Properties

Label 1734.2.a.s
Level $1734$
Weight $2$
Character orbit 1734.a
Self dual yes
Analytic conductor $13.846$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1734,2,Mod(1,1734)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1734, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1734.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1734 = 2 \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1734.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8460597105\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + ( - \beta_1 + 2) q^{5} + q^{6} + ( - 2 \beta_{2} + 2 \beta_1 - 1) q^{7} + q^{8} + q^{9} + ( - \beta_1 + 2) q^{10} + ( - \beta_{2} - \beta_1 + 2) q^{11} + q^{12} + (2 \beta_1 + 2) q^{13}+ \cdots + ( - \beta_{2} - \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} + 6 q^{5} + 3 q^{6} - 3 q^{7} + 3 q^{8} + 3 q^{9} + 6 q^{10} + 6 q^{11} + 3 q^{12} + 6 q^{13} - 3 q^{14} + 6 q^{15} + 3 q^{16} + 3 q^{18} + 6 q^{19} + 6 q^{20} - 3 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.87939
−0.347296
−1.53209
1.00000 1.00000 1.00000 0.120615 1.00000 −0.305407 1.00000 1.00000 0.120615
1.2 1.00000 1.00000 1.00000 2.34730 1.00000 2.06418 1.00000 1.00000 2.34730
1.3 1.00000 1.00000 1.00000 3.53209 1.00000 −4.75877 1.00000 1.00000 3.53209
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1734.2.a.s yes 3
3.b odd 2 1 5202.2.a.bf 3
17.b even 2 1 1734.2.a.r 3
17.c even 4 2 1734.2.b.i 6
17.d even 8 4 1734.2.f.o 12
51.c odd 2 1 5202.2.a.bk 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1734.2.a.r 3 17.b even 2 1
1734.2.a.s yes 3 1.a even 1 1 trivial
1734.2.b.i 6 17.c even 4 2
1734.2.f.o 12 17.d even 8 4
5202.2.a.bf 3 3.b odd 2 1
5202.2.a.bk 3 51.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\):

\( T_{5}^{3} - 6T_{5}^{2} + 9T_{5} - 1 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 9T_{7} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 6 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$7$ \( T^{3} + 3 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 19 \) Copy content Toggle raw display
$13$ \( T^{3} - 6T^{2} + 8 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 6T^{2} + 8 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 24 \) Copy content Toggle raw display
$29$ \( T^{3} - 57T - 107 \) Copy content Toggle raw display
$31$ \( T^{3} + 6 T^{2} + \cdots - 467 \) Copy content Toggle raw display
$37$ \( T^{3} + 18 T^{2} + \cdots + 152 \) Copy content Toggle raw display
$41$ \( T^{3} + 6 T^{2} + \cdots - 136 \) Copy content Toggle raw display
$43$ \( (T - 6)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} - 24 T^{2} + \cdots + 456 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots - 159 \) Copy content Toggle raw display
$59$ \( T^{3} - 63T + 171 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 152 \) Copy content Toggle raw display
$67$ \( T^{3} - 24 T^{2} + \cdots + 456 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$73$ \( T^{3} - 147T + 683 \) Copy content Toggle raw display
$79$ \( T^{3} + 24 T^{2} + \cdots + 179 \) Copy content Toggle raw display
$83$ \( T^{3} + 9 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$89$ \( T^{3} - 12 T^{2} + \cdots + 408 \) Copy content Toggle raw display
$97$ \( T^{3} + 12 T^{2} + \cdots + 53 \) Copy content Toggle raw display
show more
show less