Properties

Label 1710.2.cx
Level 17101710
Weight 22
Character orbit 1710.cx
Rep. character χ1710(199,)\chi_{1710}(199,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 300300
Sturm bound 720720

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.cx (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 95 95
Character field: Q(ζ18)\Q(\zeta_{18})
Sturm bound: 720720

Dimensions

The following table gives the dimensions of various subspaces of M2(1710,[χ])M_{2}(1710, [\chi]).

Total New Old
Modular forms 2256 300 1956
Cusp forms 2064 300 1764
Eisenstein series 192 0 192

Trace form

300q+12q1112q14+48q1912q20+48q25+6q2624q29+6q356q41+6q44+48q46+138q4924q5018q55+48q5684q59+120q61++36q95+O(q100) 300 q + 12 q^{11} - 12 q^{14} + 48 q^{19} - 12 q^{20} + 48 q^{25} + 6 q^{26} - 24 q^{29} + 6 q^{35} - 6 q^{41} + 6 q^{44} + 48 q^{46} + 138 q^{49} - 24 q^{50} - 18 q^{55} + 48 q^{56} - 84 q^{59} + 120 q^{61}+ \cdots + 36 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1710,[χ])S_{2}^{\mathrm{old}}(1710, [\chi]) into lower level spaces

S2old(1710,[χ]) S_{2}^{\mathrm{old}}(1710, [\chi]) \simeq S2new(95,[χ])S_{2}^{\mathrm{new}}(95, [\chi])6^{\oplus 6}\oplusS2new(190,[χ])S_{2}^{\mathrm{new}}(190, [\chi])3^{\oplus 3}\oplusS2new(285,[χ])S_{2}^{\mathrm{new}}(285, [\chi])4^{\oplus 4}\oplusS2new(570,[χ])S_{2}^{\mathrm{new}}(570, [\chi])2^{\oplus 2}\oplusS2new(855,[χ])S_{2}^{\mathrm{new}}(855, [\chi])2^{\oplus 2}