Properties

Label 1700.1.cm.a.1567.1
Level $1700$
Weight $1$
Character 1700.1567
Analytic conductor $0.848$
Analytic rank $0$
Dimension $32$
Projective image $D_{80}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1700,1,Mod(23,1700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(80))
 
chi = DirichletCharacter(H, H._module([40, 44, 75]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1700.23");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1700.cm (of order \(80\), degree \(32\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.848410521476\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient field: \(\Q(\zeta_{80})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{32} - x^{24} + x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{80}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{80} - \cdots)\)

Embedding invariants

Embedding label 1567.1
Root \(0.522499 - 0.852640i\) of defining polynomial
Character \(\chi\) \(=\) 1700.1567
Dual form 1700.1.cm.a.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0784591 + 0.996917i) q^{2} +(-0.987688 - 0.156434i) q^{4} +(0.972370 + 0.233445i) q^{5} +(0.233445 - 0.972370i) q^{8} +(-0.760406 - 0.649448i) q^{9} +(-0.309017 + 0.951057i) q^{10} +(0.526961 - 1.62182i) q^{13} +(0.951057 + 0.309017i) q^{16} +(0.987688 + 0.156434i) q^{17} +(0.707107 - 0.707107i) q^{18} +(-0.923880 - 0.382683i) q^{20} +(0.891007 + 0.453990i) q^{25} +(1.57547 + 0.652583i) q^{26} +(1.47356 + 0.543623i) q^{29} +(-0.382683 + 0.923880i) q^{32} +(-0.233445 + 0.972370i) q^{34} +(0.649448 + 0.760406i) q^{36} +(-1.67948 + 0.473661i) q^{37} +(0.453990 - 0.891007i) q^{40} +(-1.16166 - 1.47356i) q^{41} +(-0.587785 - 0.809017i) q^{45} +(0.923880 - 0.382683i) q^{49} +(-0.522499 + 0.852640i) q^{50} +(-0.774181 + 1.51942i) q^{52} +(0.453990 + 1.89101i) q^{53} +(-0.657561 + 1.42636i) q^{58} +(0.493014 - 1.74809i) q^{61} +(-0.891007 - 0.453990i) q^{64} +(0.891007 - 1.45399i) q^{65} +(-0.951057 - 0.309017i) q^{68} +(-0.809017 + 0.587785i) q^{72} +(0.159569 + 1.34819i) q^{73} +(-0.340431 - 1.71146i) q^{74} +(0.852640 + 0.522499i) q^{80} +(0.156434 + 0.987688i) q^{81} +(1.56016 - 1.04246i) q^{82} +(0.923880 + 0.382683i) q^{85} +(-0.589686 + 1.15732i) q^{89} +(0.852640 - 0.522499i) q^{90} +(-1.74809 + 0.805883i) q^{97} +(0.309017 + 0.951057i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{10} + 8 q^{41} - 8 q^{72} + 8 q^{73} - 8 q^{74} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(e\left(\frac{13}{20}\right)\) \(-1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0784591 + 0.996917i −0.0784591 + 0.996917i
\(3\) 0 0 0.346117 0.938191i \(-0.387500\pi\)
−0.346117 + 0.938191i \(0.612500\pi\)
\(4\) −0.987688 0.156434i −0.987688 0.156434i
\(5\) 0.972370 + 0.233445i 0.972370 + 0.233445i
\(6\) 0 0
\(7\) 0 0 0.980785 0.195090i \(-0.0625000\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(8\) 0.233445 0.972370i 0.233445 0.972370i
\(9\) −0.760406 0.649448i −0.760406 0.649448i
\(10\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(11\) 0 0 0.872496 0.488621i \(-0.162500\pi\)
−0.872496 + 0.488621i \(0.837500\pi\)
\(12\) 0 0
\(13\) 0.526961 1.62182i 0.526961 1.62182i −0.233445 0.972370i \(-0.575000\pi\)
0.760406 0.649448i \(-0.225000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(17\) 0.987688 + 0.156434i 0.987688 + 0.156434i
\(18\) 0.707107 0.707107i 0.707107 0.707107i
\(19\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(20\) −0.923880 0.382683i −0.923880 0.382683i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.962455 0.271440i \(-0.912500\pi\)
0.962455 + 0.271440i \(0.0875000\pi\)
\(24\) 0 0
\(25\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(26\) 1.57547 + 0.652583i 1.57547 + 0.652583i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.47356 + 0.543623i 1.47356 + 0.543623i 0.951057 0.309017i \(-0.100000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(30\) 0 0
\(31\) 0 0 0.734323 0.678801i \(-0.237500\pi\)
−0.734323 + 0.678801i \(0.762500\pi\)
\(32\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(33\) 0 0
\(34\) −0.233445 + 0.972370i −0.233445 + 0.972370i
\(35\) 0 0
\(36\) 0.649448 + 0.760406i 0.649448 + 0.760406i
\(37\) −1.67948 + 0.473661i −1.67948 + 0.473661i −0.972370 0.233445i \(-0.925000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.453990 0.891007i 0.453990 0.891007i
