Properties

Label 175.10.b.f.99.1
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} + 2 x^{8} - 2016 x^{7} + 425617 x^{6} - 2170178 x^{5} + 5521250 x^{4} + \cdots + 231472080000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.1
Root \(-18.2310 - 18.2310i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.f.99.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-36.4619i q^{2} +68.7273i q^{3} -817.473 q^{4} +2505.93 q^{6} +2401.00i q^{7} +11138.1i q^{8} +14959.6 q^{9} -75602.9 q^{11} -56182.7i q^{12} +49331.2i q^{13} +87545.1 q^{14} -12428.3 q^{16} -522841. i q^{17} -545455. i q^{18} -442202. q^{19} -165014. q^{21} +2.75663e6i q^{22} -2.11792e6i q^{23} -765493. q^{24} +1.79871e6 q^{26} +2.38089e6i q^{27} -1.96275e6i q^{28} +5.29101e6 q^{29} -5.41211e6 q^{31} +6.15588e6i q^{32} -5.19598e6i q^{33} -1.90638e7 q^{34} -1.22290e7 q^{36} +1.68073e7i q^{37} +1.61236e7i q^{38} -3.39040e6 q^{39} +2.98305e6 q^{41} +6.01674e6i q^{42} +1.11225e7i q^{43} +6.18033e7 q^{44} -7.72234e7 q^{46} +1.58154e7i q^{47} -854160. i q^{48} -5.76480e6 q^{49} +3.59335e7 q^{51} -4.03269e7i q^{52} +2.78375e7i q^{53} +8.68118e7 q^{54} -2.67427e7 q^{56} -3.03914e7i q^{57} -1.92920e8i q^{58} -1.71244e7 q^{59} +1.93532e8 q^{61} +1.97336e8i q^{62} +3.59179e7i q^{63} +2.18092e8 q^{64} -1.89455e8 q^{66} +1.93697e8i q^{67} +4.27409e8i q^{68} +1.45559e8 q^{69} +1.41665e8 q^{71} +1.66622e8i q^{72} +2.36977e7i q^{73} +6.12828e8 q^{74} +3.61488e8 q^{76} -1.81522e8i q^{77} +1.23620e8i q^{78} -2.51611e8 q^{79} +1.30817e8 q^{81} -1.08768e8i q^{82} -2.06819e8i q^{83} +1.34895e8 q^{84} +4.05548e8 q^{86} +3.63637e8i q^{87} -8.42074e8i q^{88} +6.94584e8 q^{89} -1.18444e8 q^{91} +1.73134e9i q^{92} -3.71959e8i q^{93} +5.76662e8 q^{94} -4.23077e8 q^{96} +1.39893e9i q^{97} +2.10196e8i q^{98} -1.13099e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 1664 q^{4} - 288 q^{6} - 135594 q^{9} + 20624 q^{11} - 9604 q^{14} - 1053392 q^{16} - 3310752 q^{19} + 672280 q^{21} - 13009152 q^{24} + 20438120 q^{26} + 6707452 q^{29} + 5356240 q^{31} - 43097224 q^{34}+ \cdots - 1396625336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 36.4619i − 1.61141i −0.592320 0.805703i \(-0.701788\pi\)
0.592320 0.805703i \(-0.298212\pi\)
\(3\) 68.7273i 0.489873i 0.969539 + 0.244936i \(0.0787671\pi\)
−0.969539 + 0.244936i \(0.921233\pi\)
\(4\) −817.473 −1.59663
\(5\) 0 0
\(6\) 2505.93 0.789384
\(7\) 2401.00i 0.377964i
\(8\) 11138.1i 0.961407i
\(9\) 14959.6 0.760024
\(10\) 0 0
\(11\) −75602.9 −1.55694 −0.778469 0.627684i \(-0.784003\pi\)
−0.778469 + 0.627684i \(0.784003\pi\)
\(12\) − 56182.7i − 0.782144i
\(13\) 49331.2i 0.479045i 0.970891 + 0.239523i \(0.0769909\pi\)
−0.970891 + 0.239523i \(0.923009\pi\)
\(14\) 87545.1 0.609054
