Properties

Label 1734.2.a.b.1.1
Level $1734$
Weight $2$
Character 1734.1
Self dual yes
Analytic conductor $13.846$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8460597105\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1734.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{12} +2.00000 q^{13} +2.00000 q^{14} +1.00000 q^{16} -1.00000 q^{18} -4.00000 q^{19} +2.00000 q^{21} +6.00000 q^{23} +1.00000 q^{24} -5.00000 q^{25} -2.00000 q^{26} -1.00000 q^{27} -2.00000 q^{28} +10.0000 q^{31} -1.00000 q^{32} +1.00000 q^{36} -8.00000 q^{37} +4.00000 q^{38} -2.00000 q^{39} -6.00000 q^{41} -2.00000 q^{42} -4.00000 q^{43} -6.00000 q^{46} +12.0000 q^{47} -1.00000 q^{48} -3.00000 q^{49} +5.00000 q^{50} +2.00000 q^{52} +6.00000 q^{53} +1.00000 q^{54} +2.00000 q^{56} +4.00000 q^{57} -12.0000 q^{59} -8.00000 q^{61} -10.0000 q^{62} -2.00000 q^{63} +1.00000 q^{64} -4.00000 q^{67} -6.00000 q^{69} -6.00000 q^{71} -1.00000 q^{72} -2.00000 q^{73} +8.00000 q^{74} +5.00000 q^{75} -4.00000 q^{76} +2.00000 q^{78} +10.0000 q^{79} +1.00000 q^{81} +6.00000 q^{82} +12.0000 q^{83} +2.00000 q^{84} +4.00000 q^{86} -18.0000 q^{89} -4.00000 q^{91} +6.00000 q^{92} -10.0000 q^{93} -12.0000 q^{94} +1.00000 q^{96} -14.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 1.00000 0.204124
\(25\) −5.00000 −1.00000
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 4.00000 0.648886
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) −2.00000 −0.308607
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) −10.0000 −1.27000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 8.00000 0.929981
\(75\) 5.00000 0.577350
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 6.00000 0.662589
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 6.00000 0.625543
\(93\) −10.0000 −1.03695
\(94\) −12.0000 −1.23771
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) −2.00000 −0.188982
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 8.00000 0.724286
\(123\) 6.00000 0.541002
\(124\) 10.0000 0.898027
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 6.00000 0.510754
\(139\) −8.00000 −0.678551 −0.339276 0.940687i \(-0.610182\pi\)
−0.339276 + 0.940687i \(0.610182\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 3.00000 0.247436
\(148\) −8.00000 −0.657596
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −5.00000 −0.408248
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −0.160128
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) −10.0000 −0.795557
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) −1.00000 −0.0785674
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) −2.00000 −0.154303
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) −4.00000 −0.304997
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 10.0000 0.755929
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 18.0000 1.34916
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 4.00000 0.296500
\(183\) 8.00000 0.591377
\(184\) −6.00000 −0.442326
\(185\) 0 0
\(186\) 10.0000 0.733236
\(187\) 0 0
\(188\) 12.0000 0.875190
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 5.00000 0.353553
\(201\) 4.00000 0.282138
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 6.00000 0.417029
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) 6.00000 0.412082
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) −20.0000 −1.35769
\(218\) 20.0000 1.35457
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) −8.00000 −0.536925
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 2.00000 0.133631
\(225\) −5.00000 −0.333333
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 4.00000 0.264906
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000 1.96537 0.982683 0.185296i \(-0.0593245\pi\)
0.982683 + 0.185296i \(0.0593245\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 11.0000 0.707107
\(243\) −1.00000 −0.0641500
\(244\) −8.00000 −0.512148
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) −8.00000 −0.509028
\(248\) −10.0000 −0.635001
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) −4.00000 −0.249029
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 −0.490511
\(267\) 18.0000 1.10158
\(268\) −4.00000 −0.244339
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 4.00000 0.242091
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) −6.00000 −0.361158
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) 8.00000 0.479808
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 12.0000 0.714590
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) −1.00000 −0.0589256
\(289\) 0 0
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) −2.00000 −0.117041
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 12.0000 0.693978
\(300\) 5.00000 0.288675
\(301\) 8.00000 0.461112
\(302\) −8.00000 −0.460348
\(303\) −6.00000 −0.344691
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 4.00000 0.227552
