Properties

Label 171.2.f.a.64.1
Level $171$
Weight $2$
Character 171.64
Analytic conductor $1.365$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,2,Mod(64,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 171.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.36544187456\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 64.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 171.64
Dual form 171.2.f.a.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} +1.00000 q^{7} +3.00000 q^{8} +2.00000 q^{11} +(-2.50000 + 4.33013i) q^{13} +(0.500000 + 0.866025i) q^{14} +(0.500000 + 0.866025i) q^{16} +(-2.00000 - 3.46410i) q^{17} +(-4.00000 - 1.73205i) q^{19} +(1.00000 + 1.73205i) q^{22} +(-2.00000 + 3.46410i) q^{23} +(2.50000 - 4.33013i) q^{25} -5.00000 q^{26} +(0.500000 - 0.866025i) q^{28} +(-4.00000 + 6.92820i) q^{29} -3.00000 q^{31} +(2.50000 - 4.33013i) q^{32} +(2.00000 - 3.46410i) q^{34} +3.00000 q^{37} +(-0.500000 - 4.33013i) q^{38} +(-6.00000 - 10.3923i) q^{41} +(0.500000 + 0.866025i) q^{43} +(1.00000 - 1.73205i) q^{44} -4.00000 q^{46} +(-3.00000 + 5.19615i) q^{47} -6.00000 q^{49} +5.00000 q^{50} +(2.50000 + 4.33013i) q^{52} +(2.00000 - 3.46410i) q^{53} +3.00000 q^{56} -8.00000 q^{58} +(5.00000 + 8.66025i) q^{59} +(6.50000 - 11.2583i) q^{61} +(-1.50000 - 2.59808i) q^{62} +7.00000 q^{64} +(-5.50000 + 9.52628i) q^{67} -4.00000 q^{68} +(3.00000 + 5.19615i) q^{71} +(5.50000 + 9.52628i) q^{73} +(1.50000 + 2.59808i) q^{74} +(-3.50000 + 2.59808i) q^{76} +2.00000 q^{77} +(-0.500000 - 0.866025i) q^{79} +(6.00000 - 10.3923i) q^{82} +(-0.500000 + 0.866025i) q^{86} +6.00000 q^{88} +(-3.00000 + 5.19615i) q^{89} +(-2.50000 + 4.33013i) q^{91} +(2.00000 + 3.46410i) q^{92} -6.00000 q^{94} +(-1.00000 - 1.73205i) q^{97} +(-3.00000 - 5.19615i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{4} + 2 q^{7} + 6 q^{8} + 4 q^{11} - 5 q^{13} + q^{14} + q^{16} - 4 q^{17} - 8 q^{19} + 2 q^{22} - 4 q^{23} + 5 q^{25} - 10 q^{26} + q^{28} - 8 q^{29} - 6 q^{31} + 5 q^{32} + 4 q^{34}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.50000 + 4.33013i −0.693375 + 1.20096i 0.277350 + 0.960769i \(0.410544\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −2.00000 3.46410i −0.485071 0.840168i 0.514782 0.857321i \(-0.327873\pi\)
−0.999853 + 0.0171533i \(0.994540\pi\)
\(18\) 0 0
\(19\) −4.00000 1.73205i −0.917663 0.397360i
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −5.00000 −0.980581
\(27\) 0 0
\(28\) 0.500000 0.866025i 0.0944911 0.163663i
\(29\) −4.00000 + 6.92820i −0.742781 + 1.28654i 0.208443 + 0.978035i \(0.433160\pi\)
−0.951224 + 0.308500i \(0.900173\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) 2.50000 4.33013i 0.441942 0.765466i
\(33\) 0 0
\(34\) 2.00000 3.46410i 0.342997 0.594089i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −0.500000 4.33013i −0.0811107 0.702439i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 10.3923i −0.937043 1.62301i −0.770950 0.636895i \(-0.780218\pi\)
−0.166092 0.986110i \(-0.553115\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 2.50000 + 4.33013i 0.346688 + 0.600481i
\(53\) 2.00000 3.46410i 0.274721 0.475831i −0.695344 0.718677i \(-0.744748\pi\)
0.970065 + 0.242846i \(0.0780811\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −8.00000 −1.05045
\(59\) 5.00000 + 8.66025i 0.650945 + 1.12747i 0.982894 + 0.184172i \(0.0589603\pi\)
−0.331949 + 0.943297i \(0.607706\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) −1.50000 2.59808i −0.190500 0.329956i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) −5.50000 + 9.52628i −0.671932 + 1.16382i 0.305424 + 0.952217i \(0.401202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 5.50000 + 9.52628i 0.643726 + 1.11497i 0.984594 + 0.174855i \(0.0559458\pi\)
−0.340868 + 0.940111i \(0.610721\pi\)
\(74\) 1.50000 + 2.59808i 0.174371 + 0.302020i
\(75\) 0 0
\(76\) −3.50000 + 2.59808i −0.401478 + 0.298020i
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −0.500000 0.866025i −0.0562544 0.0974355i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 6.00000 10.3923i 0.662589 1.14764i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.500000 + 0.866025i −0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) −2.50000 + 4.33013i −0.262071 + 0.453921i
\(92\) 2.00000 + 3.46410i 0.208514 + 0.361158i
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) −3.00000 5.19615i −0.303046 0.524891i
\(99\) 0 0
\(100\) −2.50000 4.33013i −0.250000 0.433013i
\(101\) 7.00000 12.1244i 0.696526 1.20642i −0.273138 0.961975i \(-0.588061\pi\)
0.969664 0.244443i \(-0.0786053\pi\)
\(102\) 0 0
\(103\) 13.0000 1.28093 0.640464 0.767988i \(-0.278742\pi\)