\(15\) 0 0
\(16\) −12428.3 −0.0474100
\(17\) − 522841.i − 1.51827i −0.650931 0.759137i \(-0.725621\pi\)
0.650931 0.759137i \(-0.274379\pi\)
\(18\) − 545455.i − 1.22471i
\(19\) −442202. −0.778448 −0.389224 0.921143i \(-0.627257\pi\)
−0.389224 + 0.921143i \(0.627257\pi\)
\(20\) 0 0
\(21\) −165014. −0.185155
\(22\) 2.75663e6i 2.50886i
\(23\) − 2.11792e6i − 1.57810i −0.614330 0.789049i \(-0.710574\pi\)
0.614330 0.789049i \(-0.289426\pi\)
\(24\) −765493. −0.470967
\(25\) 0 0
\(26\) 1.79871e6 0.771936
\(27\) 2.38089e6i 0.862188i
\(28\) − 1.96275e6i − 0.603468i
\(29\) 5.29101e6 1.38914 0.694572 0.719423i \(-0.255594\pi\)
0.694572 + 0.719423i \(0.255594\pi\)
\(30\) 0 0
\(31\) −5.41211e6 −1.05254 −0.526270 0.850317i \(-0.676410\pi\)
−0.526270 + 0.850317i \(0.676410\pi\)
\(32\) 6.15588e6i 1.03780i
\(33\) − 5.19598e6i − 0.762701i
\(34\) −1.90638e7 −2.44655
\(35\) 0 0
\(36\) −1.22290e7 −1.21348
\(37\) 1.68073e7i 1.47432i 0.675719 + 0.737159i \(0.263833\pi\)
−0.675719 + 0.737159i \(0.736167\pi\)
\(38\) 1.61236e7i 1.25440i
\(39\) −3.39040e6 −0.234671
\(40\) 0 0
\(41\) 2.98305e6 0.164867 0.0824333 0.996597i \(-0.473731\pi\)
0.0824333 + 0.996597i \(0.473731\pi\)
\(42\) 6.01674e6i 0.298359i
\(43\) 1.11225e7i 0.496129i 0.968744 + 0.248065i \(0.0797945\pi\)
−0.968744 + 0.248065i \(0.920206\pi\)
\(44\) 6.18033e7 2.48585
\(45\) 0 0
\(46\) −7.72234e7 −2.54296
\(47\) 1.58154e7i 0.472760i 0.971661 + 0.236380i \(0.0759611\pi\)
−0.971661 + 0.236380i \(0.924039\pi\)
\(48\) − 854160.i − 0.0232249i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) 3.59335e7 0.743761
\(52\) − 4.03269e7i − 0.764856i
\(53\) 2.78375e7i 0.484605i 0.970201 + 0.242303i \(0.0779027\pi\)
−0.970201 + 0.242303i \(0.922097\pi\)
\(54\) 8.68118e7 1.38933
\(55\) 0 0
\(56\) −2.67427e7 −0.363378
\(57\) − 3.03914e7i − 0.381341i
\(58\) − 1.92920e8i − 2.23847i
\(59\) −1.71244e7 −0.183985 −0.0919925 0.995760i \(-0.529324\pi\)
−0.0919925 + 0.995760i \(0.529324\pi\)
\(60\) 0 0
\(61\) 1.93532e8 1.78965 0.894826 0.446416i \(-0.147300\pi\)
0.894826 + 0.446416i \(0.147300\pi\)
\(62\) 1.97336e8i 1.69607i
\(63\) 3.59179e7i 0.287262i
\(64\) 2.18092e8 1.62491
\(65\) 0 0
\(66\) −1.89455e8 −1.22902
\(67\) 1.93697e8i 1.17432i 0.809471 + 0.587160i \(0.199754\pi\)
−0.809471 + 0.587160i \(0.800246\pi\)
\(68\) 4.27409e8i 2.42412i
\(69\) 1.45559e8 0.773068
\(70\) 0 0
\(71\) 1.41665e8 0.661605 0.330802 0.943700i \(-0.392681\pi\)
0.330802 + 0.943700i \(0.392681\pi\)
\(72\) 1.66622e8i 0.730693i
\(73\) 2.36977e7i 0.0976683i 0.998807 + 0.0488342i \(0.0155506\pi\)
−0.998807 + 0.0488342i \(0.984449\pi\)
\(74\) 6.12828e8 2.37572
\(75\) 0 0
\(76\) 3.61488e8 1.24289
\(77\) − 1.81522e8i − 0.588467i
\(78\) 1.23620e8i 0.378151i
\(79\) −2.51611e8 −0.726788 −0.363394 0.931636i \(-0.618382\pi\)
