Properties

Label 1700.1.bw.b.531.1
Level 17001700
Weight 11
Character 1700.531
Analytic conductor 0.8480.848
Analytic rank 00
Dimension 88
Projective image D20D_{20}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,1,Mod(191,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([10, 4, 15]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.191");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1700=225217 1700 = 2^{2} \cdot 5^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1700.bw (of order 2020, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8484105214760.848410521476
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ20)\Q(\zeta_{20})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x6+x4x2+1 x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20+)\mathbb{Q}[x]/(x^{20} + \cdots)

Embedding invariants

Embedding label 531.1
Root 0.951057+0.309017i0.951057 + 0.309017i of defining polynomial
Character χ\chi == 1700.531
Dual form 1700.1.bw.b.1271.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.9510570.309017i)q2+(0.8090170.587785i)q4+(0.809017+0.587785i)q5+(0.5877850.809017i)q8+(0.9510570.309017i)q9+(0.951057+0.309017i)q10+(0.3632711.11803i)q13+(0.3090170.951057i)q16+(0.309017+0.951057i)q171.00000q18+1.00000q20+(0.309017+0.951057i)q251.17557iq26+(0.1420400.896802i)q291.00000iq32+1.00000iq34+(0.951057+0.309017i)q36+(0.809017+1.58779i)q37+(0.9510570.309017i)q40+(1.76007+0.896802i)q41+(0.5877850.809017i)q45+1.00000iq49+(0.587785+0.809017i)q50+(0.3632711.11803i)q52+(0.6909830.951057i)q53+(0.1420400.896802i)q58+(0.896802+1.76007i)q61+(0.3090170.951057i)q64+(0.9510570.690983i)q65+(0.309017+0.951057i)q68+(0.809017+0.587785i)q72+(0.2787680.142040i)q73+(1.26007+1.26007i)q74+(0.8090170.587785i)q80+(0.809017+0.587785i)q81+(1.39680+1.39680i)q82+(0.809017+0.587785i)q85+(0.5877851.80902i)q89+(0.8090170.587785i)q90+(0.2787681.76007i)q97+(0.309017+0.951057i)q98+O(q100)q+(0.951057 - 0.309017i) q^{2} +(0.809017 - 0.587785i) q^{4} +(0.809017 + 0.587785i) q^{5} +(0.587785 - 0.809017i) q^{8} +(-0.951057 - 0.309017i) q^{9} +(0.951057 + 0.309017i) q^{10} +(0.363271 - 1.11803i) q^{13} +(0.309017 - 0.951057i) q^{16} +(-0.309017 + 0.951057i) q^{17} -1.00000 q^{18} +1.00000 q^{20} +(0.309017 + 0.951057i) q^{25} -1.17557i q^{26} +(0.142040 - 0.896802i) q^{29} -1.00000i q^{32} +1.00000i q^{34} +(-0.951057 + 0.309017i) q^{36} +(0.809017 + 1.58779i) q^{37} +(0.951057 - 0.309017i) q^{40} +(-1.76007 + 0.896802i) q^{41} +(-0.587785 - 0.809017i) q^{45} +1.00000i q^{49} +(0.587785 + 0.809017i) q^{50} +(-0.363271 - 1.11803i) q^{52} +(-0.690983 - 0.951057i) q^{53} +(-0.142040 - 0.896802i) q^{58} +(-0.896802 + 1.76007i) q^{61} +(-0.309017 - 0.951057i) q^{64} +(0.951057 - 0.690983i) q^{65} +(0.309017 + 0.951057i) q^{68} +(-0.809017 + 0.587785i) q^{72} +(-0.278768 - 0.142040i) q^{73} +(1.26007 + 1.26007i) q^{74} +(0.809017 - 0.587785i) q^{80} +(0.809017 + 0.587785i) q^{81} +(-1.39680 + 1.39680i) q^{82} +(-0.809017 + 0.587785i) q^{85} +(-0.587785 - 1.80902i) q^{89} +(-0.809017 - 0.587785i) q^{90} +(0.278768 - 1.76007i) q^{97} +(0.309017 + 0.951057i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q4+2q52q16+2q178q18+8q202q252q29+2q372q4110q53+2q58+2q61+2q642q682q722q732q74+2q80+2q98+O(q100) 8 q + 2 q^{4} + 2 q^{5} - 2 q^{16} + 2 q^{17} - 8 q^{18} + 8 q^{20} - 2 q^{25} - 2 q^{29} + 2 q^{37} - 2 q^{41} - 10 q^{53} + 2 q^{58} + 2 q^{61} + 2 q^{64} - 2 q^{68} - 2 q^{72} - 2 q^{73} - 2 q^{74} + 2 q^{80}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1700Z)×\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times.

