Defining parameters
Level: | \( N \) | \(=\) | \( 170 = 2 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 170.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(170))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 7 | 23 |
Cusp forms | 23 | 7 | 16 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(17\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(6\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(170))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 17 | |||||||
170.2.a.a | $1$ | $1.357$ | \(\Q\) | None | \(-1\) | \(-2\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}-2q^{3}+q^{4}-q^{5}+2q^{6}+2q^{7}+\cdots\) | |
170.2.a.b | $1$ | $1.357$ | \(\Q\) | None | \(-1\) | \(-2\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | \(q-q^{2}-2q^{3}+q^{4}+q^{5}+2q^{6}-2q^{7}+\cdots\) | |
170.2.a.c | $1$ | $1.357$ | \(\Q\) | None | \(-1\) | \(1\) | \(1\) | \(2\) | $+$ | $-$ | $+$ | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+2q^{7}+\cdots\) | |
170.2.a.d | $1$ | $1.357$ | \(\Q\) | None | \(-1\) | \(3\) | \(-1\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}+3q^{3}+q^{4}-q^{5}-3q^{6}+2q^{7}+\cdots\) | |
170.2.a.e | $1$ | $1.357$ | \(\Q\) | None | \(1\) | \(1\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\) | |
170.2.a.f | $2$ | $1.357$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(-1\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{2}-\beta q^{3}+q^{4}+q^{5}-\beta q^{6}+2\beta q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(170))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(170)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 2}\)