0.640464 + 0.767988i \(0.278742\pi\)
\(104\) −7.50000 + 12.9904i −0.735436 + 1.27381i
\(105\) 0 0
\(106\) 4.00000 0.388514
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i \(-0.136131\pi\)
−0.814152 + 0.580651i \(0.802798\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.500000 + 0.866025i 0.0472456 + 0.0818317i
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 + 6.92820i 0.371391 + 0.643268i
\(117\) 0 0
\(118\) −5.00000 + 8.66025i −0.460287 + 0.797241i
\(119\) −2.00000 3.46410i −0.183340 0.317554i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 13.0000 1.17696
\(123\) 0 0
\(124\) −1.50000 + 2.59808i −0.134704 + 0.233314i
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000 6.92820i 0.354943 0.614779i −0.632166 0.774833i \(-0.717834\pi\)
0.987108 + 0.160055i \(0.0511671\pi\)
\(128\) −1.50000 2.59808i −0.132583 0.229640i
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 12.1244i −0.611593 1.05931i −0.990972 0.134069i \(-0.957196\pi\)
0.379379 0.925241i \(-0.376138\pi\)
\(132\) 0 0
\(133\) −4.00000 1.73205i −0.346844 0.150188i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −6.00000 10.3923i −0.514496 0.891133i
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) −5.00000 + 8.66025i −0.418121 + 0.724207i
\(144\) 0 0
\(145\) 0 0
\(146\) −5.50000 + 9.52628i −0.455183 + 0.788400i
\(147\) 0 0
\(148\) 1.50000 2.59808i 0.123299 0.213561i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −12.0000 5.19615i −0.973329 0.421464i
\(153\) 0 0
\(154\) 1.00000 + 1.73205i 0.0805823 + 0.139573i
\(155\) 0 0
\(156\) 0 0
\(157\) −1.50000 2.59808i −0.119713 0.207349i 0.799941 0.600079i \(-0.204864\pi\)
−0.919654 + 0.392730i \(0.871531\pi\)
\(158\) 0.500000 0.866025i 0.0397779 0.0688973i
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 + 3.46410i −0.157622 + 0.273009i
\(162\) 0 0
\(163\) 3.00000 0.234978 0.117489 0.993074i \(-0.462515\pi\)
0.117489 + 0.993074i \(0.462515\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) −1.00000 + 1.73205i −0.0773823 + 0.134030i −0.902120 0.431486i \(-0.857990\pi\)
0.824737 + 0.565516i \(0.191323\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000 0.0762493
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 2.50000 4.33013i 0.188982 0.327327i
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 1.00000 1.73205i 0.0743294 0.128742i −0.826465 0.562988i \(-0.809652\pi\)
0.900794 + 0.434246i \(0.142985\pi\)
\(182\) −5.00000 −0.370625
\(183\) 0 0
\(184\) −6.00000 + 10.3923i −0.442326 + 0.766131i
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 3.00000 + 5.19615i 0.218797 + 0.378968i
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) −9.50000 16.4545i −0.683825 1.18442i −0.973805 0.227387i \(-0.926982\pi\)
0.289980 0.957033i \(-0.406351\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 0 0
\(196\) −3.00000 + 5.19615i −0.214286 + 0.371154i
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) −10.5000 + 18.1865i −0.744325 + 1.28921i 0.206184 + 0.978513i \(0.433895\pi\)
−0.950509 + 0.310696i \(0.899438\pi\)
\(200\) 7.50000 12.9904i 0.530330 0.918559i
\(201\) 0 0
\(202\) 14.0000 0.985037
\(203\) −4.00000 + 6.92820i −0.280745 + 0.486265i
\(204\) 0 0
\(205\) 0 0
\(206\) 6.50000 + 11.2583i 0.452876 + 0.784405i
\(207\) 0 0
\(208\) −5.00000 −0.346688
\(209\) −8.00000 3.46410i −0.553372 0.239617i
\(210\) 0 0
\(211\) 7.50000 + 12.9904i 0.516321 + 0.894295i 0.999820 + 0.0189499i \(0.00603229\pi\)
−0.483499 + 0.875345i \(0.660634\pi\)
\(212\) −2.00000 3.46410i −0.137361 0.237915i
\(213\) 0 0
\(214\) 9.00000 + 15.5885i 0.615227 + 1.06561i
\(215\) 0 0
\(216\) 0 0
\(217\) −3.00000 −0.203653
\(218\) −1.00000 + 1.73205i −0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 0 0
\(221\) 20.0000 1.34535
\(222\) 0 0
\(223\) −4.50000 7.79423i −0.301342 0.521940i 0.675098 0.737728i \(-0.264101\pi\)
−0.976440 + 0.215788i \(0.930768\pi\)
\(224\) 2.50000 4.33013i 0.167038 0.289319i
\(225\) 0 0
\(226\) −1.00000 1.73205i −0.0665190 0.115214i
\(227\) 24.0000 1.59294 0.796468 0.604681i \(-0.206699\pi\)
0.796468 + 0.604681i \(0.206699\pi\)
\(228\) 0 0
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −12.0000 + 20.7846i −0.787839 + 1.36458i
\(233\) −3.00000 5.19615i −0.196537 0.340411i 0.750867 0.660454i \(-0.229636\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 10.0000 0.650945
\(237\) 0 0
\(238\) 2.00000 3.46410i 0.129641 0.224544i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 3.50000 6.06218i 0.225455 0.390499i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291877i \(0.0942799\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) −6.50000 11.2583i −0.416120 0.720741i
