Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [171,4,Mod(53,171)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(171, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 11]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("171.53");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 171 = 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 171.y (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.0893266110\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | −4.90666 | − | 1.78588i | 0 | 14.7576 | + | 12.3831i | −3.22388 | − | 3.84207i | 0 | −0.347063 | + | 0.601131i | −29.4095 | − | 50.9388i | 0 | 8.95701 | + | 24.6092i | ||||||
53.2 | −4.79619 | − | 1.74567i | 0 | 13.8277 | + | 11.6028i | 0.869736 | + | 1.03651i | 0 | −17.0305 | + | 29.4978i | −25.6497 | − | 44.4266i | 0 | −2.36201 | − | 6.48958i | ||||||
53.3 | −4.20988 | − | 1.53227i | 0 | 9.24691 | + | 7.75908i | −12.4048 | − | 14.7835i | 0 | 14.3815 | − | 24.9094i | −9.11914 | − | 15.7948i | 0 | 29.5705 | + | 81.2444i | ||||||
53.4 | −3.41758 | − | 1.24390i | 0 | 4.00419 | + | 3.35992i | 8.24027 | + | 9.82037i | 0 | 8.78095 | − | 15.2090i | 5.04239 | + | 8.73367i | 0 | −15.9462 | − | 43.8119i | ||||||
53.5 | −3.36331 | − | 1.22414i | 0 | 3.68495 | + | 3.09204i | 13.3019 | + | 15.8526i | 0 | −7.77429 | + | 13.4655i | 5.70811 | + | 9.88673i | 0 | −25.3325 | − | 69.6004i | ||||||
53.6 | −3.13604 | − | 1.14142i | 0 | 2.40352 | + | 2.01679i | −0.417489 | − | 0.497545i | 0 | 11.8643 | − | 20.5495i | 8.11369 | + | 14.0533i | 0 | 0.741353 | + | 2.03685i | ||||||
53.7 | −2.30065 | − | 0.837369i | 0 | −1.53654 | − | 1.28931i | −10.9536 | − | 13.0540i | 0 | −16.1646 | + | 27.9979i | 12.2486 | + | 21.2153i | 0 | 14.2695 | + | 39.2050i | ||||||
53.8 | −1.91636 | − | 0.697498i | 0 | −2.94242 | − | 2.46899i | 0.792095 | + | 0.943982i | 0 | −7.99477 | + | 13.8473i | 12.0740 | + | 20.9128i | 0 | −0.859514 | − | 2.36149i | ||||||
53.9 | −1.02676 | − | 0.373709i | 0 | −5.21378 | − | 4.37488i | −4.49187 | − | 5.35320i | 0 | 9.55306 | − | 16.5464i | 8.08896 | + | 14.0105i | 0 | 2.61152 | + | 7.17509i | ||||||
53.10 | −0.393398 | − | 0.143185i | 0 | −5.99410 | − | 5.02964i | −6.91842 | − | 8.24506i | 0 | −0.354982 | + | 0.614847i | 3.31248 | + | 5.73738i | 0 | 1.54113 | + | 4.23421i | ||||||
53.11 | 0.393398 | + | 0.143185i | 0 | −5.99410 | − | 5.02964i | 6.91842 | + | 8.24506i | 0 | −0.354982 | + | 0.614847i | −3.31248 | − | 5.73738i | 0 | 1.54113 | + | 4.23421i | ||||||
53.12 | 1.02676 | + | 0.373709i | 0 | −5.21378 | − | 4.37488i | 4.49187 | + | 5.35320i | 0 | 9.55306 | − | 16.5464i | −8.08896 | − | 14.0105i | 0 | 2.61152 | + | 7.17509i | ||||||
53.13 | 1.91636 | + | 0.697498i | 0 | −2.94242 | − | 2.46899i | −0.792095 | − | 0.943982i | 0 | −7.99477 | + | 13.8473i | −12.0740 | − | 20.9128i | 0 | −0.859514 | − | 2.36149i | ||||||
53.14 | 2.30065 | + | 0.837369i | 0 | −1.53654 | − | 1.28931i | 10.9536 | + | 13.0540i | 0 | −16.1646 | + | 27.9979i | −12.2486 | − | 21.2153i | 0 | 14.2695 | + | 39.2050i | ||||||
53.15 | 3.13604 | + | 1.14142i | 0 | 2.40352 | + | 2.01679i | 0.417489 | + | 0.497545i | 0 | 11.8643 | − | 20.5495i | −8.11369 | − | 14.0533i | 0 | 0.741353 | + | 2.03685i | ||||||
53.16 | 3.36331 | + | 1.22414i | 0 | 3.68495 | + | 3.09204i | −13.3019 | − | 15.8526i | 0 | −7.77429 | + | 13.4655i | −5.70811 | − | 9.88673i | 0 | −25.3325 | − | 69.6004i | ||||||
53.17 | 3.41758 | + | 1.24390i | 0 | 4.00419 | + | 3.35992i | −8.24027 | − | 9.82037i | 0 | 8.78095 | − | 15.2090i | −5.04239 | − | 8.73367i | 0 | −15.9462 | − | 43.8119i | ||||||
53.18 | 4.20988 | + | 1.53227i | 0 | 9.24691 | + | 7.75908i | 12.4048 | + | 14.7835i | 0 | 14.3815 | − | 24.9094i | 9.11914 | + | 15.7948i | 0 | 29.5705 | + | 81.2444i | ||||||
53.19 | 4.79619 | + | 1.74567i | 0 | 13.8277 | + | 11.6028i | −0.869736 | − | 1.03651i | 0 | −17.0305 | + | 29.4978i | 25.6497 | + | 44.4266i | 0 | −2.36201 | − | 6.48958i | ||||||
53.20 | 4.90666 | + | 1.78588i | 0 | 14.7576 | + | 12.3831i | 3.22388 | + | 3.84207i | 0 | −0.347063 | + | 0.601131i | 29.4095 | + | 50.9388i | 0 | 8.95701 | + | 24.6092i | ||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
19.f | odd | 18 | 1 | inner |
57.j | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 171.4.y.a | ✓ | 120 |
3.b | odd | 2 | 1 | inner | 171.4.y.a | ✓ | 120 |
19.f | odd | 18 | 1 | inner | 171.4.y.a | ✓ | 120 |
57.j | even | 18 | 1 | inner | 171.4.y.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
171.4.y.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
171.4.y.a | ✓ | 120 | 3.b | odd | 2 | 1 | inner |
171.4.y.a | ✓ | 120 | 19.f | odd | 18 | 1 | inner |
171.4.y.a | ✓ | 120 | 57.j | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(171, [\chi])\).