Properties

Label 1728.2.a.y
Level $1728$
Weight $2$
Character orbit 1728.a
Self dual yes
Analytic conductor $13.798$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1728,2,Mod(1,1728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1728.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 54)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{5} - q^{7} - 3 q^{11} + 4 q^{13} - 2 q^{19} + 6 q^{23} + 4 q^{25} + 6 q^{29} + 5 q^{31} - 3 q^{35} - 2 q^{37} + 6 q^{41} + 10 q^{43} - 6 q^{47} - 6 q^{49} + 9 q^{53} - 9 q^{55} + 12 q^{59} - 8 q^{61} + 12 q^{65} - 14 q^{67} - 7 q^{73} + 3 q^{77} + 8 q^{79} - 3 q^{83} + 18 q^{89} - 4 q^{91} - 6 q^{95} - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 3.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1728.2.a.y 1
3.b odd 2 1 1728.2.a.c 1
4.b odd 2 1 1728.2.a.z 1
8.b even 2 1 54.2.a.b yes 1
8.d odd 2 1 432.2.a.b 1
12.b even 2 1 1728.2.a.d 1
24.f even 2 1 432.2.a.g 1
24.h odd 2 1 54.2.a.a 1
40.f even 2 1 1350.2.a.h 1
40.i odd 4 2 1350.2.c.k 2
56.h odd 2 1 2646.2.a.bd 1
72.j odd 6 2 162.2.c.c 2
72.l even 6 2 1296.2.i.c 2
72.n even 6 2 162.2.c.b 2
72.p odd 6 2 1296.2.i.o 2
88.b odd 2 1 6534.2.a.b 1
104.e even 2 1 9126.2.a.r 1
120.i odd 2 1 1350.2.a.r 1
120.w even 4 2 1350.2.c.b 2
168.i even 2 1 2646.2.a.a 1
264.m even 2 1 6534.2.a.bc 1
312.b odd 2 1 9126.2.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.2.a.a 1 24.h odd 2 1
54.2.a.b yes 1 8.b even 2 1
162.2.c.b 2 72.n even 6 2
162.2.c.c 2 72.j odd 6 2
432.2.a.b 1 8.d odd 2 1
432.2.a.g 1 24.f even 2 1
1296.2.i.c 2 72.l even 6 2
1296.2.i.o 2 72.p odd 6 2
1350.2.a.h 1 40.f even 2 1
1350.2.a.r 1 120.i odd 2 1
1350.2.c.b 2 120.w even 4 2
1350.2.c.k 2 40.i odd 4 2
1728.2.a.c 1 3.b odd 2 1
1728.2.a.d 1 12.b even 2 1
1728.2.a.y 1 1.a even 1 1 trivial
1728.2.a.z 1 4.b odd 2 1
2646.2.a.a 1 168.i even 2 1
2646.2.a.bd 1 56.h odd 2 1
6534.2.a.b 1 88.b odd 2 1
6534.2.a.bc 1 264.m even 2 1
9126.2.a.r 1 104.e even 2 1
9126.2.a.u 1 312.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1728))\):

\( T_{5} - 3 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T - 5 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 10 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T - 9 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T + 14 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 7 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T + 3 \) Copy content Toggle raw display
$89$ \( T - 18 \) Copy content Toggle raw display
$97$ \( T + 1 \) Copy content Toggle raw display
show more
show less