Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [171,4,Mod(58,171)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(171, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("171.58");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.0893266110\) |
Analytic rank: | \(0\) |
Dimension: | \(54\) |
Relative dimension: | \(27\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58.1 | −2.71759 | − | 4.70700i | −1.72680 | − | 4.90083i | −10.7706 | + | 18.6552i | −3.98845 | + | 6.90820i | −18.3755 | + | 21.4465i | 7.59826 | + | 13.1606i | 73.5985 | −21.0363 | + | 16.9255i | 43.3559 | ||||
58.2 | −2.70529 | − | 4.68569i | −1.87859 | + | 4.84468i | −10.6371 | + | 18.4241i | −8.74654 | + | 15.1494i | 27.7828 | − | 4.30374i | −3.11415 | − | 5.39387i | 71.8214 | −19.9418 | − | 18.2023i | 94.6475 | ||||
58.3 | −2.63881 | − | 4.57055i | −4.75458 | + | 2.09618i | −9.92660 | + | 17.1934i | 8.90090 | − | 15.4168i | 22.1271 | + | 16.1996i | −16.0088 | − | 27.7281i | 62.5566 | 18.2121 | − | 19.9329i | −93.9510 | ||||
58.4 | −2.25805 | − | 3.91105i | 4.70555 | − | 2.20405i | −6.19756 | + | 10.7345i | −3.96830 | + | 6.87330i | −19.2455 | − | 13.4268i | −9.26005 | − | 16.0389i | 19.8488 | 17.2843 | − | 20.7425i | 35.8424 | ||||
58.5 | −2.17034 | − | 3.75914i | −4.20970 | − | 3.04605i | −5.42074 | + | 9.38901i | 7.46889 | − | 12.9365i | −2.31404 | + | 22.4358i | 6.59214 | + | 11.4179i | 12.3340 | 8.44317 | + | 25.6459i | −64.8401 | ||||
58.6 | −1.78836 | − | 3.09754i | 2.79226 | − | 4.38215i | −2.39648 | + | 4.15083i | 7.39022 | − | 12.8002i | −18.5675 | − | 0.812253i | 10.3127 | + | 17.8622i | −11.4707 | −11.4065 | − | 24.4722i | −52.8656 | ||||
58.7 | −1.60398 | − | 2.77818i | −4.39733 | − | 2.76831i | −1.14551 | + | 1.98408i | −9.96596 | + | 17.2615i | −0.637611 | + | 16.6569i | −16.3907 | − | 28.3896i | −18.3142 | 11.6730 | + | 24.3463i | 63.9408 | ||||
58.8 | −1.50144 | − | 2.60058i | 4.94730 | + | 1.58879i | −0.508662 | + | 0.881029i | −0.754699 | + | 1.30718i | −3.29631 | − | 15.2513i | 15.8260 | + | 27.4114i | −20.9682 | 21.9515 | + | 15.7205i | 4.53255 | ||||
58.9 | −1.29457 | − | 2.24226i | −0.0706213 | + | 5.19567i | 0.648173 | − | 1.12267i | 8.23332 | − | 14.2605i | 11.7415 | − | 6.56781i | −2.49245 | − | 4.31705i | −24.0696 | −26.9900 | − | 0.733850i | −42.6345 | ||||
58.10 | −1.20745 | − | 2.09137i | −1.10087 | + | 5.07820i | 1.08411 | − | 1.87774i | −10.4375 | + | 18.0783i | 11.9496 | − | 3.82937i | 14.9933 | + | 25.9691i | −24.5553 | −24.5762 | − | 11.1808i | 50.4113 | ||||
58.11 | −1.04620 | − | 1.81207i | −4.65752 | + | 2.30381i | 1.81094 | − | 3.13665i | −0.277634 | + | 0.480876i | 9.04734 | + | 6.02949i | −3.29263 | − | 5.70300i | −24.3176 | 16.3849 | − | 21.4601i | 1.16184 | ||||