\(41\) −1.16166 1.47356i −1.16166 1.47356i −0.852640 0.522499i \(-0.825000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(42\) 0 0
\(43\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(44\) 0 0
\(45\) −0.587785 0.809017i −0.587785 0.809017i
\(46\) 0 0
\(47\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(48\) 0 0
\(49\) 0.923880 0.382683i 0.923880 0.382683i
\(50\) −0.522499 + 0.852640i −0.522499 + 0.852640i
\(51\) 0 0
\(52\) −0.774181 + 1.51942i −0.774181 + 1.51942i
\(53\) 0.453990 + 1.89101i 0.453990 + 1.89101i 0.453990 + 0.891007i \(0.350000\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −0.657561 + 1.42636i −0.657561 + 1.42636i
\(59\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(60\) 0 0
\(61\) 0.493014 1.74809i 0.493014 1.74809i −0.156434 0.987688i \(-0.550000\pi\)
0.649448 0.760406i \(-0.275000\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.891007 0.453990i −0.891007 0.453990i
\(65\) 0.891007 1.45399i 0.891007 1.45399i
\(66\) 0 0
\(67\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(68\) −0.951057 0.309017i −0.951057 0.309017i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.908143 0.418660i \(-0.137500\pi\)
−0.908143 + 0.418660i \(0.862500\pi\)
\(72\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(73\) 0.159569 + 1.34819i 0.159569 + 1.34819i 0.809017 + 0.587785i \(0.200000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(74\) −0.340431 1.71146i −0.340431 1.71146i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.678801 0.734323i \(-0.262500\pi\)
−0.678801 + 0.734323i \(0.737500\pi\)
\(80\) 0.852640 + 0.522499i 0.852640 + 0.522499i
\(81\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(82\) 1.56016 1.04246i 1.56016 1.04246i
\(83\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(84\) 0 0
\(85\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.589686 + 1.15732i −0.589686 + 1.15732i 0.382683 + 0.923880i \(0.375000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(90\) 0.852640 0.522499i 0.852640 0.522499i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.74809 + 0.805883i −1.74809 + 0.805883i −0.760406 + 0.649448i \(0.775000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(98\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(99\) 0 0
\(100\) −0.809017 0.587785i −0.809017 0.587785i
\(101\) 0.156918i 0.156918i 0.996917 + 0.0784591i \(0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(102\) 0 0
\(103\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(104\) −1.45399 0.891007i −1.45399 0.891007i
\(105\) 0 0
\(106\) −1.92080 + 0.304224i −1.92080 + 0.304224i
\(107\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(108\) 0 0
\(109\) −1.15335 + 0.909229i −1.15335 + 0.909229i −0.996917 0.0784591i \(-0.975000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.184608 0.145533i 0.184608 0.145533i −0.522499 0.852640i \(-0.675000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.37037 0.767445i −1.37037 0.767445i
\(117\) −1.45399 + 0.891007i −1.45399 + 0.891007i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.522499 0.852640i 0.522499 0.852640i
\(122\) 1.70402 + 0.628648i 1.70402 + 0.628648i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.760406 + 0.649448i 0.760406 + 0.649448i
\(126\) 0 0
\(127\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(128\) 0.522499 0.852640i 0.522499 0.852640i
\(129\) 0 0
\(130\) 1.37960 + 1.00234i 1.37960 + 1.00234i
\(131\) 0 0 −0.999229 0.0392598i \(-0.987500\pi\)
0.999229 + 0.0392598i \(0.0125000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.382683 0.923880i 0.382683 0.923880i
\(137\) 0.931099 0.474419i 0.931099 0.474419i 0.0784591 0.996917i \(-0.475000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(138\) 0 0
\(139\) 0 0 0.993068 0.117537i \(-0.0375000\pi\)
−0.993068 + 0.117537i \(0.962500\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.522499 0.852640i −0.522499 0.852640i
\(145\) 1.30593 + 0.872597i 1.30593 + 0.872597i
\(146\) −1.35655 + 0.0532992i −1.35655 + 0.0532992i
\(147\) 0 0
\(148\) 1.73290 0.205102i 1.73290 0.205102i
\(149\) 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(152\) 0 0
\(153\) −0.649448 0.760406i −0.649448 0.760406i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(161\) 0 0
\(162\) −0.996917 + 0.0784591i −0.996917 + 0.0784591i
\(163\) 0 0 0.117537 0.993068i \(-0.462500\pi\)
−0.117537 + 0.993068i \(0.537500\pi\)