\(245\) 0 0
\(246\) 0 0
\(247\) 17.5000 12.9904i 1.11350 0.826558i
\(248\) −9.00000 −0.571501
\(249\) 0 0
\(250\) 0 0
\(251\) −1.00000 + 1.73205i −0.0631194 + 0.109326i −0.895858 0.444340i \(-0.853438\pi\)
0.832739 + 0.553666i \(0.186772\pi\)
\(252\) 0 0
\(253\) −4.00000 + 6.92820i −0.251478 + 0.435572i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −10.0000 + 17.3205i −0.623783 + 1.08042i 0.364992 + 0.931011i \(0.381072\pi\)
−0.988775 + 0.149413i \(0.952262\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 0 0
\(261\) 0 0
\(262\) 7.00000 12.1244i 0.432461 0.749045i
\(263\) 13.0000 + 22.5167i 0.801614 + 1.38844i 0.918553 + 0.395298i \(0.129359\pi\)
−0.116939 + 0.993139i \(0.537308\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −0.500000 4.33013i −0.0306570 0.265497i
\(267\) 0 0
\(268\) 5.50000 + 9.52628i 0.335966 + 0.581910i
\(269\) 5.00000 + 8.66025i 0.304855 + 0.528025i 0.977229 0.212187i \(-0.0680585\pi\)
−0.672374 + 0.740212i \(0.734725\pi\)
\(270\) 0 0
\(271\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 2.00000 3.46410i 0.121268 0.210042i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 5.00000 8.66025i 0.301511 0.522233i
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −5.00000 −0.299880
\(279\) 0 0
\(280\) 0 0
\(281\) −4.00000 + 6.92820i −0.238620 + 0.413302i −0.960319 0.278906i \(-0.910028\pi\)
0.721699 + 0.692207i \(0.243362\pi\)
\(282\) 0 0
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −10.0000 −0.591312
\(287\) −6.00000 10.3923i −0.354169 0.613438i
\(288\) 0 0
\(289\) 0.500000 0.866025i 0.0294118 0.0509427i
\(290\) 0 0
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 9.00000 0.523114
\(297\) 0 0
\(298\) 3.00000 5.19615i 0.173785 0.301005i
\(299\) −10.0000 17.3205i −0.578315 1.00167i
\(300\) 0 0
\(301\) 0.500000 + 0.866025i 0.0288195 + 0.0499169i
\(302\) 6.00000 + 10.3923i 0.345261 + 0.598010i
\(303\) 0 0
\(304\) −0.500000 4.33013i −0.0286770 0.248350i
\(305\) 0 0
\(306\) 0 0
\(307\) 6.00000 + 10.3923i 0.342438 + 0.593120i 0.984885 0.173210i \(-0.0554140\pi\)
−0.642447 + 0.766330i \(0.722081\pi\)
\(308\) 1.00000 1.73205i 0.0569803 0.0986928i
\(309\) 0 0
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) −11.0000 + 19.0526i −0.621757 + 1.07691i 0.367402 + 0.930062i \(0.380247\pi\)
−0.989158 + 0.146852i \(0.953086\pi\)
\(314\) 1.50000 2.59808i 0.0846499 0.146618i
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −2.00000 + 3.46410i −0.112331 + 0.194563i −0.916710 0.399554i \(-0.869165\pi\)
0.804379 + 0.594117i \(0.202498\pi\)
\(318\) 0 0
\(319\) −8.00000 + 13.8564i −0.447914 + 0.775810i
\(320\) 0 0
\(321\) 0 0
\(322\) −4.00000 −0.222911
\(323\) 2.00000 + 17.3205i 0.111283 + 0.963739i
\(324\) 0 0
\(325\) 12.5000 + 21.6506i 0.693375 + 1.20096i
\(326\) 1.50000 + 2.59808i 0.0830773 + 0.143894i
\(327\) 0 0
\(328\) −18.0000 31.1769i −0.993884 1.72146i
\(329\) −3.00000 + 5.19615i −0.165395 + 0.286473i
\(330\) 0 0
\(331\) −25.0000 −1.37412 −0.687062 0.726599i \(-0.741100\pi\)
−0.687062 + 0.726599i \(0.741100\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −2.00000 −0.109435
\(335\) 0 0
\(336\) 0 0
\(337\) −6.50000 11.2583i −0.354078 0.613280i 0.632882 0.774248i \(-0.281872\pi\)
−0.986960 + 0.160968i \(0.948538\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 1.50000 + 2.59808i 0.0808746 + 0.140079i
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 13.8564i −0.429463 0.743851i 0.567363 0.823468i \(-0.307964\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(348\) 0 0
\(349\) −21.0000 −1.12410 −0.562052 0.827102i \(-0.689988\pi\)
−0.562052 + 0.827102i \(0.689988\pi\)
\(350\) 5.00000 0.267261
\(351\) 0 0
\(352\) 5.00000 8.66025i 0.266501 0.461593i
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.00000 + 5.19615i 0.159000 + 0.275396i
\(357\) 0 0
\(358\) −6.00000 10.3923i −0.317110 0.549250i
\(359\) −10.0000 17.3205i −0.527780 0.914141i −0.999476 0.0323801i \(-0.989691\pi\)
0.471696 0.881761i \(-0.343642\pi\)
\(360\) 0 0
\(361\) 13.0000 + 13.8564i 0.684211 + 0.729285i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) 2.50000 + 4.33013i 0.131036 + 0.226960i
\(365\) 0 0
\(366\) 0 0
\(367\) −3.50000 + 6.06218i −0.182699 + 0.316443i −0.942799 0.333363i \(-0.891817\pi\)
0.760100 + 0.649806i \(0.225150\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00000 3.46410i 0.103835 0.179847i
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 4.00000 6.92820i 0.206835 0.358249i
\(375\) 0 0
\(376\) −9.00000 + 15.5885i −0.464140 + 0.803913i
\(377\) −20.0000 34.6410i −1.03005 1.78410i
\(378\) 0 0
\(379\) −5.00000 −0.256833 −0.128416 0.991720i \(-0.540989\pi\)