nn 477477 851851 16011601
χ(n)\chi(n) e(25)e\left(\frac{2}{5}\right) 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.951057 0.309017i 0.951057 0.309017i
33 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
44 0.809017 0.587785i 0.809017 0.587785i
55 0.809017 + 0.587785i 0.809017 + 0.587785i
66 0 0
77 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
88 0.587785 0.809017i 0.587785 0.809017i
99 −0.951057 0.309017i −0.951057 0.309017i
1010 0.951057 + 0.309017i 0.951057 + 0.309017i
1111 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
1212 0 0
1313 0.363271 1.11803i 0.363271 1.11803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
1414 0 0
1515 0 0
1616 0.309017 0.951057i 0.309017 0.951057i
1717 −0.309017 + 0.951057i −0.309017 + 0.951057i
1818 −1.00000 −1.00000
1919 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
2020 1.00000 1.00000
2121 0 0
2222 0 0
2323 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
2424 0 0
2525 0.309017 + 0.951057i 0.309017 + 0.951057i
2626 1.17557i 1.17557i
2727 0 0
2828 0 0
2929 0.142040 0.896802i 0.142040 0.896802i −0.809017 0.587785i 0.800000π-0.800000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
3030 0 0
3131 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
3232 1.00000i 1.00000i
3333 0 0
3434 1.00000i 1.00000i
3535 0 0
3636 −0.951057 + 0.309017i −0.951057 + 0.309017i
3737 0.809017 + 1.58779i 0.809017 + 1.58779i 0.809017 + 0.587785i 0.200000π0.200000\pi
1.00000i 0.500000π0.500000\pi
3838 0 0
3939 0 0
4040 0.951057 0.309017i 0.951057 0.309017i
4141 −1.76007 + 0.896802i −1.76007 + 0.896802i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 −0.587785 0.809017i −0.587785 0.809017i
4646 0 0
4747 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0.587785 + 0.809017i 0.587785 + 0.809017i
5151 0 0
5252 −0.363271 1.11803i −0.363271 1.11803i
5353 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −0.142040 0.896802i −0.142040 0.896802i
5959 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
6060 0 0
6161 −0.896802 + 1.76007i −0.896802 + 1.76007i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
6262 0 0
6363 0 0
6464 −0.309017 0.951057i −0.309017 0.951057i
6565 0.951057 0.690983i 0.951057 0.690983i
6666 0 0
6767 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
6868 0.309017 + 0.951057i 0.309017 + 0.951057i
6969 0 0
7070 0 0
7171 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
7272 −0.809017 + 0.587785i −0.809017 + 0.587785i
7373 −0.278768 0.142040i −0.278768 0.142040i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7474 1.26007 + 1.26007i 1.26007 + 1.26007i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
8080 0.809017 0.587785i 0.809017 0.587785i
8181 0.809017 + 0.587785i 0.809017 + 0.587785i
8282 −1.39680 + 1.39680i −1.39680 + 1.39680i
8383 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
8484 0 0
8585 −0.809017 + 0.587785i −0.809017 + 0.587785i
8686 0 0
8787 0 0
8888 0 0
8989 −0.587785 1.80902i −0.587785 1.80902i −0.587785 0.809017i 0.700000π-0.700000\pi
1.00000i 0.5π-0.5\pi
9090 −0.809017 0.587785i −0.809017 0.587785i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0.278768 1.76007i 0.278768 1.76007i −0.309017 0.951057i 0.600000π-0.600000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
9898 0.309017 + 0.951057i 0.309017 + 0.951057i
9999 0 0
100100 0.809017 + 0.587785i 0.809017 + 0.587785i
101101 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
102102 0 0
103103 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
104104 −0.690983 0.951057i −0.690983 0.951057i
105105 0 0
106106 −0.951057 0.690983i −0.951057 0.690983i
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 0.278768 0.142040i 0.278768 0.142040i −0.309017 0.951057i 0.600000π-0.600000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.809017 0.412215i 0.809017 0.412215i 1.00000i 0.5π-0.5\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
114114 0 0
115115 0 0
116116 −0.412215 0.809017i −0.412215 0.809017i