\(164\) 0.916840 + 1.63714i 0.916840 + 1.63714i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.999229 0.0392598i \(-0.987500\pi\)
0.999229 + 0.0392598i \(0.0125000\pi\)
\(168\) 0 0
\(169\) −1.54359 1.12148i −1.54359 1.12148i
\(170\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(171\) 0 0
\(172\) 0 0
\(173\) −0.426334 0.336094i −0.426334 0.336094i 0.382683 0.923880i \(-0.375000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −1.10749 0.678671i −1.10749 0.678671i
\(179\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(180\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(181\) 0.518379 1.12445i 0.518379 1.12445i −0.453990 0.891007i \(-0.650000\pi\)
0.972370 0.233445i \(-0.0750000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.74365 + 0.0685081i −1.74365 + 0.0685081i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(192\) 0 0
\(193\) −1.11028 + 1.66166i −1.11028 + 1.66166i −0.522499 + 0.852640i \(0.675000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(194\) −0.666244 1.80593i −0.666244 1.80593i
\(195\) 0 0
\(196\) −0.972370 + 0.233445i −0.972370 + 0.233445i
\(197\) −0.614863 0.568373i −0.614863 0.568373i 0.309017 0.951057i \(-0.400000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(200\) 0.649448 0.760406i 0.649448 0.760406i
\(201\) 0 0
\(202\) −0.156434 0.0123117i −0.156434 0.0123117i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.785566 1.70402i −0.785566 1.70402i
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00234 1.37960i 1.00234 1.37960i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.962455 0.271440i \(-0.912500\pi\)
0.962455 + 0.271440i \(0.0875000\pi\)
\(212\) −0.152583 1.93874i −0.152583 1.93874i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −0.815935 1.22113i −0.815935 1.22113i
\(219\) 0 0
\(220\) 0 0
\(221\) 0.774181 1.51942i 0.774181 1.51942i
\(222\) 0 0
\(223\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(224\) 0 0
\(225\) −0.382683 0.923880i −0.382683 0.923880i
\(226\) 0.130601 + 0.195458i 0.130601 + 0.195458i
\(227\) 0 0 0.271440 0.962455i \(-0.412500\pi\)
−0.271440 + 0.962455i \(0.587500\pi\)
\(228\) 0 0
\(229\) −0.304224 + 0.0730378i −0.304224 + 0.0730378i −0.382683 0.923880i \(-0.625000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.872597 1.30593i 0.872597 1.30593i
\(233\) −0.0576587 + 0.0532992i −0.0576587 + 0.0532992i −0.707107 0.707107i \(-0.750000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(234\) −0.774181 1.51942i −0.774181 1.51942i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(240\) 0 0
\(241\) −0.970469 + 1.73290i −0.970469 + 1.73290i −0.382683 + 0.923880i \(0.625000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(242\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(243\) 0 0
\(244\) −0.760406 + 1.64945i −0.760406 + 1.64945i
\(245\) 0.987688 0.156434i 0.987688 0.156434i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(257\) 1.08609 + 0.449871i 1.08609 + 0.449871i 0.852640 0.522499i \(-0.175000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.10749 + 1.29671i −1.10749 + 1.29671i
\(261\) −0.767445 1.37037i −0.767445 1.37037i
\(262\) 0 0
\(263\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(264\) 0 0
\(265\) 1.94474i 1.94474i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.469889 0.508323i −0.469889 0.508323i 0.453990 0.891007i \(-0.350000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(270\) 0 0
\(271\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(272\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(273\) 0 0
\(274\) 0.399903 + 0.965451i 0.399903 + 0.965451i
\(275\) 0 0
\(276\) 0 0
\(277\) 0.970469 0.114863i 0.970469 0.114863i 0.382683 0.923880i \(-0.375000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.243950 0.398090i −0.243950 0.398090i 0.707107 0.707107i \(-0.250000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(282\) 0 0
\(283\) 0 0 −0.346117 0.938191i \(-0.612500\pi\)
0.346117 + 0.938191i \(0.387500\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.891007 0.453990i 0.891007 0.453990i
\(289\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(290\) −0.972370 + 1.23345i −0.972370 + 1.23345i
\(291\) 0 0
\(292\) 0.0532992 1.35655i 0.0532992 1.35655i
\(293\) 1.78201i 1.78201i −0.453990 0.891007i \(-0.650000\pi\)
0.453990 0.891007i \(-0.350000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.0685081 + 1.74365i 0.0685081 + 1.74365i
