Properties

Label 1694.4.a.f
Level $1694$
Weight $4$
Character orbit 1694.a
Self dual yes
Analytic conductor $99.949$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1694,4,Mod(1,1694)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1694, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1694.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1694 = 2 \cdot 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1694.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(99.9492355497\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + 2 q^{5} + 7 q^{7} + 8 q^{8} - 27 q^{9} + 4 q^{10} - 26 q^{13} + 14 q^{14} + 16 q^{16} + 46 q^{17} - 54 q^{18} + 48 q^{19} + 8 q^{20} - 128 q^{23} - 121 q^{25} - 52 q^{26} + 28 q^{28}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 2.00000 0 7.00000 8.00000 −27.0000 4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1694.4.a.f 1
11.b odd 2 1 154.4.a.b 1
33.d even 2 1 1386.4.a.j 1
44.c even 2 1 1232.4.a.e 1
77.b even 2 1 1078.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.b 1 11.b odd 2 1
1078.4.a.b 1 77.b even 2 1
1232.4.a.e 1 44.c even 2 1
1386.4.a.j 1 33.d even 2 1
1694.4.a.f 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1694))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{13} + 26 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 26 \) Copy content Toggle raw display
$17$ \( T - 46 \) Copy content Toggle raw display
$19$ \( T - 48 \) Copy content Toggle raw display
$23$ \( T + 128 \) Copy content Toggle raw display
$29$ \( T - 146 \) Copy content Toggle raw display
$31$ \( T + 128 \) Copy content Toggle raw display
$37$ \( T + 26 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 52 \) Copy content Toggle raw display
$47$ \( T + 544 \) Copy content Toggle raw display
$53$ \( T - 318 \) Copy content Toggle raw display
$59$ \( T + 48 \) Copy content Toggle raw display
$61$ \( T + 466 \) Copy content Toggle raw display
$67$ \( T - 516 \) Copy content Toggle raw display
$71$ \( T + 392 \) Copy content Toggle raw display
$73$ \( T + 754 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 624 \) Copy content Toggle raw display
$89$ \( T + 1590 \) Copy content Toggle raw display
$97$ \( T - 1018 \) Copy content Toggle raw display
show more
show less