−0.128416 + 0.991720i \(0.540989\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.0000 20.7846i −0.613973 1.06343i
\(383\) 7.00000 + 12.1244i 0.357683 + 0.619526i 0.987573 0.157159i \(-0.0502334\pi\)
−0.629890 + 0.776684i \(0.716900\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.50000 16.4545i 0.483537 0.837511i
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −12.0000 + 20.7846i −0.608424 + 1.05382i 0.383076 + 0.923717i \(0.374865\pi\)
−0.991500 + 0.130105i \(0.958469\pi\)
\(390\) 0 0
\(391\) 16.0000 0.809155
\(392\) −18.0000 −0.909137
\(393\) 0 0
\(394\) 13.0000 + 22.5167i 0.654931 + 1.13437i
\(395\) 0 0
\(396\) 0 0
\(397\) −3.50000 6.06218i −0.175660 0.304252i 0.764730 0.644351i \(-0.222873\pi\)
−0.940389 + 0.340099i \(0.889539\pi\)
\(398\) −21.0000 −1.05263
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) −3.00000 5.19615i −0.149813 0.259483i 0.781345 0.624099i \(-0.214534\pi\)
−0.931158 + 0.364615i \(0.881200\pi\)
\(402\) 0 0
\(403\) 7.50000 12.9904i 0.373602 0.647097i
\(404\) −7.00000 12.1244i −0.348263 0.603209i
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 7.00000 12.1244i 0.346128 0.599511i −0.639430 0.768849i \(-0.720830\pi\)
0.985558 + 0.169338i \(0.0541630\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 6.50000 11.2583i 0.320232 0.554658i
\(413\) 5.00000 + 8.66025i 0.246034 + 0.426143i
\(414\) 0 0
\(415\) 0 0
\(416\) 12.5000 + 21.6506i 0.612863 + 1.06151i
\(417\) 0 0
\(418\) −1.00000 8.66025i −0.0489116 0.423587i
\(419\) 14.0000 0.683945 0.341972 0.939710i \(-0.388905\pi\)
0.341972 + 0.939710i \(0.388905\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) −7.50000 + 12.9904i −0.365094 + 0.632362i
\(423\) 0 0
\(424\) 6.00000 10.3923i 0.291386 0.504695i
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 6.50000 11.2583i 0.314557 0.544829i
\(428\) 9.00000 15.5885i 0.435031 0.753497i
\(429\) 0 0
\(430\) 0 0
\(431\) −5.00000 + 8.66025i −0.240842 + 0.417150i −0.960954 0.276707i \(-0.910757\pi\)
0.720113 + 0.693857i \(0.244090\pi\)
\(432\) 0 0
\(433\) 4.50000 7.79423i 0.216256 0.374567i −0.737404 0.675452i \(-0.763949\pi\)
0.953660 + 0.300885i \(0.0972820\pi\)
\(434\) −1.50000 2.59808i −0.0720023 0.124712i
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) 14.0000 10.3923i 0.669711 0.497131i
\(438\) 0 0
\(439\) −17.5000 30.3109i −0.835229 1.44666i −0.893843 0.448379i \(-0.852001\pi\)
0.0586141 0.998281i \(-0.481332\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 10.0000 + 17.3205i 0.475651 + 0.823853i
\(443\) −16.0000 + 27.7128i −0.760183 + 1.31668i 0.182573 + 0.983192i \(0.441557\pi\)
−0.942756 + 0.333483i \(0.891776\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 4.50000 7.79423i 0.213081 0.369067i
\(447\) 0 0
\(448\) 7.00000 0.330719
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) −12.0000 20.7846i −0.565058 0.978709i
\(452\) −1.00000 + 1.73205i −0.0470360 + 0.0814688i
\(453\) 0 0
\(454\) 12.0000 + 20.7846i 0.563188 + 0.975470i
\(455\) 0 0
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) 0 0
\(460\) 0 0
\(461\) 15.0000 + 25.9808i 0.698620 + 1.21004i 0.968945 + 0.247276i \(0.0795353\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(462\) 0 0
\(463\) 23.0000 1.06890 0.534450 0.845200i \(-0.320519\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) 3.00000 5.19615i 0.138972 0.240707i
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −5.50000 + 9.52628i −0.253966 + 0.439883i
\(470\) 0 0
\(471\) 0 0
\(472\) 15.0000 + 25.9808i 0.690431 + 1.19586i
\(473\) 1.00000 + 1.73205i 0.0459800 + 0.0796398i
\(474\) 0 0
\(475\) −17.5000 + 12.9904i −0.802955 + 0.596040i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) 7.00000 12.1244i 0.319838 0.553976i −0.660616 0.750724i \(-0.729705\pi\)
0.980454 + 0.196748i \(0.0630381\pi\)
\(480\) 0 0
\(481\) −7.50000 + 12.9904i −0.341971 + 0.592310i
\(482\) 7.00000 0.318841
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 0 0
\(486\) 0 0
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) 19.5000 33.7750i 0.882724 1.52892i
\(489\) 0 0
\(490\) 0 0
\(491\) 3.00000 + 5.19615i 0.135388 + 0.234499i 0.925746 0.378147i \(-0.123439\pi\)
−0.790358 + 0.612646i \(0.790105\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 20.0000 + 8.66025i 0.899843 + 0.389643i
\(495\) 0 0
\(496\) −1.50000 2.59808i −0.0673520 0.116657i
\(497\) 3.00000 + 5.19615i 0.134568 + 0.233079i
\(498\) 0 0
\(499\) −14.5000 25.1147i −0.649109 1.12429i −0.983336 0.181797i \(-0.941809\pi\)
0.334227 0.942493i \(-0.391525\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) 20.0000 34.6410i 0.891756 1.54457i 0.0539870 0.998542i \(-0.482807\pi\)
