Defining parameters
Level: | \( N \) | \(=\) | \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1710.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 285 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(720\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1710, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 376 | 40 | 336 |
Cusp forms | 344 | 40 | 304 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1710, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1710.2.c.a | $4$ | $13.654$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{8}^{2}q^{2}-q^{4}+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+\zeta_{8}^{2}q^{8}+\cdots\) |
1710.2.c.b | $4$ | $13.654$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{8}^{2}q^{2}-q^{4}+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\) |
1710.2.c.c | $8$ | $13.654$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{2}-q^{4}+(\beta_{4}+\beta_{3})q^{5}-\beta_1 q^{8}+\cdots\) |
1710.2.c.d | $24$ | $13.654$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1710, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)