163i \(0.556726\pi\)
\(752\) 1.20314e10i 1.03170i
\(753\) 2.68134e10 2.28860
\(754\) 0 0
\(755\) −1.77904e9 −0.150443
\(756\) − 2.60846e8i − 0.0219563i
\(757\) −1.00115e10 −0.838812 −0.419406 0.907799i \(-0.637762\pi\)
−0.419406 + 0.907799i \(0.637762\pi\)
\(758\) −1.50674e10 −1.25660
\(759\) − 1.00529e10i − 0.834533i
\(760\) 5.47357e9i 0.452296i
\(761\) − 1.88428e10i − 1.54988i −0.632032 0.774942i \(-0.717779\pi\)
0.632032 0.774942i \(-0.282221\pi\)
\(762\) − 9.90085e9i − 0.810644i
\(763\) −6.14145e9 −0.500535
\(764\) −1.06000e9 −0.0859964
\(765\) 1.58831e10i 1.28268i
\(766\) −4.45605e8 −0.0358219
\(767\) 0 0
\(768\) 1.08967e10 0.868018
\(769\) 7.85177e9i 0.622623i 0.950308 + 0.311312i \(0.100768\pi\)
−0.950308 + 0.311312i \(0.899232\pi\)
\(770\) 8.31597e8 0.0656440
\(771\) 3.42075e9 0.268801
\(772\) − 3.56774e9i − 0.279083i
\(773\) 1.94052e10i 1.51109i 0.655098 + 0.755544i \(0.272627\pi\)
−0.655098 + 0.755544i \(0.727373\pi\)
\(774\) − 2.55989e9i − 0.198439i
\(775\) 1.56002e10i 1.20385i
\(776\) 2.34364e10 1.80043
\(777\) −2.13262e9 −0.163095
\(778\) 7.50693e6i 0 0.000571523i
\(779\) −5.05849e9 −0.383389
\(780\) 0 0
\(781\) −5.76592e9 −0.433102
\(782\) 2.48620e10i 1.85914i
\(783\) −8.47373e9 −0.630824
\(784\) −9.48109e9 −0.702671
\(785\) − 5.88442e9i − 0.434170i
\(786\) − 1.90864e10i − 1.40199i
\(787\) − 2.52499e10i − 1.84649i −0.384210 0.923246i \(-0.625526\pi\)
0.384210 0.923246i \(-0.374474\pi\)
\(788\) − 1.31974e8i − 0.00960830i
\(789\) −1.75607e10 −1.27284
\(790\) −5.36431e9 −0.387096
\(791\) − 3.59431e8i − 0.0258225i
\(792\) −8.74852e9 −0.625744
\(793\) 0 0
\(794\) 1.30867e10 0.927810
\(795\) − 3.32062e8i − 0.0234388i
\(796\) −2.47468e9 −0.173910
\(797\) −2.34970e9 −0.164402 −0.0822011 0.996616i \(-0.526195\pi\)
−0.0822011 + 0.996616i \(0.526195\pi\)
\(798\) − 3.77705e9i − 0.263113i
\(799\) − 3.38397e10i − 2.34700i
\(800\) 3.75350e9i 0.259192i
\(801\) − 1.40890e10i − 0.968652i
\(802\) −2.30292e10 −1.57641
\(803\) −3.54045e9 −0.241298
\(804\) − 3.31206e9i − 0.224751i
\(805\) −2.84551e9 −0.192254
\(806\) 0 0
\(807\) −3.33434e10 −2.23333
\(808\) − 1.81350e10i − 1.20942i
\(809\) −1.05873e10 −0.703019 −0.351510 0.936184i \(-0.614332\pi\)
−0.351510 + 0.936184i \(0.614332\pi\)
\(810\) 5.24904e9 0.347042
\(811\) 8.44691e9i 0.556064i 0.960572 + 0.278032i \(0.0896821\pi\)
−0.960572 + 0.278032i \(0.910318\pi\)
\(812\) 1.30880e9i 0.0857879i
\(813\) 1.01705e10i 0.663782i
\(814\) 2.51973e9i 0.163745i
\(815\) 8.49754e9 0.549847
\(816\) 3.06135e10 1.97241
\(817\) 1.96204e9i 0.125872i
\(818\) 2.46272e9 0.157318
\(819\) 0 0
\(820\) 9.92396e8 0.0628545