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 2.00000 0.113228
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 6.00000 0.336463
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 12.0000 0.668734
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) −10.0000 −0.554700
\(326\) 20.0000 1.10770
\(327\) 20.0000 1.10600
\(328\) 6.00000 0.331295
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 12.0000 0.658586
\(333\) −8.00000 −0.438397
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 9.00000 0.489535
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 4.00000 0.216295
\(343\) 20.0000 1.07990
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) −10.0000 −0.534522
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) −12.0000 −0.637793
\(355\) 0 0
\(356\) −18.0000 −0.953998
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 8.00000 0.420471
\(363\) 11.0000 0.577350
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) −8.00000 −0.418167
\(367\) 10.0000 0.521996 0.260998 0.965339i \(-0.415948\pi\)
0.260998 + 0.965339i \(0.415948\pi\)
\(368\) 6.00000 0.312772
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) −10.0000 −0.518476
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 0 0
\(378\) −2.00000 −0.102869
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 12.0000 0.613973
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) −4.00000 −0.203331
\(388\) −14.0000 −0.710742
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −12.0000 −0.604551
\(395\) 0 0
\(396\) 0 0
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 2.00000 0.100251
\(399\) −8.00000 −0.400501
\(400\) −5.00000 −0.250000
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) −4.00000 −0.199502
\(403\) 20.0000 0.996271
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) −4.00000 −0.197066
\(413\) 24.0000 1.18096
\(414\) −6.00000 −0.294884
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 8.00000 0.389434
\(423\) 12.0000 0.583460
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 16.0000 0.774294
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) −20.0000 −0.957826
\(437\) −24.0000 −1.14808
\(438\) −2.00000 −0.0955637
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 8.00000 0.379663
\(445\) 0 0
\(446\) 28.0000 1.32584
\(447\) 6.00000 0.283790
\(448\) −2.00000 −0.0944911
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 5.00000 0.235702
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) −8.00000 −0.375873
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) −14.0000 −0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 20.0000 0.929479 0.464739 0.885448i \(-0.346148\pi\)
0.464739 + 0.885448i \(0.346148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −30.0000 −1.38972
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 2.00000 0.0924500
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 10.0000 0.459315
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 12.0000 0.548867
\(479\) −6.00000 −0.274147 −0.137073 0.990561i \(-0.543770\pi\)
−0.137073 + 0.990561i \(0.543770\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) −10.0000 −0.455488
\(483\) 12.0000 0.546019
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 10.0000 0.453143 0.226572 0.973995i \(-0.427248\pi\)
0.226572 + 0.973995i \(0.427248\pi\)
\(488\) 8.00000 0.362143
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 6.00000 0.270501
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 12.0000 0.538274
\(498\) 12.0000 0.537733
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 18.0000 0.804181
\(502\) −12.0000 −0.535586
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 8.00000 0.354943
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) −1.00000 −0.0441942
\(513\) 4.00000 0.176604
\(514\) −18.0000 −0.793946
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) 0 0
\(518\) −16.0000 −0.703000
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) −10.0000 −0.436436
\(526\) −12.0000 −0.523225
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 8.00000 0.346844
\(533\) −12.0000 −0.519778
\(534\) −18.0000 −0.778936
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 12.0000 0.517838
\(538\) 24.0000 1.03471
\(539\) 0 0
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 16.0000 0.687259
\(543\) 8.00000 0.343313
\(544\) 0 0
\(545\) 0 0
\(546\) −4.00000 −0.171184
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) −6.00000 −0.256307
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) 0 0
\(552\) 6.00000 0.255377
\(553\) −20.0000 −0.850487
\(554\) −4.00000 −0.169944
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) −42.0000 −1.77960 −0.889799 0.456354i \(-0.849155\pi\)
−0.889799 + 0.456354i \(0.849155\pi\)
\(558\) −10.0000 −0.423334
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −30.0000 −1.26547
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) −12.0000 −0.505291