117117 −0.690983 + 0.951057i −0.690983 + 0.951057i
118118 0 0
119119 0 0
120120 0 0
121121 −0.587785 0.809017i −0.587785 0.809017i
122122 −0.309017 + 1.95106i −0.309017 + 1.95106i
123123 0 0
124124 0 0
125125 −0.309017 + 0.951057i −0.309017 + 0.951057i
126126 0 0
127127 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
128128 −0.587785 0.809017i −0.587785 0.809017i
129129 0 0
130130 0.690983 0.951057i 0.690983 0.951057i
131131 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0.587785 + 0.809017i 0.587785 + 0.809017i
137137 −0.363271 + 1.11803i −0.363271 + 1.11803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
138138 0 0
139139 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −0.587785 + 0.809017i −0.587785 + 0.809017i
145145 0.642040 0.642040i 0.642040 0.642040i
146146 −0.309017 0.0489435i −0.309017 0.0489435i
147147 0 0
148148 1.58779 + 0.809017i 1.58779 + 0.809017i
149149 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 0.587785 0.809017i 0.587785 0.809017i
154154 0 0
155155 0 0
156156 0 0
157157 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
158158 0 0
159159 0 0
160160 0.587785 0.809017i 0.587785 0.809017i
161161 0 0
162162 0.951057 + 0.309017i 0.951057 + 0.309017i
163163 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
164164 −0.896802 + 1.76007i −0.896802 + 1.76007i
165165 0 0
166166 0 0
167167 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
168168 0 0
169169 −0.309017 0.224514i −0.309017 0.224514i
170170 −0.587785 + 0.809017i −0.587785 + 0.809017i
171171 0 0
172172 0 0
173173 1.58779 + 0.809017i 1.58779 + 0.809017i 1.00000 00
0.587785 + 0.809017i 0.300000π0.300000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −1.11803 1.53884i −1.11803 1.53884i
179179 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
180180 −0.951057 0.309017i −0.951057 0.309017i
181181 −0.142040 0.896802i −0.142040 0.896802i −0.951057 0.309017i 0.900000π-0.900000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.278768 + 1.76007i −0.278768 + 1.76007i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
192192 0 0
193193 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
194194 −0.278768 1.76007i −0.278768 1.76007i
195195 0 0
196196 0.587785 + 0.809017i 0.587785 + 0.809017i
197197 1.95106 + 0.309017i 1.95106 + 0.309017i 1.00000 00
0.951057 + 0.309017i 0.100000π0.100000\pi
198198 0 0
199199 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
200200 0.951057 + 0.309017i 0.951057 + 0.309017i
201201 0 0
202202 −1.80902 + 0.587785i −1.80902 + 0.587785i
203203 0 0
204204 0 0
205205 −1.95106 0.309017i −1.95106 0.309017i
206206 0 0
207207 0 0
208208 −0.951057 0.690983i −0.951057 0.690983i
209209 0 0
210210 0 0
211211 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
212212 −1.11803 0.363271i −1.11803 0.363271i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0.221232 0.221232i 0.221232 0.221232i
219219 0 0
220220 0 0
221221 0.951057 + 0.690983i 0.951057 + 0.690983i
222222 0 0
223223 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
224224 0 0
225225 1.00000i 1.00000i
226226 0.642040 0.642040i 0.642040 0.642040i
227227 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
228228 0 0
229229 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i 0.100000π0.100000\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 −0.642040 0.642040i −0.642040 0.642040i
233233 −0.309017 + 0.0489435i −0.309017 + 0.0489435i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000i 0.5π0.5\pi
234234 −0.363271 + 1.11803i −0.363271 + 1.11803i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
240240 0 0
241241 0.412215 + 0.809017i 0.412215 + 0.809017i 1.00000 00
−0.587785 + 0.809017i 0.700000π0.700000\pi
242242 −0.809017 0.587785i −0.809017 0.587785i
243243 0 0
244244 0.309017 + 1.95106i 0.309017 + 1.95106i
245245 −0.587785 + 0.809017i −0.587785 + 0.809017i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 1.00000i 1.00000i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.809017 0.587785i −0.809017 0.587785i