\(821\) 9.23728e8i 0.0582563i 0.999576 + 0.0291281i \(0.00927309\pi\)
−0.999576 + 0.0291281i \(0.990727\pi\)
\(822\) −5.11617e9 −0.321287
\(823\) 5.95548e9 0.372407 0.186203 0.982511i \(-0.440382\pi\)
0.186203 + 0.982511i \(0.440382\pi\)
\(824\) − 9.57368e9i − 0.596120i
\(825\) − 7.32970e9i − 0.454462i
\(826\) − 1.91056e8i − 0.0117959i
\(827\) − 7.33081e9i − 0.450695i −0.974278 0.225348i \(-0.927648\pi\)
0.974278 0.225348i \(-0.0723518\pi\)
\(828\) 5.00610e9 0.306474
\(829\) −2.02769e10 −1.23612 −0.618059 0.786131i \(-0.712081\pi\)
−0.618059 + 0.786131i \(0.712081\pi\)
\(830\) − 8.21044e9i − 0.498417i
\(831\) 3.18375e10 1.92458
\(832\) 0 0
\(833\) 2.66668e10 1.59850
\(834\) − 1.30578e10i − 0.779453i
\(835\) −1.14337e10 −0.679649
\(836\) 1.12134e9 0.0663768
\(837\) − 1.25087e10i − 0.737350i
\(838\) − 8.70888e9i − 0.511220i
\(839\) 1.19678e10i 0.699595i 0.936825 + 0.349798i \(0.113750\pi\)
−0.936825 + 0.349798i \(0.886250\pi\)
\(840\) 4.43097e9i 0.257942i
\(841\) 2.52670e10 1.46477
\(842\) 3.27214e9 0.188903
\(843\) − 1.27315e10i − 0.731956i
\(844\) 2.77081e9 0.158638
\(845\) 0 0
\(846\) 2.71172e10 1.53974
\(847\) 3.79338e9i 0.214504i
\(848\) −3.57688e8 −0.0201428
\(849\) 3.93926e10 2.20921
\(850\) 1.81273e10i 1.01243i
\(851\) − 8.62186e9i − 0.479565i
\(852\) − 5.13775e9i − 0.284600i
\(853\) − 1.44625e10i − 0.797853i −0.916983 0.398927i \(-0.869383\pi\)
0.916983 0.398927i \(-0.130617\pi\)
\(854\) 1.48134e9 0.0813863
\(855\) 9.75525e9 0.533773
\(856\) − 2.50540e10i − 1.36527i
\(857\) −1.74997e10 −0.949723 −0.474861 0.880061i \(-0.657502\pi\)
−0.474861 + 0.880061i \(0.657502\pi\)
\(858\) 0 0
\(859\) −1.21484e10 −0.653945 −0.326973 0.945034i \(-0.606028\pi\)
−0.326973 + 0.945034i \(0.606028\pi\)
\(860\) − 3.84921e8i − 0.0206361i
\(861\) −4.09495e9 −0.218644
\(862\) 2.24822e10 1.19554
\(863\) − 5.06062e9i − 0.268019i −0.990980 0.134010i \(-0.957215\pi\)
0.990980 0.134010i \(-0.0427853\pi\)
\(864\) − 3.00967e9i − 0.158753i
\(865\) 7.12899e9i 0.374517i
\(866\) 2.07786e10i 1.08719i
\(867\) −5.72122e10 −2.98141
\(868\) −1.93202e9 −0.100275
\(869\) 6.57149e9i 0.339700i
\(870\) 2.40717e10 1.23934
\(871\) 0 0
\(872\) −3.86632e10 −1.97465
\(873\) − 4.17695e10i − 2.12476i
\(874\) 1.52701e10 0.773661
\(875\) −5.23725e9 −0.264286
\(876\) − 3.15473e9i − 0.158562i
\(877\) − 2.28400e10i − 1.14340i −0.820463 0.571700i \(-0.806284\pi\)
0.820463 0.571700i \(-0.193716\pi\)
\(878\) 2.37820e9i 0.118582i
\(879\) 2.66886e10i 1.32545i
\(880\) 4.13978e9 0.204780
\(881\) −2.34736e10 −1.15655 −0.578273 0.815843i \(-0.696273\pi\)
−0.578273 + 0.815843i \(0.696273\pi\)
\(882\) 2.13692e10i 1.04869i
