Defining parameters
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(80\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(171, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 108 | 16 |
Cusp forms | 116 | 108 | 8 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(171, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
171.4.e.a | $54$ | $10.089$ | None | \(-6\) | \(2\) | \(-26\) | \(0\) | ||
171.4.e.b | $54$ | $10.089$ | None | \(6\) | \(2\) | \(54\) | \(0\) |
Decomposition of \(S_{4}^{\mathrm{old}}(171, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(171, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)