\(565\) 0 0
\(566\) −16.0000 −0.672530
\(567\) −2.00000 −0.0839921
\(568\) 6.00000 0.251754
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) −12.0000 −0.500870
\(575\) −30.0000 −1.25109
\(576\) 1.00000 0.0416667
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) −14.0000 −0.580319
\(583\) 0 0
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 3.00000 0.123718
\(589\) −40.0000 −1.64817
\(590\) 0 0
\(591\) −12.0000 −0.493614
\(592\) −8.00000 −0.328798
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 2.00000 0.0818546
\(598\) −12.0000 −0.490716
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) −5.00000 −0.204124
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −8.00000 −0.326056
\(603\) −4.00000 −0.162893
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) −4.00000 −0.160904
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 18.0000 0.721734
\(623\) 36.0000 1.44231
\(624\) −2.00000 −0.0800641
\(625\) 25.0000 1.00000
\(626\) 14.0000 0.559553
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 0 0
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) −10.0000 −0.397779
\(633\) 8.00000 0.317971
\(634\) 12.0000 0.476581
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0000 1.41531 0.707653 0.706560i \(-0.249754\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) 10.0000 0.392232
\(651\) 20.0000 0.783862
\(652\) −20.0000 −0.783260
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) −20.0000 −0.782062
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) −2.00000 −0.0780274
\(658\) 24.0000 0.935617
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 8.00000 0.309994
\(667\) 0 0
\(668\) −18.0000 −0.696441
\(669\) 28.0000 1.08254
\(670\) 0 0
\(671\) 0 0
\(672\) −2.00000 −0.0771517
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) −22.0000 −0.847408
\(675\) 5.00000 0.192450
\(676\) −9.00000 −0.346154
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 6.00000 0.230429
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) −14.0000 −0.534133
\(688\) −4.00000 −0.152499
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −26.0000 −0.984115
\(699\) −30.0000 −1.13470
\(700\) 10.0000 0.377964
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 2.00000 0.0754851
\(703\) 32.0000 1.20690
\(704\) 0 0
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −12.0000 −0.451306
\(708\) 12.0000 0.450988
\(709\) −20.0000 −0.751116 −0.375558 0.926799i \(-0.622549\pi\)
−0.375558 + 0.926799i \(0.622549\pi\)
\(710\) 0 0
\(711\) 10.0000 0.375029
\(712\) 18.0000 0.674579
\(713\) 60.0000 2.24702
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 3.00000 0.111648
\(723\) −10.0000 −0.371904
\(724\) −8.00000 −0.297318
\(725\) 0 0
\(726\) −11.0000 −0.408248
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 4.00000 0.148250
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 8.00000 0.295689
\(733\) 26.0000 0.960332 0.480166 0.877178i \(-0.340576\pi\)
0.480166 + 0.877178i \(0.340576\pi\)
\(734\) −10.0000 −0.369107
\(735\) 0 0
\(736\) −6.00000 −0.221163
\(737\) 0 0
\(738\) 6.00000 0.220863
\(739\) −4.00000 −0.147142 −0.0735712 0.997290i \(-0.523440\pi\)
−0.0735712 + 0.997290i \(0.523440\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 12.0000 0.440534
\(743\) −42.0000 −1.54083 −0.770415 0.637542i \(-0.779951\pi\)
−0.770415 + 0.637542i \(0.779951\pi\)
\(744\) 10.0000 0.366618
\(745\) 0 0
\(746\) 22.0000 0.805477
\(747\) 12.0000 0.439057
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) 12.0000 0.437595
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) −28.0000 −1.01701
\(759\) 0 0
\(760\) 0 0
\(761\) −54.0000 −1.95750 −0.978749 0.205061i \(-0.934261\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 8.00000 0.289809
\(763\) 40.0000 1.44810
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 12.0000 0.433578
\(767\) −24.0000 −0.866590
\(768\) −1.00000 −0.0360844
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) −14.0000 −0.503871
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 4.00000 0.143777
\(775\) −50.0000 −1.79605
\(776\) 14.0000 0.502571
\(777\) −16.0000 −0.573997
\(778\) 30.0000 1.07555
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 12.0000 0.427482
\(789\) −12.0000 −0.427211
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) −16.0000 −0.567819
\(795\) 0 0
\(796\) −2.00000 −0.0708881
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 8.00000 0.283197
\(799\) 0 0
\(800\) 5.00000 0.176777
\(801\) −18.0000 −0.635999
\(802\) −18.0000 −0.635602
\(803\) 0 0
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) −20.0000 −0.704470
\(807\) 24.0000 0.844840
\(808\) −6.00000 −0.211079
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) −38.0000 −1.32864
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 36.0000 1.25641 0.628204 0.778048i \(-0.283790\pi\)
0.628204 + 0.778048i \(0.283790\pi\)
\(822\) −6.00000 −0.209274