\(297\) 0 0
\(298\) 1.28290 + 1.50209i 1.28290 + 1.50209i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.887476 1.58470i 0.887476 1.58470i
\(306\) 0.809017 0.587785i 0.809017 0.587785i
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.619094 0.785317i \(-0.287500\pi\)
−0.619094 + 0.785317i \(0.712500\pi\)
\(312\) 0 0
\(313\) 0.387476 + 0.0458608i 0.387476 + 0.0458608i 0.309017 0.951057i \(-0.400000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(314\) 0.149238 1.89625i 0.149238 1.89625i
\(315\) 0 0
\(316\) 0 0
\(317\) −1.04246 + 0.384585i −1.04246 + 0.384585i −0.809017 0.587785i \(-0.800000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.760406 0.649448i −0.760406 0.649448i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000i 1.00000i
\(325\) 1.20582 1.20582i 1.20582 1.20582i
\(326\) 0 0
\(327\) 0 0
\(328\) −1.70402 + 0.785566i −1.70402 + 0.785566i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(332\) 0 0
\(333\) 1.58470 + 0.730558i 1.58470 + 0.730558i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.451389 + 1.60050i 0.451389 + 1.60050i 0.760406 + 0.649448i \(0.225000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(338\) 1.23913 1.45084i 1.23913 1.45084i
\(339\) 0 0
\(340\) −0.852640 0.522499i −0.852640 0.522499i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0.368508 0.398650i 0.368508 0.398650i
\(347\) 0 0 0.678801 0.734323i \(-0.262500\pi\)
−0.678801 + 0.734323i \(0.737500\pi\)
\(348\) 0 0
\(349\) −0.763007 + 1.84206i −0.763007 + 1.84206i −0.309017 + 0.951057i \(0.600000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.14412 + 0.831254i −1.14412 + 0.831254i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.763472 1.05083i 0.763472 1.05083i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(360\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(361\) −0.891007 0.453990i −0.891007 0.453990i
\(362\) 1.08031 + 0.605005i 1.08031 + 0.605005i
\(363\) 0 0
\(364\) 0 0
\(365\) −0.159569 + 1.34819i −0.159569 + 1.34819i
\(366\) 0 0
\(367\) 0 0 0.418660 0.908143i \(-0.362500\pi\)
−0.418660 + 0.908143i \(0.637500\pi\)
\(368\) 0 0
\(369\) −0.0736664 + 1.87494i −0.0736664 + 1.87494i
\(370\) 0.0685081 1.74365i 0.0685081 1.74365i
\(371\) 0 0
\(372\) 0 0
\(373\) −0.838865 + 1.64637i −0.838865 + 1.64637i −0.0784591 + 0.996917i \(0.525000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.65816 2.10337i 1.65816 2.10337i
\(378\) 0 0
\(379\) 0 0 0.346117 0.938191i \(-0.387500\pi\)
−0.346117 + 0.938191i \(0.612500\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.56942 1.23723i −1.56942 1.23723i
\(387\) 0 0
\(388\) 1.85264 0.522499i 1.85264 0.522499i
\(389\) −0.763472 0.893911i −0.763472 0.893911i 0.233445 0.972370i \(-0.425000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.156434 0.987688i −0.156434 0.987688i
\(393\) 0 0
\(394\) 0.614863 0.568373i 0.614863 0.568373i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.96006 + 0.0770109i −1.96006 + 0.0770109i −0.987688 0.156434i \(-0.950000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(401\) 0.0652867 + 0.0436232i 0.0652867 + 0.0436232i 0.587785 0.809017i \(-0.300000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.0245474 0.154986i 0.0245474 0.154986i
\(405\) −0.0784591 + 0.996917i −0.0784591 + 0.996917i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.69480 + 0.550672i 1.69480 + 0.550672i 0.987688 0.156434i \(-0.0500000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(410\) 1.76041 0.649448i 1.76041 0.649448i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 1.29671 + 1.10749i 1.29671 + 1.10749i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.908143 0.418660i \(-0.862500\pi\)
0.908143 + 0.418660i \(0.137500\pi\)
\(420\) 0 0
\(421\) −1.50209 0.237907i −1.50209 0.237907i −0.649448 0.760406i \(-0.725000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 1.94474 1.94474
\(425\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.908143 0.418660i \(-0.862500\pi\)
0.908143 + 0.418660i \(0.137500\pi\)
\(432\) 0 0
\(433\) 0.0730378 0.304224i 0.0730378 0.304224i −0.923880 0.382683i \(-0.875000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.28139 0.717611i 1.28139 0.717611i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.117537 0.993068i \(-0.537500\pi\)
0.117537 + 0.993068i \(0.462500\pi\)
\(440\) 0 0
\(441\) −0.951057 0.309017i −0.951057 0.309017i