257257 1.61803i 1.61803i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
258258 0 0
259259 0 0
260260 0.363271 1.11803i 0.363271 1.11803i
261261 −0.412215 + 0.809017i −0.412215 + 0.809017i
262262 0 0
263263 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
264264 0 0
265265 1.17557i 1.17557i
266266 0 0
267267 0 0
268268 0 0
269269 −1.95106 + 0.309017i −1.95106 + 0.309017i −0.951057 + 0.309017i 0.900000π0.900000\pi
−1.00000 1.00000π1.00000\pi
270270 0 0
271271 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
272272 0.809017 + 0.587785i 0.809017 + 0.587785i
273273 0 0
274274 1.17557i 1.17557i
275275 0 0
276276 0 0
277277 1.58779 + 0.809017i 1.58779 + 0.809017i 1.00000 00
0.587785 + 0.809017i 0.300000π0.300000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.690983 0.951057i 0.690983 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
1.00000 00
282282 0 0
283283 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 −0.309017 + 0.951057i −0.309017 + 0.951057i
289289 −0.809017 0.587785i −0.809017 0.587785i
290290 0.412215 0.809017i 0.412215 0.809017i
291291 0 0
292292 −0.309017 + 0.0489435i −0.309017 + 0.0489435i
293293 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
294294 0 0
295295 0 0
296296 1.76007 + 0.278768i 1.76007 + 0.278768i
297297 0 0
298298 −1.53884 + 0.500000i −1.53884 + 0.500000i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −1.76007 + 0.896802i −1.76007 + 0.896802i
306306 0.309017 0.951057i 0.309017 0.951057i
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
312312 0 0
313313 1.26007 0.642040i 1.26007 0.642040i 0.309017 0.951057i 0.400000π-0.400000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
314314 0.587785 0.190983i 0.587785 0.190983i
315315 0 0
316316 0 0
317317 −0.221232 1.39680i −0.221232 1.39680i −0.809017 0.587785i 0.800000π-0.800000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
318318 0 0
319319 0 0
320320 0.309017 0.951057i 0.309017 0.951057i
321321 0 0
322322 0 0
323323 0 0
324324 1.00000 1.00000
325325 1.17557 1.17557
326326 0 0
327327 0 0
328328 −0.309017 + 1.95106i −0.309017 + 1.95106i
329329 0 0
330330 0 0
331331 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
332332 0 0
333333 −0.278768 1.76007i −0.278768 1.76007i
334334 0 0
335335 0 0
336336 0 0
337337 −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i 0.900000π-0.900000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
338338 −0.363271 0.118034i −0.363271 0.118034i
339339 0 0
340340 −0.309017 + 0.951057i −0.309017 + 0.951057i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 1.76007 + 0.278768i 1.76007 + 0.278768i
347347 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
348348 0 0
349349 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.61803 1.17557i 1.61803 1.17557i 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
354354 0 0
355355 0 0
356356 −1.53884 1.11803i −1.53884 1.11803i
357357 0 0
358358 0 0
359359 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
360360 −1.00000 −1.00000
361361 −0.309017 0.951057i −0.309017 0.951057i
362362 −0.412215 0.809017i −0.412215 0.809017i
363363 0 0
364364 0 0
365365 −0.142040 0.278768i −0.142040 0.278768i
366366 0 0
367367 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
368368 0 0
369369 1.95106 0.309017i 1.95106 0.309017i
370370 0.278768 + 1.76007i 0.278768 + 1.76007i
371371 0 0
372372 0 0
373373 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
374374 0 0
375375 0 0
376376 0 0
377377 −0.951057 0.484587i −0.951057 0.484587i
378378 0 0
379379 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
384384 0 0
385385 0 0
386386 −0.278768 0.142040i −0.278768 0.142040i
387387 0 0
388388 −0.809017 1.58779i −0.809017 1.58779i
389389 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
390390 0 0
391391 0 0
392392 0.809017 + 0.587785i 0.809017 + 0.587785i
393393 0 0
394394 1.95106 0.309017i 1.95106 0.309017i
395395 0 0
396396 0 0
