gp: [N,k,chi] = [1700,1,Mod(151,1700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 0, 3]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1700.151");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1700 Z ) × \left(\mathbb{Z}/1700\mathbb{Z}\right)^\times ( Z / 1 7 0 0 Z ) × .
n n n
477 477 4 7 7
851 851 8 5 1
1601 1601 1 6 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
ζ 8 3 \zeta_{8}^{3} ζ 8 3
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 37 4 + 4 T 37 3 + 6 T 37 2 + 4 T 37 + 2 T_{37}^{4} + 4T_{37}^{3} + 6T_{37}^{2} + 4T_{37} + 2 T 3 7 4 + 4 T 3 7 3 + 6 T 3 7 2 + 4 T 3 7 + 2
T37^4 + 4*T37^3 + 6*T37^2 + 4*T37 + 2
acting on S 1 n e w ( 1700 , [ χ ] ) S_{1}^{\mathrm{new}}(1700, [\chi]) S 1 n e w ( 1 7 0 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 T^{4} T 4
T^4
13 13 1 3
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
17 17 1 7
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
19 19 1 9
T 4 T^{4} T 4
T^4
23 23 2 3
T 4 T^{4} T 4
T^4
29 29 2 9
T 4 − 4 T 3 + ⋯ + 2 T^{4} - 4 T^{3} + \cdots + 2 T 4 − 4 T 3 + ⋯ + 2
T^4 - 4*T^3 + 6*T^2 - 4*T + 2
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 + 4 T 3 + ⋯ + 2 T^{4} + 4 T^{3} + \cdots + 2 T 4 + 4 T 3 + ⋯ + 2
T^4 + 4*T^3 + 6*T^2 + 4*T + 2
41 41 4 1
T 4 − 4 T 3 + ⋯ + 2 T^{4} - 4 T^{3} + \cdots + 2 T 4 − 4 T 3 + ⋯ + 2
T^4 - 4*T^3 + 6*T^2 - 4*T + 2
43 43 4 3
T 4 T^{4} T 4
T^4
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
( T 2 − 2 T + 2 ) 2 (T^{2} - 2 T + 2)^{2} ( T 2 − 2 T + 2 ) 2
(T^2 - 2*T + 2)^2
59 59 5 9
T 4 T^{4} T 4
T^4
61 61 6 1
T 4 + 2 T 2 + ⋯ + 2 T^{4} + 2 T^{2} + \cdots + 2 T 4 + 2 T 2 + ⋯ + 2
T^4 + 2*T^2 + 4*T + 2
67 67 6 7
T 4 T^{4} T 4
T^4
71 71 7 1
T 4 T^{4} T 4
T^4
73 73 7 3
T 4 + 2 T 2 + ⋯ + 2 T^{4} + 2 T^{2} + \cdots + 2 T 4 + 2 T 2 + ⋯ + 2
T^4 + 2*T^2 - 4*T + 2
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
T 4 T^{4} T 4
T^4
89 89 8 9
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
97 97 9 7
T 4 + 4 T 3 + ⋯ + 2 T^{4} + 4 T^{3} + \cdots + 2 T 4 + 4 T 3 + ⋯ + 2
T^4 + 4*T^3 + 6*T^2 + 4*T + 2
show more
show less