−0.363394 + 0.931636i \(0.618382\pi\)
\(80\) 0 0
\(81\) 1.30817e8 0.337662
\(82\) − 1.08768e8i − 0.265667i
\(83\) − 2.06819e8i − 0.478343i −0.970977 0.239171i \(-0.923124\pi\)
0.970977 0.239171i \(-0.0768757\pi\)
\(84\) 1.34895e8 0.295623
\(85\) 0 0
\(86\) 4.05548e8 0.799465
\(87\) 3.63637e8i 0.680504i
\(88\) − 8.42074e8i − 1.49685i
\(89\) 6.94584e8 1.17346 0.586732 0.809781i \(-0.300414\pi\)
0.586732 + 0.809781i \(0.300414\pi\)
\(90\) 0 0
\(91\) −1.18444e8 −0.181062
\(92\) 1.73134e9i 2.51963i
\(93\) − 3.71959e8i − 0.515611i
\(94\) 5.76662e8 0.761808
\(95\) 0 0
\(96\) −4.23077e8 −0.508392
\(97\) 1.39893e9i 1.60443i 0.597033 + 0.802217i \(0.296346\pi\)
−0.597033 + 0.802217i \(0.703654\pi\)
\(98\) 2.10196e8i 0.230201i
\(99\) −1.13099e9 −1.18331
\(100\) 0 0
\(101\) −9.82882e8 −0.939843 −0.469922 0.882708i \(-0.655718\pi\)
−0.469922 + 0.882708i \(0.655718\pi\)
\(102\) − 1.31020e9i − 1.19850i
\(103\) 1.53146e9i 1.34072i 0.742037 + 0.670359i \(0.233860\pi\)
−0.742037 + 0.670359i \(0.766140\pi\)
\(104\) −5.49457e8 −0.460558
\(105\) 0 0
\(106\) 1.01501e9 0.780895
\(107\) − 5.19394e8i − 0.383063i −0.981487 0.191531i \(-0.938655\pi\)
0.981487 0.191531i \(-0.0613454\pi\)
\(108\) − 1.94631e9i − 1.37659i
\(109\) 1.24526e9 0.844967 0.422483 0.906371i \(-0.361158\pi\)
0.422483 + 0.906371i \(0.361158\pi\)
\(110\) 0 0
\(111\) −1.15512e9 −0.722229
\(112\) − 2.98402e7i − 0.0179193i
\(113\) − 1.12841e9i − 0.651048i −0.945534 0.325524i \(-0.894459\pi\)
0.945534 0.325524i \(-0.105541\pi\)
\(114\) −1.10813e9 −0.614495
\(115\) 0 0
\(116\) −4.32526e9 −2.21795
\(117\) 7.37973e8i 0.364086i
\(118\) 6.24391e8i 0.296474i
\(119\) 1.25534e9 0.573853
\(120\) 0 0
\(121\) 3.35784e9 1.42405
\(122\) − 7.05655e9i − 2.88385i
\(123\) 2.05017e8i 0.0807637i
\(124\) 4.42425e9 1.68051
\(125\) 0 0
\(126\) 1.30964e9 0.462896
\(127\) − 3.31282e9i − 1.13001i −0.825088 0.565004i \(-0.808875\pi\)
0.825088 0.565004i \(-0.191125\pi\)
\(128\) − 4.80025e9i − 1.58059i
\(129\) −7.64420e8 −0.243040
\(130\) 0 0
\(131\) 4.83380e9 1.43406 0.717031 0.697042i \(-0.245501\pi\)
0.717031 + 0.697042i \(0.245501\pi\)
\(132\) 4.24757e9i 1.21775i
\(133\) − 1.06173e9i − 0.294226i
\(134\) 7.06257e9 1.89231
\(135\) 0 0
\(136\) 5.82348e9 1.45968
\(137\) − 3.43281e9i − 0.832543i −0.909240 0.416272i \(-0.863337\pi\)
0.909240 0.416272i \(-0.136663\pi\)
\(138\) − 5.30735e9i − 1.24573i
\(139\) −3.96923e9 −0.901860 −0.450930 0.892559i \(-0.648908\pi\)
−0.450930 + 0.892559i \(0.648908\pi\)
\(140\) 0 0
\(141\) −1.08695e9 −0.231592
\(142\) − 5.16537e9i − 1.06611i
\(143\) − 3.72958e9i − 0.745843i
\(144\) −1.85921e8 −0.0360328
\(145\) 0 0
\(146\) 8.64065e8 0.157383
\(147\) − 3.96199e8i − 0.0699819i
\(148\) − 1.37395e10i − 2.35394i