397397 1.39680 + 0.221232i 1.39680 + 0.221232i 0.809017 0.587785i 0.200000π-0.200000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
398398 0 0
399399 0 0
400400 1.00000 1.00000
401401 −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i 0.300000π-0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
402402 0 0
403403 0 0
404404 −1.53884 + 1.11803i −1.53884 + 1.11803i
405405 0.309017 + 0.951057i 0.309017 + 0.951057i
406406 0 0
407407 0 0
408408 0 0
409409 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
410410 −1.95106 + 0.309017i −1.95106 + 0.309017i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 −1.11803 0.363271i −1.11803 0.363271i
417417 0 0
418418 0 0
419419 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
420420 0 0
421421 1.53884 1.11803i 1.53884 1.11803i 0.587785 0.809017i 0.300000π-0.300000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
422422 0 0
423423 0 0
424424 −1.17557 −1.17557
425425 −1.00000 −1.00000
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
432432 0 0
433433 0.951057 1.30902i 0.951057 1.30902i 1.00000i 0.5π-0.5\pi
0.951057 0.309017i 0.100000π-0.100000\pi
434434 0 0
435435 0 0
436436 0.142040 0.278768i 0.142040 0.278768i
437437 0 0
438438 0 0
439439 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
440440 0 0
441441 0.309017 0.951057i 0.309017 0.951057i
442442 1.11803 + 0.363271i 1.11803 + 0.363271i
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0.587785 1.80902i 0.587785 1.80902i
446446 0 0
447447 0 0
448448 0 0
449449 −1.26007 1.26007i −1.26007 1.26007i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
450450 −0.309017 0.951057i −0.309017 0.951057i
451451 0 0
452452 0.412215 0.809017i 0.412215 0.809017i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
458458 1.30902 + 0.951057i 1.30902 + 0.951057i
459459 0 0
460460 0 0
461461 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
462462 0 0
463463 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
464464 −0.809017 0.412215i −0.809017 0.412215i
465465 0 0
466466 −0.278768 + 0.142040i −0.278768 + 0.142040i
467467 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
468468 1.17557i 1.17557i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.363271 + 1.11803i 0.363271 + 1.11803i
478478 0 0
479479 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
480480 0 0
481481 2.06909 0.327712i 2.06909 0.327712i
482482 0.642040 + 0.642040i 0.642040 + 0.642040i
483483 0 0
484484 −0.951057 0.309017i −0.951057 0.309017i
485485 1.26007 1.26007i 1.26007 1.26007i
486486 0 0
487487 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
488488 0.896802 + 1.76007i 0.896802 + 1.76007i
489489 0 0
490490 −0.309017 + 0.951057i −0.309017 + 0.951057i
491491 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
492492 0 0
493493 0.809017 + 0.412215i 0.809017 + 0.412215i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
500500 0.309017 + 0.951057i 0.309017 + 0.951057i
501501 0 0
502502 0 0
503503 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
504504 0 0
505505 −1.53884 1.11803i −1.53884 1.11803i
506506 0 0
507507 0 0
508508 0 0
509509 −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i 0.200000π0.200000\pi
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −0.951057 0.309017i −0.951057 0.309017i
513513 0 0
514514 0.500000 + 1.53884i 0.500000 + 1.53884i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 1.17557i 1.17557i
521521 1.95106 + 0.309017i 1.95106 + 0.309017i 1.00000 00
0.951057 + 0.309017i 0.100000π0.100000\pi
522522 −0.142040 + 0.896802i −0.142040 + 0.896802i
523523 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.587785 0.809017i −0.587785 0.809017i
530530 −0.363271 1.11803i −0.363271 1.11803i
531531 0 0
532532 0 0
533533 0.363271 + 2.29360i 0.363271 + 2.29360i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −1.76007 + 0.896802i −1.76007 + 0.896802i
539539 0 0
540540 0 0
541541 0.809017 + 1.58779i 0.809017 + 1.58779i 0.809017 + 0.587785i 0.200000π0.200000\pi
1.00000i 0.500000π0.500000\pi
542542 0 0
543543 0 0