0.837769 0.546025i \(-0.183860\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −8.00000 −0.355643
\(507\) 0 0
\(508\) −4.00000 6.92820i −0.177471 0.307389i
\(509\) −3.00000 + 5.19615i −0.132973 + 0.230315i −0.924821 0.380402i \(-0.875786\pi\)
0.791849 + 0.610718i \(0.209119\pi\)
\(510\) 0 0
\(511\) 5.50000 + 9.52628i 0.243306 + 0.421418i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) 0 0
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 1.50000 + 2.59808i 0.0659062 + 0.114153i
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −14.5000 + 25.1147i −0.634041 + 1.09819i 0.352677 + 0.935745i \(0.385272\pi\)
−0.986718 + 0.162446i \(0.948062\pi\)
\(524\) −14.0000 −0.611593
\(525\) 0 0
\(526\) −13.0000 + 22.5167i −0.566827 + 0.981773i
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 0 0
\(531\) 0 0
\(532\) −3.50000 + 2.59808i −0.151744 + 0.112641i
\(533\) 60.0000 2.59889
\(534\) 0 0
\(535\) 0 0
\(536\) −16.5000 + 28.5788i −0.712691 + 1.23442i
\(537\) 0 0
\(538\) −5.00000 + 8.66025i −0.215565 + 0.373370i
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 19.5000 33.7750i 0.838370 1.45210i −0.0528859 0.998601i \(-0.516842\pi\)
0.891256 0.453500i \(-0.149825\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −20.0000 −0.857493
\(545\) 0 0
\(546\) 0 0
\(547\) 14.5000 25.1147i 0.619975 1.07383i −0.369514 0.929225i \(-0.620476\pi\)
0.989490 0.144604i \(-0.0461907\pi\)
\(548\) −9.00000 15.5885i −0.384461 0.665906i
\(549\) 0 0
\(550\) 10.0000 0.426401
\(551\) 28.0000 20.7846i 1.19284 0.885454i
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.0212622 0.0368271i
\(554\) −1.00000 1.73205i −0.0424859 0.0735878i
\(555\) 0 0
\(556\) 2.50000 + 4.33013i 0.106024 + 0.183638i
\(557\) −19.0000 + 32.9090i −0.805056 + 1.39440i 0.111198 + 0.993798i \(0.464531\pi\)
−0.916253 + 0.400599i \(0.868802\pi\)
\(558\) 0 0
\(559\) −5.00000 −0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) −8.00000 −0.337460
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −2.00000 + 3.46410i −0.0840663 + 0.145607i
\(567\) 0 0
\(568\) 9.00000 + 15.5885i 0.377632 + 0.654077i
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) 5.00000 + 8.66025i 0.209061 + 0.362103i
\(573\) 0 0
\(574\) 6.00000 10.3923i 0.250435 0.433766i
\(575\) 10.0000 + 17.3205i 0.417029 + 0.722315i
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 6.92820i 0.165663 0.286937i
\(584\) 16.5000 + 28.5788i 0.682775 + 1.18260i
\(585\) 0 0
\(586\) −7.00000 12.1244i −0.289167 0.500853i
\(587\) −13.0000 22.5167i −0.536567 0.929362i −0.999086 0.0427523i \(-0.986387\pi\)
0.462518 0.886610i \(-0.346946\pi\)
\(588\) 0 0
\(589\) 12.0000 + 5.19615i 0.494451 + 0.214104i
\(590\) 0 0
\(591\) 0 0
\(592\) 1.50000 + 2.59808i 0.0616496 + 0.106780i
\(593\) −3.00000 + 5.19615i −0.123195 + 0.213380i −0.921026 0.389501i \(-0.872647\pi\)
0.797831 + 0.602881i \(0.205981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 0 0
\(598\) 10.0000 17.3205i 0.408930 0.708288i
\(599\) 9.00000 15.5885i 0.367730 0.636927i −0.621480 0.783430i \(-0.713468\pi\)
0.989210 + 0.146503i \(0.0468017\pi\)
\(600\) 0 0
\(601\) −21.0000 −0.856608 −0.428304 0.903635i \(-0.640889\pi\)
−0.428304 + 0.903635i \(0.640889\pi\)
\(602\) −0.500000 + 0.866025i −0.0203785 + 0.0352966i
\(603\) 0 0
\(604\) 6.00000 10.3923i 0.244137 0.422857i
\(605\) 0 0
\(606\) 0 0
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) −17.5000 + 12.9904i −0.709719 + 0.526830i
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 25.9808i −0.606835 1.05107i
\(612\) 0 0
\(613\) 15.0000 + 25.9808i 0.605844 + 1.04935i 0.991917 + 0.126885i \(0.0404979\pi\)
−0.386073 + 0.922468i \(0.626169\pi\)
\(614\) −6.00000 + 10.3923i −0.242140 + 0.419399i
\(615\) 0 0
\(616\) 6.00000 0.241747
\(617\) 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i \(-0.794795\pi\)
0.920074 + 0.391745i \(0.128129\pi\)
\(618\) 0 0
\(619\) 25.0000 1.00483 0.502417 0.864625i \(-0.332444\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −9.00000 15.5885i −0.360867 0.625040i
\(623\) −3.00000 + 5.19615i −0.120192 + 0.208179i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) −3.00000 −0.119713
\(629\) −6.00000 10.3923i −0.239236 0.414368i
\(630\) 0 0
\(631\) 7.50000 12.9904i 0.298570 0.517139i −0.677239 0.735763i \(-0.736824\pi\)
0.975809 + 0.218624i \(0.0701569\pi\)
\(632\) −1.50000 2.59808i −0.0596668 0.103346i
\(633\) 0 0
\(634\) −4.00000 −0.158860
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 25.9808i 0.594322 1.02940i
\(638\) −16.0000 −0.633446
\(639\) 0 0
\(640\) 0 0
\(641\) −15.0000 25.9808i −0.592464 1.02618i −0.993899 0.110291i \(-0.964822\pi\)