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −24.0000 −0.835067
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 6.00000 0.208514
\(829\) −10.0000 −0.347314 −0.173657 0.984806i \(-0.555558\pi\)
−0.173657 + 0.984806i \(0.555558\pi\)
\(830\) 0 0
\(831\) −4.00000 −0.138758
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) −36.0000 −1.24360
\(839\) 18.0000 0.621429 0.310715 0.950503i \(-0.399432\pi\)
0.310715 + 0.950503i \(0.399432\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 22.0000 0.758170
\(843\) −30.0000 −1.03325
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) −12.0000 −0.412568
\(847\) 22.0000 0.755929
\(848\) 6.00000 0.206041
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) −48.0000 −1.64542
\(852\) 6.00000 0.205557
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) −16.0000 −0.547509
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) −30.0000 −1.02180
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) −20.0000 −0.678844
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 20.0000 0.677285
\(873\) −14.0000 −0.473828
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) 4.00000 0.135070 0.0675352 0.997717i \(-0.478487\pi\)
0.0675352 + 0.997717i \(0.478487\pi\)
\(878\) 26.0000 0.877457
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 3.00000 0.101015
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) −8.00000 −0.268462
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) −28.0000 −0.937509
\(893\) −48.0000 −1.60626
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) −12.0000 −0.400668
\(898\) 6.00000 0.200223
\(899\) 0 0
\(900\) −5.00000 −0.166667
\(901\) 0 0
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) 8.00000 0.265782
\(907\) 40.0000 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(908\) −12.0000 −0.398234
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 4.00000 0.132453
\(913\) 0 0
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) −30.0000 −0.987997
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) −20.0000 −0.657241
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 30.0000 0.982683
\(933\) 18.0000 0.589294
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) −8.00000 −0.261209
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) −10.0000 −0.325818
\(943\) −36.0000 −1.17232
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) −10.0000 −0.324785
\(949\) −4.00000 −0.129845
\(950\) −20.0000 −0.648886
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) 6.00000 0.193851
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 16.0000 0.515861
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 0 0
\(966\) −12.0000 −0.386094
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 16.0000 0.512936
\(974\) −10.0000 −0.320421
\(975\) 10.0000 0.320256
\(976\) −8.00000 −0.256074
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) −20.0000 −0.639529
\(979\) 0 0
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 36.0000 1.14881
\(983\) −6.00000 −0.191370 −0.0956851 0.995412i \(-0.530504\pi\)
−0.0956851 + 0.995412i \(0.530504\pi\)
\(984\) −6.00000 −0.191273
\(985\) 0 0
\(986\) 0 0
\(987\) 24.0000 0.763928
\(988\) −8.00000 −0.254514
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) −10.0000 −0.317500
\(993\) −20.0000 −0.634681
\(994\) −12.0000 −0.380617
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) −8.00000 −0.253363 −0.126681 0.991943i \(-0.540433\pi\)
−0.126681 + 0.991943i \(0.540433\pi\)
\(998\) 32.0000 1.01294
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1734.2.a.b.1.1 1
3.2 odd 2 5202.2.a.j.1.1 1
17.2 even 8 1734.2.f.b.1483.1 4
17.4 even 4 1734.2.b.f.577.2 2
17.8 even 8 1734.2.f.b.829.2 4
17.9 even 8 1734.2.f.b.829.1 4
17.13 even 4 1734.2.b.f.577.1 2
17.15 even 8 1734.2.f.b.1483.2 4
17.16 even 2 102.2.a.b.1.1 1
51.50 odd 2 306.2.a.c.1.1 1
68.67 odd 2 816.2.a.d.1.1 1
85.33 odd 4 2550.2.d.g.2449.2 2
85.67 odd 4 2550.2.d.g.2449.1 2
85.84 even 2 2550.2.a.u.1.1 1
119.118 odd 2 4998.2.a.d.1.1 1
136.67 odd 2 3264.2.a.w.1.1 1
136.101 even 2 3264.2.a.i.1.1 1
204.203 even 2 2448.2.a.i.1.1 1
255.254 odd 2 7650.2.a.j.1.1 1
408.101 odd 2 9792.2.a.bg.1.1 1
408.203 even 2 9792.2.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.2.a.b.1.1 1 17.16 even 2
306.2.a.c.1.1 1 51.50 odd 2
816.2.a.d.1.1 1 68.67 odd 2
1734.2.a.b.1.1 1 1.1 even 1 trivial
1734.2.b.f.577.1 2 17.13 even 4
1734.2.b.f.577.2 2 17.4 even 4
1734.2.f.b.829.1 4 17.9 even 8
1734.2.f.b.829.2 4 17.8 even 8
1734.2.f.b.1483.1 4 17.2 even 8
1734.2.f.b.1483.2 4 17.15 even 8
2448.2.a.i.1.1 1 204.203 even 2
2550.2.a.u.1.1 1 85.84 even 2
2550.2.d.g.2449.1 2 85.67 odd 4
2550.2.d.g.2449.2 2 85.33 odd 4
3264.2.a.i.1.1 1 136.101 even 2
3264.2.a.w.1.1 1 136.67 odd 2
4998.2.a.d.1.1 1 119.118 odd 2
5202.2.a.j.1.1 1 3.2 odd 2
7650.2.a.j.1.1 1 255.254 odd 2
9792.2.a.ba.1.1 1 408.203 even 2
9792.2.a.bg.1.1 1 408.101 odd 2