544544 0.951057 + 0.309017i 0.951057 + 0.309017i
545545 0.309017 + 0.0489435i 0.309017 + 0.0489435i
546546 0 0
547547 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
548548 0.363271 + 1.11803i 0.363271 + 1.11803i
549549 1.39680 1.39680i 1.39680 1.39680i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.76007 + 0.278768i 1.76007 + 0.278768i
555555 0 0
556556 0 0
557557 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0.363271 1.11803i 0.363271 1.11803i
563563 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
564564 0 0
565565 0.896802 + 0.142040i 0.896802 + 0.142040i
566566 0 0
567567 0 0
568568 0 0
569569 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
570570 0 0
571571 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 1.00000i 1.00000i
577577 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
578578 −0.951057 0.309017i −0.951057 0.309017i
579579 0 0
580580 0.142040 0.896802i 0.142040 0.896802i
581581 0 0
582582 0 0
583583 0 0
584584 −0.278768 + 0.142040i −0.278768 + 0.142040i
585585 −1.11803 + 0.363271i −1.11803 + 0.363271i
586586 −0.587785 + 0.190983i −0.587785 + 0.190983i
587587 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 1.76007 0.278768i 1.76007 0.278768i
593593 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
594594 0 0
595595 0 0
596596 −1.30902 + 0.951057i −1.30902 + 0.951057i
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1.39680 1.39680i −1.39680 1.39680i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.587785 0.809017i 0.700000π-0.700000\pi
602602 0 0
603603 0 0
604604 0 0
605605 1.00000i 1.00000i
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 −1.39680 + 1.39680i −1.39680 + 1.39680i
611611 0 0
612612 1.00000i 1.00000i
613613 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000 00
614614 0 0
615615 0 0
616616 0 0
617617 −1.95106 + 0.309017i −1.95106 + 0.309017i −0.951057 + 0.309017i 0.900000π0.900000\pi
−1.00000 1.00000π1.00000\pi
618618 0 0
619619 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.809017 + 0.587785i −0.809017 + 0.587785i
626626 1.00000 1.00000i 1.00000 1.00000i
627627 0 0
628628 0.500000 0.363271i 0.500000 0.363271i
629629 −1.76007 + 0.278768i −1.76007 + 0.278768i
630630 0 0
631631 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
632632 0 0
633633 0 0
634634 −0.642040 1.26007i −0.642040 1.26007i
635635 0 0
636636 0 0
637637 1.11803 + 0.363271i 1.11803 + 0.363271i
638638 0 0
639639 0 0
640640 1.00000i 1.00000i
641641 0.642040 + 1.26007i 0.642040 + 1.26007i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
648648 0.951057 0.309017i 0.951057 0.309017i
649649 0 0
650650 1.11803 0.363271i 1.11803 0.363271i
651651 0 0
652652 0 0
653653 −1.76007 0.278768i −1.76007 0.278768i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
654654 0 0
655655 0 0
656656 0.309017 + 1.95106i 0.309017 + 1.95106i
657657 0.221232 + 0.221232i 0.221232 + 0.221232i
658658 0 0
659659 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
660660 0 0
661661 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −0.809017 1.58779i −0.809017 1.58779i
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.412215 + 0.809017i −0.412215 + 0.809017i 0.587785 + 0.809017i 0.300000π0.300000\pi
−1.00000 π\pi
674674 −1.00000 1.00000i −1.00000 1.00000i
675675 0 0
676676 −0.381966 −0.381966
677677 1.26007 + 0.642040i 1.26007 + 0.642040i 0.951057 0.309017i 0.100000π-0.100000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
678678 0 0
679679 0 0
680680 1.00000i 1.00000i
681681 0 0
682682 0 0
683683 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
684684 0 0
685685 −0.951057 + 0.690983i −0.951057 + 0.690983i
686686 0 0
687687 0 0
688688 0 0
689689 −1.31433 + 0.427051i −1.31433 + 0.427051i
690690 0 0
691691 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
692692 1.76007 0.278768i 1.76007 0.278768i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −0.309017 1.95106i −0.309017 1.95106i
698698 0.587785 + 1.80902i 0.587785 + 1.80902i
699699 0 0
700700 0 0