0.401435 0.915888i \(-0.368512\pi\)
\(642\) 0 0
\(643\) 9.50000 + 16.4545i 0.374643 + 0.648901i 0.990274 0.139134i \(-0.0444318\pi\)
−0.615630 + 0.788035i \(0.711098\pi\)
\(644\) 2.00000 + 3.46410i 0.0788110 + 0.136505i
\(645\) 0 0
\(646\) −14.0000 + 10.3923i −0.550823 + 0.408880i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 10.0000 + 17.3205i 0.392534 + 0.679889i
\(650\) −12.5000 + 21.6506i −0.490290 + 0.849208i
\(651\) 0 0
\(652\) 1.50000 2.59808i 0.0587445 0.101749i
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 10.3923i 0.234261 0.405751i
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) 17.0000 29.4449i 0.662226 1.14701i −0.317803 0.948157i \(-0.602945\pi\)
0.980029 0.198852i \(-0.0637214\pi\)
\(660\) 0 0
\(661\) −21.0000 + 36.3731i −0.816805 + 1.41475i 0.0912190 + 0.995831i \(0.470924\pi\)
−0.908024 + 0.418917i \(0.862410\pi\)
\(662\) −12.5000 21.6506i −0.485826 0.841476i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.0000 27.7128i −0.619522 1.07304i
\(668\) 1.00000 + 1.73205i 0.0386912 + 0.0670151i
\(669\) 0 0
\(670\) 0 0
\(671\) 13.0000 22.5167i 0.501859 0.869246i
\(672\) 0 0
\(673\) −33.0000 −1.27206 −0.636028 0.771666i \(-0.719424\pi\)
−0.636028 + 0.771666i \(0.719424\pi\)
\(674\) 6.50000 11.2583i 0.250371 0.433655i
\(675\) 0 0
\(676\) −12.0000 −0.461538
\(677\) −34.0000 −1.30673 −0.653363 0.757045i \(-0.726642\pi\)
−0.653363 + 0.757045i \(0.726642\pi\)
\(678\) 0 0
\(679\) −1.00000 1.73205i −0.0383765 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) −3.00000 5.19615i −0.114876 0.198971i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −6.50000 11.2583i −0.248171 0.429845i
\(687\) 0 0
\(688\) −0.500000 + 0.866025i −0.0190623 + 0.0330169i
\(689\) 10.0000 + 17.3205i 0.380970 + 0.659859i
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 8.00000 13.8564i 0.303676 0.525982i
\(695\) 0 0
\(696\) 0 0
\(697\) −24.0000 + 41.5692i −0.909065 + 1.57455i
\(698\) −10.5000 18.1865i −0.397431 0.688370i
\(699\) 0 0
\(700\) −2.50000 4.33013i −0.0944911 0.163663i
\(701\) 10.0000 + 17.3205i 0.377695 + 0.654187i 0.990726 0.135872i \(-0.0433835\pi\)
−0.613032 + 0.790058i \(0.710050\pi\)
\(702\) 0 0
\(703\) −12.0000 5.19615i −0.452589 0.195977i
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) −2.00000 3.46410i −0.0752710 0.130373i
\(707\) 7.00000 12.1244i 0.263262 0.455983i
\(708\) 0 0
\(709\) 19.5000 33.7750i 0.732338 1.26845i −0.223544 0.974694i \(-0.571763\pi\)
0.955882 0.293752i \(-0.0949041\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.00000 + 15.5885i −0.337289 + 0.584202i
\(713\) 6.00000 10.3923i 0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) −6.00000 + 10.3923i −0.224231 + 0.388379i
\(717\) 0 0
\(718\) 10.0000 17.3205i 0.373197 0.646396i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 13.0000 0.484145
\(722\) −5.50000 + 18.1865i −0.204689 + 0.676833i
\(723\) 0 0
\(724\) −1.00000 1.73205i −0.0371647 0.0643712i
\(725\) 20.0000 + 34.6410i 0.742781 + 1.28654i
\(726\) 0 0
\(727\) 23.5000 + 40.7032i 0.871567 + 1.50960i 0.860376 + 0.509661i \(0.170229\pi\)
0.0111912 + 0.999937i \(0.496438\pi\)
\(728\) −7.50000 + 12.9904i −0.277968 + 0.481456i
\(729\) 0 0
\(730\) 0 0
\(731\) 2.00000 3.46410i 0.0739727 0.128124i
\(732\) 0 0
\(733\) −50.0000 −1.84679 −0.923396 0.383849i \(-0.874598\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) −7.00000 −0.258375
\(735\) 0 0
\(736\) 10.0000 + 17.3205i 0.368605 + 0.638442i
\(737\) −11.0000 + 19.0526i −0.405190 + 0.701810i
\(738\) 0 0
\(739\) −9.50000 16.4545i −0.349463 0.605288i 0.636691 0.771119i \(-0.280303\pi\)
−0.986154 + 0.165831i \(0.946969\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) −25.0000 43.3013i −0.917161 1.58857i −0.803706 0.595026i \(-0.797142\pi\)
−0.113455 0.993543i \(-0.536192\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 5.00000 + 8.66025i 0.183063 + 0.317074i
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) −22.5000 + 38.9711i −0.821037 + 1.42208i 0.0838743 + 0.996476i \(0.473271\pi\)
−0.904911 + 0.425601i \(0.860063\pi\)
\(752\) −6.00000 −0.218797
\(753\) 0 0
\(754\) 20.0000 34.6410i 0.728357 1.26155i
\(755\) 0 0
\(756\) 0 0
\(757\) −6.50000 11.2583i −0.236247 0.409191i 0.723388 0.690442i \(-0.242584\pi\)
−0.959634 + 0.281251i \(0.909251\pi\)
\(758\) −2.50000 4.33013i −0.0908041 0.157277i
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 1.00000 + 1.73205i 0.0362024 + 0.0627044i
\(764\) −12.0000 + 20.7846i −0.434145 + 0.751961i
\(765\) 0 0
\(766\) −7.00000 + 12.1244i −0.252920 + 0.438071i
\(767\) −50.0000 −1.80540
\(768\) 0 0
\(769\) 18.5000 32.0429i 0.667127 1.15550i −0.311577 0.950221i \(-0.600857\pi\)