\(442\) 1.45399 + 0.891007i 1.45399 + 0.891007i
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) −0.843566 + 0.987688i −0.843566 + 0.987688i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.812547 + 0.542927i 0.812547 + 0.542927i 0.891007 0.453990i \(-0.150000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(450\) 0.951057 0.309017i 0.951057 0.309017i
\(451\) 0 0
\(452\) −0.205102 + 0.114863i −0.205102 + 0.114863i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(458\) −0.0489435 0.309017i −0.0489435 0.309017i
\(459\) 0 0
\(460\) 0 0
\(461\) −0.987688 1.15643i −0.987688 1.15643i −0.987688 0.156434i \(-0.950000\pi\)
1.00000i \(-0.5\pi\)
\(462\) 0 0
\(463\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(464\) 1.23345 + 0.972370i 1.23345 + 0.972370i
\(465\) 0 0
\(466\) −0.0486110 0.0616628i −0.0486110 0.0616628i
\(467\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(468\) 1.57547 0.652583i 1.57547 0.652583i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.882893 1.73278i 0.882893 1.73278i
\(478\) 0 0
\(479\) 0 0 −0.418660 0.908143i \(-0.637500\pi\)
0.418660 + 0.908143i \(0.362500\pi\)
\(480\) 0 0
\(481\) −0.116825 + 2.97341i −0.116825 + 2.97341i
\(482\) −1.65141 1.10344i −1.65141 1.10344i
\(483\) 0 0
\(484\) −0.649448 + 0.760406i −0.649448 + 0.760406i
\(485\) −1.88792 + 0.375531i −1.88792 + 0.375531i
\(486\) 0 0
\(487\) 0 0 −0.619094 0.785317i \(-0.712500\pi\)
0.619094 + 0.785317i \(0.287500\pi\)
\(488\) −1.58470 0.887476i −1.58470 0.887476i
\(489\) 0 0
\(490\) 0.0784591 + 0.996917i 0.0784591 + 0.996917i
\(491\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(492\) 0 0
\(493\) 1.37037 + 0.767445i 1.37037 + 0.767445i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.195090 0.980785i \(-0.562500\pi\)
0.195090 + 0.980785i \(0.437500\pi\)
\(500\) −0.649448 0.760406i −0.649448 0.760406i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.678801 0.734323i \(-0.262500\pi\)
−0.678801 + 0.734323i \(0.737500\pi\)
\(504\) 0 0
\(505\) −0.0366318 + 0.152583i −0.0366318 + 0.152583i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.550672 1.69480i 0.550672 1.69480i −0.156434 0.987688i \(-0.550000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.649448 + 0.760406i −0.649448 + 0.760406i
\(513\) 0 0
\(514\) −0.533698 + 1.04744i −0.533698 + 1.04744i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −1.20582 1.20582i −1.20582 1.20582i
\(521\) 0.614863 + 0.568373i 0.614863 + 0.568373i 0.923880 0.382683i \(-0.125000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(522\) 1.42636 0.657561i 1.42636 0.657561i
\(523\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.852640 + 0.522499i 0.852640 + 0.522499i
\(530\) −1.93874 0.152583i −1.93874 0.152583i
\(531\) 0 0
\(532\) 0 0
\(533\) −3.00199 + 1.10749i −3.00199 + 1.10749i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.543623 0.428558i 0.543623 0.428558i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.473661 0.265263i −0.473661 0.265263i 0.233445 0.972370i \(-0.425000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.522499 + 0.852640i −0.522499 + 0.852640i
\(545\) −1.33374 + 0.614863i −1.33374 + 0.614863i
\(546\) 0 0
\(547\) 0 0 −0.938191 0.346117i \(-0.887500\pi\)
0.938191 + 0.346117i \(0.112500\pi\)
\(548\) −0.993851 + 0.322922i −0.993851 + 0.322922i
\(549\) −1.51019 + 1.00907i −1.51019 + 1.00907i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.0383664 + 0.976489i 0.0383664 + 0.976489i
\(555\) 0 0
\(556\) 0 0
\(557\) 1.52081i 1.52081i 0.649448 + 0.760406i \(0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.416003 0.211964i 0.416003 0.211964i
\(563\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(564\) 0 0
\(565\) 0.213482 0.0984164i 0.213482 0.0984164i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.04178 + 1.70002i 1.04178 + 1.70002i 0.587785 + 0.809017i \(0.300000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(570\) 0 0
\(571\) 0 0 0.999229 0.0392598i \(-0.0125000\pi\)
−0.999229 + 0.0392598i \(0.987500\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(577\) −1.64637 0.838865i −1.64637 0.838865i −0.996917 0.0784591i \(-0.975000\pi\)
−0.649448 0.760406i \(-0.725000\pi\)
\(578\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(579\) 0 0
\(580\) −1.15335 1.06615i −1.15335 1.06615i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 1.34819 + 0.159569i 1.34819 + 0.159569i
