Properties

Label 171.4.e
Level $171$
Weight $4$
Character orbit 171.e
Rep. character $\chi_{171}(58,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $108$
Newform subspaces $2$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(171, [\chi])\).

Total New Old
Modular forms 124 108 16
Cusp forms 116 108 8
Eisenstein series 8 0 8

Trace form

\( 108 q + 4 q^{3} - 216 q^{4} + 28 q^{5} + 14 q^{6} - 12 q^{8} - 124 q^{9} + O(q^{10}) \) \( 108 q + 4 q^{3} - 216 q^{4} + 28 q^{5} + 14 q^{6} - 12 q^{8} - 124 q^{9} + 80 q^{11} + 330 q^{12} + 38 q^{14} + 88 q^{15} - 864 q^{16} - 272 q^{17} - 144 q^{18} + 368 q^{20} - 40 q^{21} - 40 q^{23} + 300 q^{24} - 1494 q^{25} + 808 q^{26} + 1012 q^{27} - 332 q^{29} - 116 q^{30} - 36 q^{31} - 1392 q^{32} + 616 q^{33} - 624 q^{35} + 1814 q^{36} - 144 q^{37} + 228 q^{38} - 1434 q^{39} - 68 q^{41} + 1288 q^{42} - 320 q^{44} + 1852 q^{45} + 1008 q^{46} + 1650 q^{47} + 1650 q^{48} - 3042 q^{49} - 2306 q^{50} + 272 q^{51} - 918 q^{52} + 344 q^{53} - 4348 q^{54} - 2016 q^{55} - 660 q^{56} - 90 q^{58} + 1352 q^{59} + 2810 q^{60} + 36 q^{61} - 2728 q^{62} - 1524 q^{63} + 7452 q^{64} - 144 q^{65} + 1834 q^{66} + 612 q^{67} + 992 q^{68} - 2472 q^{69} + 432 q^{70} + 24 q^{71} + 948 q^{72} + 1508 q^{74} + 3692 q^{75} + 1136 q^{77} + 1484 q^{78} - 1188 q^{79} - 3844 q^{80} + 3140 q^{81} - 5148 q^{82} + 2032 q^{83} - 7458 q^{84} + 936 q^{85} + 336 q^{86} + 6006 q^{87} + 2088 q^{88} + 1528 q^{89} - 11222 q^{90} + 1008 q^{91} - 6002 q^{92} + 3264 q^{93} + 4230 q^{94} + 1520 q^{95} - 3308 q^{96} + 1944 q^{97} + 3176 q^{98} - 448 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(171, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
171.4.e.a 171.e 9.c $54$ $10.089$ None 171.4.e.a \(-6\) \(2\) \(-26\) \(0\) $\mathrm{SU}(2)[C_{3}]$
171.4.e.b 171.e 9.c $54$ $10.089$ None 171.4.e.b \(6\) \(2\) \(54\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{4}^{\mathrm{old}}(171, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(171, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)