Properties

Label 1710.2.cp
Level 17101710
Weight 22
Character orbit 1710.cp
Rep. character χ1710(41,)\chi_{1710}(41,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 480480
Sturm bound 720720

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.cp (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 171 171
Character field: Q(ζ18)\Q(\zeta_{18})
Sturm bound: 720720

Dimensions

The following table gives the dimensions of various subspaces of M2(1710,[χ])M_{2}(1710, [\chi]).

Total New Old
Modular forms 2208 480 1728
Cusp forms 2112 480 1632
Eisenstein series 96 0 96

Trace form

480q+12q3+12q612q912q1312q19+18q226q24+18q2712q2860q3312q3612q39+12q43+6q48240q49+24q5124q52+66q99+O(q100) 480 q + 12 q^{3} + 12 q^{6} - 12 q^{9} - 12 q^{13} - 12 q^{19} + 18 q^{22} - 6 q^{24} + 18 q^{27} - 12 q^{28} - 60 q^{33} - 12 q^{36} - 12 q^{39} + 12 q^{43} + 6 q^{48} - 240 q^{49} + 24 q^{51} - 24 q^{52}+ \cdots - 66 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1710,[χ])S_{2}^{\mathrm{old}}(1710, [\chi]) into lower level spaces

S2old(1710,[χ]) S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq S2new(171,[χ])S_{2}^{\mathrm{new}}(171, [\chi])4^{\oplus 4}\oplusS2new(342,[χ])S_{2}^{\mathrm{new}}(342, [\chi])2^{\oplus 2}\oplusS2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi])2^{\oplus 2}