\(585\) −1.62182 + 0.526961i −1.62182 + 0.526961i
\(586\) 1.77652 + 0.139815i 1.77652 + 0.139815i
\(587\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.74365 0.0685081i −1.74365 0.0685081i
\(593\) 1.84206 + 0.763007i 1.84206 + 0.763007i 0.951057 + 0.309017i \(0.100000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.59811 + 1.16110i −1.59811 + 1.16110i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(600\) 0 0
\(601\) −0.821231 + 0.163353i −0.821231 + 0.163353i −0.587785 0.809017i \(-0.700000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.707107 0.707107i 0.707107 0.707107i
\(606\) 0 0
\(607\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 1.51019 + 1.00907i 1.51019 + 1.00907i
\(611\) 0 0
\(612\) 0.522499 + 0.852640i 0.522499 + 0.852640i
\(613\) −0.412215 0.809017i −0.412215 0.809017i 0.587785 0.809017i \(-0.300000\pi\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.508323 + 0.469889i −0.508323 + 0.469889i −0.891007 0.453990i \(-0.850000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(618\) 0 0
\(619\) 0 0 −0.346117 0.938191i \(-0.612500\pi\)
0.346117 + 0.938191i \(0.387500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(626\) −0.0761205 + 0.382683i −0.0761205 + 0.382683i
\(627\) 0 0
\(628\) 1.87869 + 0.297556i 1.87869 + 0.297556i
\(629\) −1.73290 + 0.205102i −1.73290 + 0.205102i
\(630\) 0 0
\(631\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −0.301608 1.06942i −0.301608 1.06942i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.133795 1.70002i −0.133795 1.70002i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.707107 0.707107i 0.707107 0.707107i
\(641\) 0.532450 + 1.88792i 0.532450 + 1.88792i 0.453990 + 0.891007i \(0.350000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(642\) 0 0
\(643\) 0 0 −0.555570 0.831470i \(-0.687500\pi\)
0.555570 + 0.831470i \(0.312500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(648\) 0.996917 + 0.0784591i 0.996917 + 0.0784591i
\(649\) 0 0
\(650\) 1.10749 + 1.29671i 1.10749 + 1.29671i
\(651\) 0 0
\(652\) 0 0
\(653\) 0.717611 + 0.663353i 0.717611 + 0.663353i 0.951057 0.309017i \(-0.100000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.649448 1.76041i −0.649448 1.76041i
\(657\) 0.754243 1.12880i 0.754243 1.12880i
\(658\) 0 0
\(659\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(660\) 0 0
\(661\) 1.40505 1.20002i 1.40505 1.20002i 0.453990 0.891007i \(-0.350000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.852640 + 1.52250i −0.852640 + 1.52250i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.605005 + 1.08031i 0.605005 + 1.08031i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(674\) −1.63099 + 0.324423i −1.63099 + 0.324423i
\(675\) 0 0
\(676\) 1.34915 + 1.34915i 1.34915 + 1.34915i
\(677\) 1.30593 + 1.02952i 1.30593 + 1.02952i 0.996917 + 0.0784591i \(0.0250000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.587785 0.809017i 0.587785 0.809017i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.999229 0.0392598i \(-0.987500\pi\)
0.999229 + 0.0392598i \(0.0125000\pi\)
\(684\) 0 0
\(685\) 1.01612 0.243950i 1.01612 0.243950i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.30610 + 0.260196i 3.30610 + 0.260196i
\(690\) 0 0
\(691\) 0 0 −0.993068 0.117537i \(-0.962500\pi\)
0.993068 + 0.117537i \(0.0375000\pi\)
\(692\) 0.368508 + 0.398650i 0.368508 + 0.398650i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.916840 1.63714i −0.916840 1.63714i
\(698\) −1.77652 0.905182i −1.77652 0.905182i
\(699\) 0 0
\(700\) 0 0
\(701\) −0.738925 + 0.738925i −0.738925 + 0.738925i −0.972370 0.233445i \(-0.925000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.738925 1.20582i −0.738925 1.20582i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0755716 + 0.0213134i −0.0755716 + 0.0213134i −0.309017 0.951057i \(-0.600000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.987688 + 0.843566i 0.987688 + 0.843566i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.999229 0.0392598i \(-0.987500\pi\)
0.999229 + 0.0392598i \(0.0125000\pi\)
\(720\) −0.309017 0.951057i −0.309017 0.951057i
\(721\) 0 0
\(722\) 0.522499 0.852640i 0.522499 0.852640i
\(723\) 0 0
\(724\) −0.687900 + 1.02952i −0.687900 + 1.02952i
\(725\) 1.06615 + 1.15335i 1.06615 + 1.15335i
\(726\) 0 0
\(727\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(728\) 0 0
\(729\) 0.522499 0.852640i 0.522499 0.852640i