0.978704 0.205277i \(-0.0658095\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −19.0000 −0.683825
\(773\) 7.00000 12.1244i 0.251773 0.436083i −0.712241 0.701935i \(-0.752320\pi\)
0.964014 + 0.265852i \(0.0856532\pi\)
\(774\) 0 0
\(775\) −7.50000 + 12.9904i −0.269408 + 0.466628i
\(776\) −3.00000 5.19615i −0.107694 0.186531i
\(777\) 0 0
\(778\) −24.0000 −0.860442
\(779\) 6.00000 + 51.9615i 0.214972 + 1.86171i
\(780\) 0 0
\(781\) 6.00000 + 10.3923i 0.214697 + 0.371866i
\(782\) 8.00000 + 13.8564i 0.286079 + 0.495504i
\(783\) 0 0
\(784\) −3.00000 5.19615i −0.107143 0.185577i
\(785\) 0 0
\(786\) 0 0
\(787\) 25.0000 0.891154 0.445577 0.895244i \(-0.352999\pi\)
0.445577 + 0.895244i \(0.352999\pi\)
\(788\) 13.0000 22.5167i 0.463106 0.802123i
\(789\) 0 0
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) 32.5000 + 56.2917i 1.15411 + 1.99898i
\(794\) 3.50000 6.06218i 0.124210 0.215139i
\(795\) 0 0
\(796\) 10.5000 + 18.1865i 0.372163 + 0.644605i
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) −12.5000 21.6506i −0.441942 0.765466i
\(801\) 0 0
\(802\) 3.00000 5.19615i 0.105934 0.183483i
\(803\) 11.0000 + 19.0526i 0.388182 + 0.672350i
\(804\) 0 0
\(805\) 0 0
\(806\) 15.0000 0.528352
\(807\) 0 0
\(808\) 21.0000 36.3731i 0.738777 1.27960i
\(809\) 16.0000 0.562530 0.281265 0.959630i \(-0.409246\pi\)
0.281265 + 0.959630i \(0.409246\pi\)
\(810\) 0 0
\(811\) 22.0000 38.1051i 0.772524 1.33805i −0.163651 0.986518i \(-0.552327\pi\)
0.936175 0.351533i \(-0.114340\pi\)
\(812\) 4.00000 + 6.92820i 0.140372 + 0.243132i
\(813\) 0 0
\(814\) 3.00000 + 5.19615i 0.105150 + 0.182125i
\(815\) 0 0
\(816\) 0 0
\(817\) −0.500000 4.33013i −0.0174928 0.151492i
\(818\) 14.0000 0.489499
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 20.7846i 0.418803 0.725388i −0.577016 0.816733i \(-0.695783\pi\)
0.995819 + 0.0913446i \(0.0291165\pi\)
\(822\) 0 0
\(823\) −2.00000 + 3.46410i −0.0697156 + 0.120751i −0.898776 0.438408i \(-0.855543\pi\)
0.829060 + 0.559159i \(0.188876\pi\)
\(824\) 39.0000 1.35863
\(825\) 0 0
\(826\) −5.00000 + 8.66025i −0.173972 + 0.301329i
\(827\) −18.0000 + 31.1769i −0.625921 + 1.08413i 0.362441 + 0.932007i \(0.381944\pi\)
−0.988362 + 0.152121i \(0.951390\pi\)
\(828\) 0 0
\(829\) 25.0000 0.868286 0.434143 0.900844i \(-0.357051\pi\)
0.434143 + 0.900844i \(0.357051\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −17.5000 + 30.3109i −0.606703 + 1.05084i
\(833\) 12.0000 + 20.7846i 0.415775 + 0.720144i
\(834\) 0 0
\(835\) 0 0
\(836\) −7.00000 + 5.19615i −0.242100 + 0.179713i
\(837\) 0 0
\(838\) 7.00000 + 12.1244i 0.241811 + 0.418829i
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) 0 0
\(841\) −17.5000 30.3109i −0.603448 1.04520i
\(842\) −11.0000 + 19.0526i −0.379085 + 0.656595i
\(843\) 0 0
\(844\) 15.0000 0.516321
\(845\) 0 0
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 4.00000 0.137361
\(849\) 0 0
\(850\) −10.0000 17.3205i −0.342997 0.594089i
\(851\) −6.00000 + 10.3923i −0.205677 + 0.356244i
\(852\) 0 0
\(853\) 2.50000 + 4.33013i 0.0855984 + 0.148261i 0.905646 0.424034i \(-0.139386\pi\)
−0.820048 + 0.572295i \(0.806053\pi\)
\(854\) 13.0000 0.444851
\(855\) 0 0
\(856\) 54.0000 1.84568
\(857\) 5.00000 + 8.66025i 0.170797 + 0.295829i 0.938699 0.344739i \(-0.112033\pi\)
−0.767902 + 0.640567i \(0.778699\pi\)
\(858\) 0 0
\(859\) −7.50000 + 12.9904i −0.255897 + 0.443226i −0.965139 0.261739i \(-0.915704\pi\)
0.709242 + 0.704965i \(0.249037\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −10.0000 −0.340601
\(863\) −10.0000 −0.340404 −0.170202 0.985409i \(-0.554442\pi\)
−0.170202 + 0.985409i \(0.554442\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9.00000 0.305832
\(867\) 0 0
\(868\) −1.50000 + 2.59808i −0.0509133 + 0.0881845i
\(869\) −1.00000 1.73205i −0.0339227 0.0587558i
\(870\) 0 0
\(871\) −27.5000 47.6314i −0.931802 1.61393i
\(872\) 3.00000 + 5.19615i 0.101593 + 0.175964i
\(873\) 0 0
\(874\) 16.0000 + 6.92820i 0.541208 + 0.234350i
\(875\) 0 0
\(876\) 0 0
\(877\) −7.50000 12.9904i −0.253257 0.438654i 0.711164 0.703027i \(-0.248168\pi\)
−0.964421 + 0.264373i \(0.914835\pi\)
\(878\) 17.5000 30.3109i 0.590596 1.02294i
\(879\) 0 0
\(880\) 0 0
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) 0.500000 0.866025i 0.0168263 0.0291441i −0.857490 0.514501i \(-0.827977\pi\)
0.874316 + 0.485357i \(0.161310\pi\)
\(884\) 10.0000 17.3205i 0.336336 0.582552i
\(885\) 0 0
\(886\) −32.0000 −1.07506
\(887\) −3.00000 + 5.19615i −0.100730 + 0.174470i −0.911986 0.410222i \(-0.865451\pi\)
0.811256 + 0.584692i \(0.198785\pi\)
\(888\) 0 0
\(889\) 4.00000 6.92820i 0.134156 0.232364i
\(890\) 0 0
\(891\) 0 0
\(892\) −9.00000 −0.301342
