Properties

Label 1710.2.cj
Level 17101710
Weight 22
Character orbit 1710.cj
Rep. character χ1710(217,)\chi_{1710}(217,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 200200
Sturm bound 720720

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.cj (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 95 95
Character field: Q(ζ12)\Q(\zeta_{12})
Sturm bound: 720720

Dimensions

The following table gives the dimensions of various subspaces of M2(1710,[χ])M_{2}(1710, [\chi]).

Total New Old
Modular forms 1504 200 1304
Cusp forms 1376 200 1176
Eisenstein series 128 0 128

Trace form

200q+4q5+8q78q11+100q16+8q17+24q2212q2312q2516q264q28+16q3520q38+12q414q43+44q4736q53+40q55+24q98+O(q100) 200 q + 4 q^{5} + 8 q^{7} - 8 q^{11} + 100 q^{16} + 8 q^{17} + 24 q^{22} - 12 q^{23} - 12 q^{25} - 16 q^{26} - 4 q^{28} + 16 q^{35} - 20 q^{38} + 12 q^{41} - 4 q^{43} + 44 q^{47} - 36 q^{53} + 40 q^{55}+ \cdots - 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1710,[χ])S_{2}^{\mathrm{old}}(1710, [\chi]) into lower level spaces

S2old(1710,[χ]) S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq S2new(95,[χ])S_{2}^{\mathrm{new}}(95, [\chi])6^{\oplus 6}\oplusS2new(190,[χ])S_{2}^{\mathrm{new}}(190, [\chi])3^{\oplus 3}\oplusS2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi])4^{\oplus 4}\oplusS2new(570,[χ])S_{2}^{\mathrm{new}}(570, [\chi])2^{\oplus 2}\oplusS2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi])2^{\oplus 2}