\(730\) −1.33152 0.264855i −1.33152 0.264855i
\(731\) 0 0
\(732\) 0 0
\(733\) −0.652583 + 0.399903i −0.652583 + 0.399903i −0.809017 0.587785i \(-0.800000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −1.86338 0.220545i −1.86338 0.220545i
\(739\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(740\) 1.73290 + 0.205102i 1.73290 + 0.205102i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.195090 0.980785i \(-0.437500\pi\)
−0.195090 + 0.980785i \(0.562500\pi\)
\(744\) 0 0
\(745\) 1.68429 1.03213i 1.68429 1.03213i
\(746\) −1.57547 0.965451i −1.57547 0.965451i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.980785 0.195090i \(-0.937500\pi\)
0.980785 + 0.195090i \(0.0625000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 1.96679 + 1.81808i 1.96679 + 1.81808i
\(755\) 0 0
\(756\) 0 0
\(757\) 0.449871 + 1.08609i 0.449871 + 1.08609i 0.972370 + 0.233445i \(0.0750000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.474419 0.931099i 0.474419 0.931099i −0.522499 0.852640i \(-0.675000\pi\)
0.996917 0.0784591i \(-0.0250000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −0.453990 0.891007i −0.453990 0.891007i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0.119730 + 0.755944i 0.119730 + 0.755944i 0.972370 + 0.233445i \(0.0750000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.35655 1.46751i 1.35655 1.46751i
\(773\) 1.50209 1.28290i 1.50209 1.28290i 0.649448 0.760406i \(-0.275000\pi\)
0.852640 0.522499i \(-0.175000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.375531 + 1.88792i 0.375531 + 1.88792i
\(777\) 0 0
\(778\) 0.951057 0.690983i 0.951057 0.690983i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.996917 0.0784591i 0.996917 0.0784591i
\(785\) −1.84956 0.444039i −1.84956 0.444039i
\(786\) 0 0
\(787\) 0 0 −0.872496 0.488621i \(-0.837500\pi\)
0.872496 + 0.488621i \(0.162500\pi\)
\(788\) 0.518379 + 0.657561i 0.518379 + 0.657561i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.57529 1.72076i −2.57529 1.72076i
\(794\) 0.0770109 1.96006i 0.0770109 1.96006i
\(795\) 0 0
\(796\) 0 0
\(797\) 0.108993 + 0.453990i 0.108993 + 0.453990i 1.00000 \(0\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.760406 + 0.649448i −0.760406 + 0.649448i
\(801\) 1.20002 0.497066i 1.20002 0.497066i
\(802\) −0.0486110 + 0.0616628i −0.0486110 + 0.0616628i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0.152583 + 0.0366318i 0.152583 + 0.0366318i
\(809\) 0.145533 + 0.184608i 0.145533 + 0.184608i 0.852640 0.522499i \(-0.175000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(810\) −0.987688 0.156434i −0.987688 0.156434i
\(811\) 0 0 −0.785317 0.619094i \(-0.787500\pi\)
0.785317 + 0.619094i \(0.212500\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.681947 + 1.64637i −0.681947 + 1.64637i
\(819\) 0 0
\(820\) 0.509326 + 1.80593i 0.509326 + 1.80593i
\(821\) −1.04246 0.384585i −1.04246 0.384585i −0.233445 0.972370i \(-0.575000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(822\) 0 0
\(823\) 0 0 0.872496 0.488621i \(-0.162500\pi\)
−0.872496 + 0.488621i \(0.837500\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.962455 0.271440i \(-0.912500\pi\)
0.962455 + 0.271440i \(0.0875000\pi\)
\(828\) 0 0
\(829\) 0.0489435 0.309017i 0.0489435 0.309017i −0.951057 0.309017i \(-0.900000\pi\)
1.00000 \(0\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.20582 + 1.20582i −1.20582 + 1.20582i
\(833\) 0.972370 0.233445i 0.972370 0.233445i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.872496 0.488621i \(-0.162500\pi\)
−0.872496 + 0.488621i \(0.837500\pi\)
\(840\) 0 0
\(841\) 1.11543 + 0.952669i 1.11543 + 0.952669i
\(842\) 0.355026 1.47879i 0.355026 1.47879i
\(843\) 0 0
\(844\) 0 0
\(845\) −1.23913 1.45084i −1.23913 1.45084i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.152583 + 1.93874i −0.152583 + 1.93874i
\(849\) 0 0
\(850\) −0.649448 + 0.760406i −0.649448 + 0.760406i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.508323 1.37787i 0.508323 1.37787i −0.382683 0.923880i \(-0.625000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.382683 + 0.0761205i −0.382683 + 0.0761205i −0.382683 0.923880i \(-0.625000\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(864\) 0 0
\(865\) −0.336094 0.426334i −0.336094 0.426334i
\(866\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.614863 + 1.33374i 0.614863 + 1.33374i
