Properties

Label 1710.2.c
Level 17101710
Weight 22
Character orbit 1710.c
Rep. character χ1710(1709,)\chi_{1710}(1709,\cdot)
Character field Q\Q
Dimension 4040
Newform subspaces 44
Sturm bound 720720
Trace bound 2929

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 285 285
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 720720
Trace bound: 2929
Distinguishing TpT_p: 77, 1111, 2929

Dimensions

The following table gives the dimensions of various subspaces of M2(1710,[χ])M_{2}(1710, [\chi]).

Total New Old
Modular forms 376 40 336
Cusp forms 344 40 304
Eisenstein series 32 0 32

Trace form

40q40q4+40q1632q1932q25+8q4924q55+96q6140q64+32q7688q85+O(q100) 40 q - 40 q^{4} + 40 q^{16} - 32 q^{19} - 32 q^{25} + 8 q^{49} - 24 q^{55} + 96 q^{61} - 40 q^{64} + 32 q^{76} - 88 q^{85}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1710.2.c.a 1710.c 285.b 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.c.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qζ82q2q4+(ζ8+2ζ83)q5+ζ82q8+q-\zeta_{8}^{2}q^{2}-q^{4}+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+\zeta_{8}^{2}q^{8}+\cdots
1710.2.c.b 1710.c 285.b 44 13.65413.654 Q(ζ8)\Q(\zeta_{8}) None 1710.2.c.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qζ82q2q4+(2ζ8ζ83)q5+q-\zeta_{8}^{2}q^{2}-q^{4}+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots
1710.2.c.c 1710.c 285.b 88 13.65413.654 Q(ζ24)\Q(\zeta_{24}) None 1710.2.c.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2q4+(β4+β3)q5β1q8+q+\beta_1 q^{2}-q^{4}+(\beta_{4}+\beta_{3})q^{5}-\beta_1 q^{8}+\cdots
1710.2.c.d 1710.c 285.b 2424 13.65413.654 None 1710.2.c.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S2old(1710,[χ])S_{2}^{\mathrm{old}}(1710, [\chi]) into lower level spaces

S2old(1710,[χ]) S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq S2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi])4^{\oplus 4}\oplusS2new(570,[χ])S_{2}^{\mathrm{new}}(570, [\chi])2^{\oplus 2}\oplusS2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi])2^{\oplus 2}