\(883\) 1.70477e10 0.833302 0.416651 0.909067i \(-0.363204\pi\)
0.416651 + 0.909067i \(0.363204\pi\)
\(884\) 0 0
\(885\) 8.82960e8 0.0428193
\(886\) − 1.36972e10i − 0.661629i
\(887\) 1.45686e10 0.700949 0.350474 0.936572i \(-0.386020\pi\)
0.350474 + 0.936572i \(0.386020\pi\)
\(888\) −1.34258e10 −0.643420
\(889\) 3.43315e9i 0.163884i
\(890\) 8.43115e9i 0.400887i
\(891\) − 6.43028e9i − 0.304550i
\(892\) − 1.94040e8i − 0.00915409i
\(893\) −2.07841e10 −0.976676
\(894\) −7.27605e9 −0.340576
\(895\) 5.06108e9i 0.235973i
\(896\) 3.50988e9 0.163010
\(897\) 0 0
\(898\) 1.93562e10 0.891974
\(899\) 6.27625e10i 2.88099i
\(900\) 3.65003e9 0.166897
\(901\) 1.00604e9 0.0458226
\(902\) 4.83826e9i 0.219516i
\(903\) 1.58831e9i 0.0717841i
\(904\) − 2.26278e9i − 0.101872i
\(905\) 2.28693e10i 1.02561i
\(906\) 7.72848e9 0.345259
\(907\) −1.93215e10 −0.859836 −0.429918 0.902868i \(-0.641457\pi\)
−0.429918 + 0.902868i \(0.641457\pi\)
\(908\) − 4.14297e9i − 0.183659i
\(909\) −3.23211e10 −1.42729
\(910\) 0 0
\(911\) 1.95446e10 0.856471 0.428235 0.903667i \(-0.359135\pi\)
0.428235 + 0.903667i \(0.359135\pi\)
\(912\) − 1.88026e10i − 0.820796i
\(913\) −1.00581e10 −0.437390
\(914\) −3.32866e10 −1.44198
\(915\) 6.84595e9i 0.295433i
\(916\) 1.22624e9i 0.0527159i
\(917\) 6.61829e9i 0.283435i
\(918\) − 1.45350e10i − 0.620107i
\(919\) 1.96336e10 0.834439 0.417220 0.908806i \(-0.363005\pi\)
0.417220 + 0.908806i \(0.363005\pi\)
\(920\) −1.79138e10 −0.758455
\(921\) − 7.07249e10i − 2.98307i
\(922\) 1.76062e10 0.739789
\(923\) 0 0
\(924\) 9.07751e8 0.0378543
\(925\) − 6.28634e9i − 0.261157i
\(926\) −5.94890e8 −0.0246206
\(927\) −1.70627e10 −0.703506
\(928\) 1.51010e10i 0.620281i
\(929\) 2.66303e10i 1.08973i 0.838522 + 0.544867i \(0.183420\pi\)
−0.838522 + 0.544867i \(0.816580\pi\)
\(930\) 3.55341e10i 1.44862i
\(931\) − 1.63785e10i − 0.665197i
\(932\) −4.42026e9 −0.178851
\(933\) 3.21836e10 1.29732
\(934\) − 1.49257e10i − 0.599407i
\(935\) −1.16437e10 −0.465853
\(936\) 0 0
\(937\) 1.47566e9 0.0585999 0.0292999 0.999571i \(-0.490672\pi\)
0.0292999 + 0.999571i \(0.490672\pi\)
\(938\) − 4.57060e9i − 0.180827i
\(939\) 4.78530e10 1.88617
\(940\) 4.07751e9 0.160121
\(941\) 2.25755e10i 0.883231i 0.897204 + 0.441616i \(0.145595\pi\)
−0.897204 + 0.441616i \(0.854405\pi\)
\(942\) 2.55630e10i 0.996400i
\(943\) − 1.65553e10i − 0.642904i
\(944\) − 9.51100e8i − 0.0367980i
\(945\) 1.66357e9 0.0641252
\(946\) 1.87662e9 0.0720704
\(947\) 1.98795e10i 0.760642i 0.924855 + 0.380321i \(0.124186\pi\)
−0.924855 + 0.380321i \(0.875814\pi\)
\(948\) −5.85556e9 −0.223223
\(949\) 0 0
\(950\) 1.11336e10 0.421313
\(951\) 1.00335e10i 0.378285i