701701 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 1.17557 1.61803i 1.17557 1.61803i
707707 0 0
708708 0 0
709709 0.142040 + 0.278768i 0.142040 + 0.278768i 0.951057 0.309017i 0.100000π-0.100000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
710710 0 0
711711 0 0
712712 −1.80902 0.587785i −1.80902 0.587785i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
720720 −0.951057 + 0.309017i −0.951057 + 0.309017i
721721 0 0
722722 −0.587785 0.809017i −0.587785 0.809017i
723723 0 0
724724 −0.642040 0.642040i −0.642040 0.642040i
725725 0.896802 0.142040i 0.896802 0.142040i
726726 0 0
727727 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
728728 0 0
729729 −0.587785 0.809017i −0.587785 0.809017i
730730 −0.221232 0.221232i −0.221232 0.221232i
731731 0 0
732732 0 0
733733 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 1.76007 0.896802i 1.76007 0.896802i
739739 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
740740 0.809017 + 1.58779i 0.809017 + 1.58779i
741741 0 0
742742 0 0
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 −1.30902 0.951057i −1.30902 0.951057i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
752752 0 0
753753 0 0
754754 −1.05425 0.166977i −1.05425 0.166977i
755755 0 0
756756 0 0
757757 1.61803i 1.61803i −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
758758 0 0
759759 0 0
760760 0 0
761761 −0.363271 1.11803i −0.363271 1.11803i −0.951057 0.309017i 0.900000π-0.900000\pi
0.587785 0.809017i 0.300000π-0.300000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0.951057 0.309017i 0.951057 0.309017i
766766 0 0
767767 0 0
768768 0 0
769769 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
770770 0 0
771771 0 0
772772 −0.309017 0.0489435i −0.309017 0.0489435i
773773 −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
774774 0 0
775775 0 0
776776 −1.26007 1.26007i −1.26007 1.26007i
777777 0 0
778778 1.30902 0.951057i 1.30902 0.951057i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.951057 + 0.309017i 0.951057 + 0.309017i
785785 0.500000 + 0.363271i 0.500000 + 0.363271i
786786 0 0
787787 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
788788 1.76007 0.896802i 1.76007 0.896802i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 1.64204 + 1.64204i 1.64204 + 1.64204i
794794 1.39680 0.221232i 1.39680 0.221232i
795795 0 0
796796 0 0
797797 −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0.951057 0.309017i 0.951057 0.309017i
801801 1.90211i 1.90211i
802802 −0.278768 0.142040i −0.278768 0.142040i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 −1.11803 + 1.53884i −1.11803 + 1.53884i
809809 0.809017 0.412215i 0.809017 0.412215i 1.00000i 0.5π-0.5\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
810810 0.587785 + 0.809017i 0.587785 + 0.809017i
811811 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.618034i 0.618034i
819819 0 0
820820 −1.76007 + 0.896802i −1.76007 + 0.896802i
821821 −0.221232 + 1.39680i −0.221232 + 1.39680i 0.587785 + 0.809017i 0.300000π0.300000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
822822 0 0
823823 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
828828 0 0
829829 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000 00
830830 0 0
831831 0 0
832832 −1.17557 −1.17557
833833 −0.951057 0.309017i −0.951057 0.309017i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
840840 0 0
841841 0.166977 + 0.0542543i 0.166977 + 0.0542543i
842842 1.11803 1.53884i 1.11803 1.53884i
843843 0 0
844844 0 0
845845 −0.118034 0.363271i −0.118034 0.363271i
846846 0 0
847847 0 0
848848 −1.11803 + 0.363271i −1.11803 + 0.363271i
849849 0 0
850850 −0.951057 + 0.309017i −0.951057 + 0.309017i
851851 0 0
852852 0 0
853853 −0.0489435 + 0.309017i −0.0489435 + 0.309017i 0.951057 + 0.309017i 0.100000π0.100000\pi
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
864864 0 0
865865 0.809017 + 1.58779i 0.809017 + 1.58779i
866866 0.500000 1.53884i 0.500000 1.53884i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.0489435 0.309017i 0.0489435 0.309017i
