Properties

Label 1710.2.c
Level $1710$
Weight $2$
Character orbit 1710.c
Rep. character $\chi_{1710}(1709,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $4$
Sturm bound $720$
Trace bound $29$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(720\)
Trace bound: \(29\)
Distinguishing \(T_p\): \(7\), \(11\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1710, [\chi])\).

Total New Old
Modular forms 376 40 336
Cusp forms 344 40 304
Eisenstein series 32 0 32

Trace form

\( 40 q - 40 q^{4} + 40 q^{16} - 32 q^{19} - 32 q^{25} + 8 q^{49} - 24 q^{55} + 96 q^{61} - 40 q^{64} + 32 q^{76} - 88 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1710, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1710.2.c.a 1710.c 285.b $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}^{2}q^{2}-q^{4}+(\zeta_{8}+2\zeta_{8}^{3})q^{5}+\zeta_{8}^{2}q^{8}+\cdots\)
1710.2.c.b 1710.c 285.b $4$ $13.654$ \(\Q(\zeta_{8})\) None 1710.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}^{2}q^{2}-q^{4}+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+\cdots\)
1710.2.c.c 1710.c 285.b $8$ $13.654$ \(\Q(\zeta_{24})\) None 1710.2.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}-q^{4}+(\beta_{4}+\beta_{3})q^{5}-\beta_1 q^{8}+\cdots\)
1710.2.c.d 1710.c 285.b $24$ $13.654$ None 1710.2.c.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1710, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(570, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(855, [\chi])\)\(^{\oplus 2}\)