\(952\) −1.34244e10 −0.504274
\(953\) −2.46036e10 −0.920817 −0.460408 0.887707i \(-0.652297\pi\)
−0.460408 + 0.887707i \(0.652297\pi\)
\(954\) 8.06185e8i 0.0300618i
\(955\) − 6.76024e9i − 0.251160i
\(956\) − 6.42603e9i − 0.237870i
\(957\) − 2.94888e10i − 1.08759i
\(958\) −1.16428e10 −0.427838
\(959\) 1.77405e9 0.0649532
\(960\) 2.69188e10i 0.981989i
\(961\) −6.51360e10 −2.36749
\(962\) 0 0
\(963\) −4.46525e10 −1.61122
\(964\) − 1.83079e9i − 0.0658215i
\(965\) 2.27535e10 0.815084
\(966\) 1.23614e10 0.441214
\(967\) − 1.21598e10i − 0.432449i −0.976344 0.216224i \(-0.930626\pi\)
0.976344 0.216224i \(-0.0693742\pi\)
\(968\) 2.38811e10i 0.846232i
\(969\) 5.28846e10i 1.86722i
\(970\) 2.49957e10i 0.879353i
\(971\) 3.44913e10 1.20904 0.604522 0.796588i \(-0.293364\pi\)
0.604522 + 0.796588i \(0.293364\pi\)
\(972\) 8.03991e9 0.280814
\(973\) 4.52785e9i 0.157578i
\(974\) −4.93783e10 −1.71230
\(975\) 0 0
\(976\) 7.37426e9 0.253889
\(977\) − 3.29649e10i − 1.13089i −0.824786 0.565445i \(-0.808704\pi\)
0.824786 0.565445i \(-0.191296\pi\)
\(978\) −3.69149e10 −1.26187
\(979\) 1.03285e10 0.351801
\(980\) 3.21321e9i 0.109055i
\(981\) 6.89073e10i 2.33036i
\(982\) 1.21741e10i 0.410247i
\(983\) − 4.71393e10i − 1.58287i −0.611253 0.791435i \(-0.709334\pi\)
0.611253 0.791435i \(-0.290666\pi\)
\(984\) −2.57796e10 −0.862567
\(985\) 8.41673e8 0.0280619
\(986\) 7.29295e10i 2.42289i
\(987\) −1.68252e10 −0.556992
\(988\) 0 0
\(989\) −6.42131e9 −0.211075
\(990\) − 9.33055e9i − 0.305622i
\(991\) −2.37320e10 −0.774600 −0.387300 0.921954i \(-0.626592\pi\)
−0.387300 + 0.921954i \(0.626592\pi\)
\(992\) −2.22918e10 −0.725027
\(993\) 8.38626e9i 0.271798i
\(994\) − 7.09003e9i − 0.228979i
\(995\) − 1.57824e10i − 0.507918i
\(996\) − 8.96232e9i − 0.287417i
\(997\) 1.20079e10 0.383737 0.191869 0.981421i \(-0.438545\pi\)
0.191869 + 0.981421i \(0.438545\pi\)
\(998\) −3.68198e10 −1.17253
\(999\) 5.04058e9i 0.159956i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.8.b.e.168.12 16
13.5 odd 4 169.8.a.e.1.7 8
13.7 odd 12 13.8.c.a.3.7 16
13.8 odd 4 169.8.a.f.1.2 8
13.11 odd 12 13.8.c.a.9.7 yes 16
13.12 even 2 inner 169.8.b.e.168.5 16
39.11 even 12 117.8.g.d.100.2 16
39.20 even 12 117.8.g.d.55.2 16
52.7 even 12 208.8.i.d.81.1 16
52.11 even 12 208.8.i.d.113.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.c.a.3.7 16 13.7 odd 12
13.8.c.a.9.7 yes 16 13.11 odd 12
117.8.g.d.55.2 16 39.20 even 12
117.8.g.d.100.2 16 39.11 even 12
169.8.a.e.1.7 8 13.5 odd 4
169.8.a.f.1.2 8 13.8 odd 4
169.8.b.e.168.5 16 13.12 even 2 inner
169.8.b.e.168.12 16 1.1 even 1 trivial
208.8.i.d.81.1 16 52.7 even 12
208.8.i.d.113.1 16 52.11 even 12