Properties

Label 1700.1.w.b
Level 17001700
Weight 11
Character orbit 1700.w
Analytic conductor 0.8480.848
Analytic rank 00
Dimension 44
Projective image D8D_{8}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1700,1,Mod(151,1700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 0, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1700.151"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1700=225217 1700 = 2^{2} \cdot 5^{2} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1700.w (of order 88, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8484105214760.848410521476
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 340)
Projective image: D8D_{8}
Projective field: Galois closure of 8.0.65654187680000.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ8q2+ζ82q4ζ83q8+ζ83q9+(ζ83ζ8)q13q16+q17+q18+(ζ821)q26+(ζ83+1)q29+ζ82q98+O(q100) q - \zeta_{8} q^{2} + \zeta_{8}^{2} q^{4} - \zeta_{8}^{3} q^{8} + \zeta_{8}^{3} q^{9} + ( - \zeta_{8}^{3} - \zeta_{8}) q^{13} - q^{16} + q^{17} + q^{18} + (\zeta_{8}^{2} - 1) q^{26} + ( - \zeta_{8}^{3} + 1) q^{29} + \cdots - \zeta_{8}^{2} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q16+4q17+4q184q26+4q294q37+4q41+4q534q584q744q97+O(q100) 4 q - 4 q^{16} + 4 q^{17} + 4 q^{18} - 4 q^{26} + 4 q^{29} - 4 q^{37} + 4 q^{41} + 4 q^{53} - 4 q^{58} - 4 q^{74} - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1700Z)×\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times.

nn 477477 851851 16011601
χ(n)\chi(n) 11 1-1 ζ83\zeta_{8}^{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
151.1
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 0.707107i 0 1.00000i 0 0 0 0.707107 0.707107i −0.707107 + 0.707107i 0
451.1 0.707107 0.707107i 0 1.00000i 0 0 0 −0.707107 0.707107i 0.707107 + 0.707107i 0
1351.1 −0.707107 + 0.707107i 0 1.00000i 0 0 0 0.707107 + 0.707107i −0.707107 0.707107i 0
1651.1 0.707107 + 0.707107i 0 1.00000i 0 0 0 −0.707107 + 0.707107i 0.707107 0.707107i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
17.d even 8 1 inner
68.g odd 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1700.1.w.b 4
4.b odd 2 1 CM 1700.1.w.b 4
5.b even 2 1 1700.1.w.a 4
5.c odd 4 1 340.1.ba.a 4
5.c odd 4 1 340.1.ba.b yes 4
15.e even 4 1 3060.1.cr.a 4
15.e even 4 1 3060.1.cr.b 4
17.d even 8 1 inner 1700.1.w.b 4
20.d odd 2 1 1700.1.w.a 4
20.e even 4 1 340.1.ba.a 4
20.e even 4 1 340.1.ba.b yes 4
60.l odd 4 1 3060.1.cr.a 4
60.l odd 4 1 3060.1.cr.b 4
68.g odd 8 1 inner 1700.1.w.b 4
85.k odd 8 1 340.1.ba.a 4
85.m even 8 1 1700.1.w.a 4
85.n odd 8 1 340.1.ba.b yes 4
255.v even 8 1 3060.1.cr.b 4
255.ba even 8 1 3060.1.cr.a 4
340.w even 8 1 340.1.ba.b yes 4
340.z even 8 1 340.1.ba.a 4
340.ba odd 8 1 1700.1.w.a 4
1020.bu odd 8 1 3060.1.cr.b 4
1020.bx odd 8 1 3060.1.cr.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
340.1.ba.a 4 5.c odd 4 1
340.1.ba.a 4 20.e even 4 1
340.1.ba.a 4 85.k odd 8 1
340.1.ba.a 4 340.z even 8 1
340.1.ba.b yes 4 5.c odd 4 1
340.1.ba.b yes 4 20.e even 4 1
340.1.ba.b yes 4 85.n odd 8 1
340.1.ba.b yes 4 340.w even 8 1
1700.1.w.a 4 5.b even 2 1
1700.1.w.a 4 20.d odd 2 1
1700.1.w.a 4 85.m even 8 1
1700.1.w.a 4 340.ba odd 8 1
1700.1.w.b 4 1.a even 1 1 trivial
1700.1.w.b 4 4.b odd 2 1 CM
1700.1.w.b 4 17.d even 8 1 inner
1700.1.w.b 4 68.g odd 8 1 inner
3060.1.cr.a 4 15.e even 4 1
3060.1.cr.a 4 60.l odd 4 1
3060.1.cr.a 4 255.ba even 8 1
3060.1.cr.a 4 1020.bx odd 8 1
3060.1.cr.b 4 15.e even 4 1
3060.1.cr.b 4 60.l odd 4 1
3060.1.cr.b 4 255.v even 8 1
3060.1.cr.b 4 1020.bu odd 8 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T374+4T373+6T372+4T37+2 T_{37}^{4} + 4T_{37}^{3} + 6T_{37}^{2} + 4T_{37} + 2 acting on S1new(1700,[χ])S_{1}^{\mathrm{new}}(1700, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
1717 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T44T3++2 T^{4} - 4 T^{3} + \cdots + 2 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+4T3++2 T^{4} + 4 T^{3} + \cdots + 2 Copy content Toggle raw display
4141 T44T3++2 T^{4} - 4 T^{3} + \cdots + 2 Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
9797 T4+4T3++2 T^{4} + 4 T^{3} + \cdots + 2 Copy content Toggle raw display
show more
show less