873873 −0.809017 + 1.58779i −0.809017 + 1.58779i
874874 0 0
875875 0 0
876876 0 0
877877 −0.142040 + 0.278768i −0.142040 + 0.278768i −0.951057 0.309017i 0.900000π-0.900000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.39680 + 0.221232i −1.39680 + 0.221232i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
882882 1.00000i 1.00000i
883883 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
884884 1.17557 1.17557
885885 0 0
886886 0 0
887887 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
888888 0 0
889889 0 0
890890 1.90211i 1.90211i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −1.58779 0.809017i −1.58779 0.809017i
899899 0 0
900900 −0.587785 0.809017i −0.587785 0.809017i
901901 1.11803 0.363271i 1.11803 0.363271i
902902 0 0
903903 0 0
904904 0.142040 0.896802i 0.142040 0.896802i
905905 0.412215 0.809017i 0.412215 0.809017i
906906 0 0
907907 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
908908 0 0
909909 1.80902 + 0.587785i 1.80902 + 0.587785i
910910 0 0
911911 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
912912 0 0
913913 0 0
914914 −0.618034 1.90211i −0.618034 1.90211i
915915 0 0
916916 1.53884 + 0.500000i 1.53884 + 0.500000i
917917 0 0
918918 0 0
919919 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
920920 0 0
921921 0 0
922922 −1.53884 + 1.11803i −1.53884 + 1.11803i
923923 0 0
924924 0 0
925925 −1.26007 + 1.26007i −1.26007 + 1.26007i
926926 0 0
927927 0 0
928928 −0.896802 0.142040i −0.896802 0.142040i
929929 0.896802 + 0.142040i 0.896802 + 0.142040i 0.587785 0.809017i 0.300000π-0.300000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
930930 0 0
931931 0 0
932932 −0.221232 + 0.221232i −0.221232 + 0.221232i
933933 0 0
934934 0 0
935935 0 0
936936 0.363271 + 1.11803i 0.363271 + 1.11803i
937937 1.80902 + 0.587785i 1.80902 + 0.587785i 1.00000 00
0.809017 + 0.587785i 0.200000π0.200000\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.809017 + 0.412215i −0.809017 + 0.412215i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
948948 0 0
949949 −0.260074 + 0.260074i −0.260074 + 0.260074i
950950 0 0
951951 0 0
952952 0 0
953953 −1.53884 + 1.11803i −1.53884 + 1.11803i −0.587785 + 0.809017i 0.700000π0.700000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
954954 0.690983 + 0.951057i 0.690983 + 0.951057i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.951057 0.309017i 0.951057 0.309017i
962962 1.86655 0.951057i 1.86655 0.951057i
963963 0 0
964964 0.809017 + 0.412215i 0.809017 + 0.412215i
965965 −0.0489435 0.309017i −0.0489435 0.309017i
966966 0 0
967967 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
968968 −1.00000 −1.00000
969969 0 0
970970 0.809017 1.58779i 0.809017 1.58779i
971971 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.39680 + 1.39680i 1.39680 + 1.39680i
977977 1.11803 0.363271i 1.11803 0.363271i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
978978 0 0
979979 0 0
980980 1.00000i 1.00000i
981981 −0.309017 + 0.0489435i −0.309017 + 0.0489435i
982982 0 0
983983 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
984984 0 0
985985 1.39680 + 1.39680i 1.39680 + 1.39680i
986986 0.896802 + 0.142040i 0.896802 + 0.142040i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.39680 0.221232i −1.39680 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.1.bw.b.531.1 yes 8
4.3 odd 2 CM 1700.1.bw.b.531.1 yes 8
17.13 even 4 1700.1.bw.a.931.1 yes 8
25.21 even 5 1700.1.bw.a.871.1 8
68.47 odd 4 1700.1.bw.a.931.1 yes 8
100.71 odd 10 1700.1.bw.a.871.1 8
425.421 even 20 inner 1700.1.bw.b.1271.1 yes 8
1700.1271 odd 20 inner 1700.1.bw.b.1271.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1700.1.bw.a.871.1 8 25.21 even 5
1700.1.bw.a.871.1 8 100.71 odd 10
1700.1.bw.a.931.1 yes 8 17.13 even 4
1700.1.bw.a.931.1 yes 8 68.47 odd 4
1700.1.bw.b.531.1 yes 8 1.1 even 1 trivial
1700.1.bw.b.531.1 yes 8 4.3 odd 2 CM
1700.1.bw.b.1271.1 yes 8 425.421 even 20 inner
1700.1.bw.b.1271.1 yes 8 1700.1271 odd 20 inner