\(873\) 1.85264 + 0.522499i 1.85264 + 0.522499i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0.0685081 0.0383664i 0.0685081 0.0383664i −0.453990 0.891007i \(-0.650000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −0.286518 + 0.264855i −0.286518 + 0.264855i −0.809017 0.587785i \(-0.800000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(882\) 0.382683 0.923880i 0.382683 0.923880i
\(883\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(884\) −1.00234 + 1.37960i −1.00234 + 1.37960i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.962455 0.271440i \(-0.0875000\pi\)
−0.962455 + 0.271440i \(0.912500\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.918458 0.918458i −0.918458 0.918458i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.605005 + 0.767445i −0.605005 + 0.767445i
\(899\) 0 0
\(900\) 0.233445 + 0.972370i 0.233445 + 0.972370i
\(901\) 0.152583 + 1.93874i 0.152583 + 1.93874i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.0984164 0.213482i −0.0984164 0.213482i
\(905\) 0.766555 0.972370i 0.766555 0.972370i
\(906\) 0 0
\(907\) 0 0 −0.831470 0.555570i \(-0.812500\pi\)
0.831470 + 0.555570i \(0.187500\pi\)
\(908\) 0 0
\(909\) 0.101910 0.119322i 0.101910 0.119322i
\(910\) 0 0
\(911\) 0 0 0.271440 0.962455i \(-0.412500\pi\)
−0.271440 + 0.962455i \(0.587500\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.311904 0.0245474i 0.311904 0.0245474i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.23036 0.893911i 1.23036 0.893911i
\(923\) 0 0
\(924\) 0 0
\(925\) −1.71146 0.340431i −1.71146 0.340431i
\(926\) 0 0
\(927\) 0 0
\(928\) −1.06615 + 1.15335i −1.06615 + 1.15335i
\(929\) −1.34819 + 1.45847i −1.34819 + 1.45847i −0.587785 + 0.809017i \(0.700000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.0652867 0.0436232i 0.0652867 0.0436232i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.526961 + 1.62182i 0.526961 + 1.62182i
\(937\) 0.101910 0.119322i 0.101910 0.119322i −0.707107 0.707107i \(-0.750000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.0276301 + 0.233445i −0.0276301 + 0.233445i 0.972370 + 0.233445i \(0.0750000\pi\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.908143 0.418660i \(-0.137500\pi\)
−0.908143 + 0.418660i \(0.862500\pi\)
\(948\) 0 0
\(949\) 2.27061 + 0.451652i 2.27061 + 0.451652i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.0245474 + 0.154986i −0.0245474 + 0.154986i −0.996917 0.0784591i \(-0.975000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(954\) 1.65816 + 1.01612i 1.65816 + 1.01612i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.0784591 0.996917i 0.0784591 0.996917i
\(962\) −2.95507 0.349756i −2.95507 0.349756i
\(963\) 0 0
\(964\) 1.22961 1.55975i 1.22961 1.55975i
\(965\) −1.46751 + 1.35655i −1.46751 + 1.35655i
\(966\) 0 0
\(967\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(968\) −0.707107 0.707107i −0.707107 0.707107i
\(969\) 0 0
\(970\) −0.226249 1.91157i −0.226249 1.91157i
\(971\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 1.00907 1.51019i 1.00907 1.51019i
\(977\) 0.303221 + 0.355026i 0.303221 + 0.355026i 0.891007 0.453990i \(-0.150000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.00000 −1.00000
\(981\) 1.46751 + 0.0576587i 1.46751 + 0.0576587i
\(982\) 0 0
\(983\) 0 0 0.0392598 0.999229i \(-0.487500\pi\)
−0.0392598 + 0.999229i \(0.512500\pi\)
\(984\) 0 0
\(985\) −0.465190 0.696206i −0.465190 0.696206i
\(986\) −0.872597 + 1.30593i −0.872597 + 1.30593i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.962455 0.271440i \(-0.0875000\pi\)
−0.962455 + 0.271440i \(0.912500\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.0436232 1.11028i −0.0436232 1.11028i −0.852640 0.522499i \(-0.825000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.1.cm.a.1567.1 yes 32
4.3 odd 2 CM 1700.1.cm.a.1567.1 yes 32
17.6 odd 16 1700.1.ct.a.567.1 yes 32
25.3 odd 20 1700.1.ct.a.3.1 yes 32
68.23 even 16 1700.1.ct.a.567.1 yes 32
100.3 even 20 1700.1.ct.a.3.1 yes 32
425.278 even 80 inner 1700.1.cm.a.703.1 32
1700.703 odd 80 inner 1700.1.cm.a.703.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1700.1.cm.a.703.1 32 425.278 even 80 inner
1700.1.cm.a.703.1 32 1700.703 odd 80 inner
1700.1.cm.a.1567.1 yes 32 1.1 even 1 trivial
1700.1.cm.a.1567.1 yes 32 4.3 odd 2 CM
1700.1.ct.a.3.1 yes 32 25.3 odd 20
1700.1.ct.a.3.1 yes 32 100.3 even 20
1700.1.ct.a.567.1 yes 32 17.6 odd 16
1700.1.ct.a.567.1 yes 32 68.23 even 16