\(893\) 21.0000 15.5885i 0.702738 0.521648i
\(894\) 0 0
\(895\) 0 0
\(896\) −1.50000 2.59808i −0.0501115 0.0867956i
\(897\) 0 0
\(898\) 6.00000 + 10.3923i 0.200223 + 0.346796i
\(899\) 12.0000 20.7846i 0.400222 0.693206i
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 12.0000 20.7846i 0.399556 0.692052i
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 0 0
\(907\) 22.0000 + 38.1051i 0.730498 + 1.26526i 0.956671 + 0.291172i \(0.0940453\pi\)
−0.226173 + 0.974087i \(0.572621\pi\)
\(908\) 12.0000 20.7846i 0.398234 0.689761i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −5.50000 9.52628i −0.181924 0.315101i
\(915\) 0 0
\(916\) 6.50000 11.2583i 0.214766 0.371986i
\(917\) −7.00000 12.1244i −0.231160 0.400381i
\(918\) 0 0
\(919\) −25.0000 −0.824674 −0.412337 0.911031i \(-0.635287\pi\)
−0.412337 + 0.911031i \(0.635287\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −15.0000 + 25.9808i −0.493999 + 0.855631i
\(923\) −30.0000 −0.987462
\(924\) 0 0
\(925\) 7.50000 12.9904i 0.246598 0.427121i
\(926\) 11.5000 + 19.9186i 0.377913 + 0.654565i
\(927\) 0 0
\(928\) 20.0000 + 34.6410i 0.656532 + 1.13715i
\(929\) 14.0000 + 24.2487i 0.459325 + 0.795574i 0.998925 0.0463469i \(-0.0147580\pi\)
−0.539600 + 0.841921i \(0.681425\pi\)
\(930\) 0 0
\(931\) 24.0000 + 10.3923i 0.786568 + 0.340594i
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 4.00000 + 6.92820i 0.130884 + 0.226698i
\(935\) 0 0
\(936\) 0 0
\(937\) 4.50000 7.79423i 0.147009 0.254626i −0.783112 0.621881i \(-0.786369\pi\)
0.930121 + 0.367254i \(0.119702\pi\)
\(938\) −11.0000 −0.359163
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) −5.00000 + 8.66025i −0.162736 + 0.281867i
\(945\) 0 0
\(946\) −1.00000 + 1.73205i −0.0325128 + 0.0563138i
\(947\) 25.0000 + 43.3013i 0.812391 + 1.40710i 0.911186 + 0.411994i \(0.135168\pi\)
−0.0987955 + 0.995108i \(0.531499\pi\)
\(948\) 0 0
\(949\) −55.0000 −1.78538
\(950\) −20.0000 8.66025i −0.648886 0.280976i
\(951\) 0 0
\(952\) −6.00000 10.3923i −0.194461 0.336817i
\(953\) 17.0000 + 29.4449i 0.550684 + 0.953813i 0.998225 + 0.0595495i \(0.0189664\pi\)
−0.447541 + 0.894263i \(0.647700\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 6.00000 10.3923i 0.194054 0.336111i
\(957\) 0 0
\(958\) 14.0000 0.452319
\(959\) 9.00000 15.5885i 0.290625 0.503378i
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) −15.0000 −0.483619
\(963\) 0 0
\(964\) −3.50000 6.06218i −0.112727 0.195250i
\(965\) 0 0
\(966\) 0 0
\(967\) 14.5000 + 25.1147i 0.466289 + 0.807635i 0.999259 0.0384986i \(-0.0122575\pi\)
−0.532970 + 0.846134i \(0.678924\pi\)
\(968\) −21.0000 −0.674966
\(969\) 0 0
\(970\) 0 0
\(971\) −21.0000 36.3731i −0.673922 1.16727i −0.976783 0.214232i \(-0.931275\pi\)
0.302861 0.953035i \(-0.402058\pi\)
\(972\) 0 0
\(973\) −2.50000 + 4.33013i −0.0801463 + 0.138817i
\(974\) −8.00000 13.8564i −0.256337 0.443988i
\(975\) 0 0
\(976\) 13.0000 0.416120
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 0 0
\(979\) −6.00000 + 10.3923i −0.191761 + 0.332140i
\(980\) 0 0
\(981\) 0 0
\(982\) −3.00000 + 5.19615i −0.0957338 + 0.165816i
\(983\) 5.00000 + 8.66025i 0.159475 + 0.276219i 0.934680 0.355491i \(-0.115686\pi\)
−0.775204 + 0.631711i \(0.782353\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 16.0000 + 27.7128i 0.509544 + 0.882556i
\(987\) 0 0
\(988\) −2.50000 21.6506i −0.0795356 0.688798i
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −23.5000 40.7032i −0.746502 1.29298i −0.949490 0.313798i \(-0.898398\pi\)
0.202988 0.979181i \(-0.434935\pi\)
\(992\) −7.50000 + 12.9904i −0.238125 + 0.412445i
\(993\) 0 0
\(994\) −3.00000 + 5.19615i −0.0951542 + 0.164812i
\(995\) 0 0
\(996\) 0 0
\(997\) −3.50000 + 6.06218i −0.110846 + 0.191991i −0.916112 0.400923i \(-0.868689\pi\)
0.805266 + 0.592914i \(0.202023\pi\)
\(998\) 14.5000 25.1147i 0.458989 0.794993i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.2.f.a.64.1 2
3.2 odd 2 57.2.e.a.7.1 2
4.3 odd 2 2736.2.s.j.577.1 2
12.11 even 2 912.2.q.a.577.1 2
19.7 even 3 3249.2.a.c.1.1 1
19.11 even 3 inner 171.2.f.a.163.1 2
19.12 odd 6 3249.2.a.f.1.1 1
57.11 odd 6 57.2.e.a.49.1 yes 2
57.26 odd 6 1083.2.a.c.1.1 1
57.50 even 6 1083.2.a.b.1.1 1
76.11 odd 6 2736.2.s.j.1873.1 2
228.11 even 6 912.2.q.a.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.e.a.7.1 2 3.2 odd 2
57.2.e.a.49.1 yes 2 57.11 odd 6
171.2.f.a.64.1 2 1.1 even 1 trivial
171.2.f.a.163.1 2 19.11 even 3 inner
912.2.q.a.49.1 2 228.11 even 6
912.2.q.a.577.1 2 12.11 even 2
1083.2.a.b.1.1 1 57.50 even 6
1083.2.a.c.1.1 1 57.26 odd 6
2736.2.s.j.577.1 2 4.3 odd 2
2736.2.s.j.1873.1 2 76.11 odd 6
3249.2.a.c.1.1 1 19.7 even 3
3249.2.a.f.1.1 1 19.12 odd 6