58.12 | −0.668972 | − | 1.15869i | 1.82065 | − | 4.86675i | 3.10495 | − | 5.37794i | 1.70839 | − | 2.95902i | −6.85704 | + | 1.14614i | −8.90834 | − | 15.4297i | −19.0121 | −20.3704 | − | 17.7213i | −4.57146 | ||||
58.13 | −0.310405 | − | 0.537637i | −4.36122 | − | 2.82484i | 3.80730 | − | 6.59443i | −2.88298 | + | 4.99346i | −0.164993 | + | 3.22160i | 11.8767 | + | 20.5710i | −9.69370 | 11.0406 | + | 24.6395i | 3.57956 | ||||
58.14 | −0.215194 | − | 0.372727i | 0.915225 | + | 5.11492i | 3.90738 | − | 6.76779i | 2.35296 | − | 4.07544i | 1.70952 | − | 1.44183i | −11.2998 | − | 19.5718i | −6.80648 | −25.3247 | + | 9.36260i | −2.02537 | ||||
58.15 | 0.192549 | + | 0.333505i | 4.52896 | + | 2.54726i | 3.92585 | − | 6.79977i | 5.55121 | − | 9.61497i | 0.0225252 | + | 2.00090i | 6.25466 | + | 10.8334i | 6.10446 | 14.0230 | + | 23.0728i | 4.27552 | ||||
58.16 | 0.319091 | + | 0.552682i | 0.778090 | − | 5.13757i | 3.79636 | − | 6.57549i | −9.44905 | + | 16.3662i | 3.08772 | − | 1.20932i | −6.84018 | − | 11.8475i | 9.95101 | −25.7892 | − | 7.99498i | −12.0604 | ||||
58.17 | 0.619031 | + | 1.07219i | 5.12846 | − | 0.835986i | 3.23360 | − | 5.60076i | −9.52182 | + | 16.4923i | 4.07102 | + | 4.98120i | 3.48423 | + | 6.03487i | 17.9113 | 25.6023 | − | 8.57465i | −23.5772 | ||||
58.18 | 0.813967 | + | 1.40983i | −1.64161 | − | 4.93002i | 2.67491 | − | 4.63309i | 7.80212 | − | 13.5137i | 5.61429 | − | 6.32728i | 0.642561 | + | 1.11295i | 21.7327 | −21.6102 | + | 16.1864i | 25.4027 | ||||
58.19 | 0.989966 | + | 1.71467i | 4.88583 | + | 1.76881i | 2.03993 | − | 3.53327i | 1.25650 | − | 2.17632i | 1.80387 | + | 10.1287i | −18.0950 | − | 31.3414i | 23.9173 | 20.7426 | + | 17.2842i | 4.97556 | ||||
58.20 | 1.01953 | + | 1.76588i | −3.01198 | + | 4.23415i | 1.92111 | − | 3.32745i | −1.62373 | + | 2.81238i | −10.5478 | − | 1.00195i | 11.8906 | + | 20.5951i | 24.1470 | −8.85599 | − | 25.5063i | −6.62178 | ||||
See all 54 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 171.4.e.a | ✓ | 54 |
9.c | even | 3 | 1 | inner | 171.4.e.a | ✓ | 54 |
9.c | even | 3 | 1 | 1539.4.a.h | 27 | ||
9.d | odd | 6 | 1 | 1539.4.a.g | 27 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
171.4.e.a | ✓ | 54 | 1.a | even | 1 | 1 | trivial |
171.4.e.a | ✓ | 54 | 9.c | even | 3 | 1 | inner |
1539.4.a.g | 27 | 9.d | odd | 6 | 1 | ||
1539.4.a.h | 27 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{54} + 6 T_{2}^{53} + 180 T_{2}^{52} + 898 T_{2}^{51} + 17061 T_{2}^{50} + 75702 T_{2}^{49} + \cdots + 70\!\cdots\!64 \) acting on \(S_{4}^{\mathrm{new}}(171, [\chi])\).