\(149\) −2.72837e8 −0.0453487 −0.0226744 0.999743i \(-0.507218\pi\)
−0.0226744 + 0.999743i \(0.507218\pi\)
\(150\) 0 0
\(151\) 3.77089e9 0.590265 0.295133 0.955456i \(-0.404636\pi\)
0.295133 + 0.955456i \(0.404636\pi\)
\(152\) − 4.92531e9i − 0.748406i
\(153\) − 7.82148e9i − 1.15392i
\(154\) −6.61866e9 −0.948259
\(155\) 0 0
\(156\) 2.77156e9 0.374682
\(157\) 9.54797e9i 1.25419i 0.778944 + 0.627094i \(0.215756\pi\)
−0.778944 + 0.627094i \(0.784244\pi\)
\(158\) 9.17422e9i 1.17115i
\(159\) −1.91319e9 −0.237395
\(160\) 0 0
\(161\) 5.08512e9 0.596465
\(162\) − 4.76984e9i − 0.544110i
\(163\) 6.35428e9i 0.705054i 0.935802 + 0.352527i \(0.114678\pi\)
−0.935802 + 0.352527i \(0.885322\pi\)
\(164\) −2.43856e9 −0.263230
\(165\) 0 0
\(166\) −7.54102e9 −0.770804
\(167\) − 2.04016e9i − 0.202974i −0.994837 0.101487i \(-0.967640\pi\)
0.994837 0.101487i \(-0.0323600\pi\)
\(168\) − 1.83795e9i − 0.178009i
\(169\) 8.17093e9 0.770516
\(170\) 0 0
\(171\) −6.61515e9 −0.591640
\(172\) − 9.09235e9i − 0.792133i
\(173\) 1.72853e10i 1.46713i 0.679620 + 0.733564i \(0.262145\pi\)
−0.679620 + 0.733564i \(0.737855\pi\)
\(174\) 1.32589e10 1.09657
\(175\) 0 0
\(176\) 9.39611e8 0.0738144
\(177\) − 1.17692e9i − 0.0901293i
\(178\) − 2.53259e10i − 1.89092i
\(179\) −6.95395e8 −0.0506282 −0.0253141 0.999680i \(-0.508059\pi\)
−0.0253141 + 0.999680i \(0.508059\pi\)
\(180\) 0 0
\(181\) 1.80182e10 1.24784 0.623919 0.781489i \(-0.285539\pi\)
0.623919 + 0.781489i \(0.285539\pi\)
\(182\) 4.31870e9i 0.291764i
\(183\) 1.33009e10i 0.876702i
\(184\) 2.35897e10 1.51720
\(185\) 0 0
\(186\) −1.35624e10 −0.830859
\(187\) 3.95283e10i 2.36386i
\(188\) − 1.29287e10i − 0.754822i
\(189\) −5.71651e9 −0.325877
\(190\) 0 0
\(191\) −2.60774e10 −1.41780 −0.708899 0.705310i \(-0.750808\pi\)
−0.708899 + 0.705310i \(0.750808\pi\)
\(192\) 1.49889e10i 0.796001i
\(193\) − 9.94176e9i − 0.515769i −0.966176 0.257884i \(-0.916975\pi\)
0.966176 0.257884i \(-0.0830254\pi\)
\(194\) 5.10075e10 2.58539
\(195\) 0 0
\(196\) 4.71257e9 0.228090
\(197\) 3.35442e10i 1.58679i 0.608707 + 0.793395i \(0.291688\pi\)
−0.608707 + 0.793395i \(0.708312\pi\)
\(198\) 4.12379e10i 1.90679i
\(199\) −1.19117e10 −0.538435 −0.269218 0.963079i \(-0.586765\pi\)
−0.269218 + 0.963079i \(0.586765\pi\)
\(200\) 0 0
\(201\) −1.33123e10 −0.575268
\(202\) 3.58378e10i 1.51447i
\(203\) 1.27037e10i 0.525047i
\(204\) −2.93746e10 −1.18751
\(205\) 0 0
\(206\) 5.58399e10 2.16044
\(207\) − 3.16831e10i − 1.19939i
\(208\) − 6.13101e8i − 0.0227115i
\(209\) 3.34318e10 1.21200
\(210\) 0 0
\(211\) −4.45526e10 −1.54740 −0.773699 0.633554i \(-0.781596\pi\)
−0.773699 + 0.633554i \(0.781596\pi\)
\(212\) − 2.27564e10i − 0.773734i
\(213\) 9.73622e9i 0.324102i
\(214\) −1.89381e10 −0.617269
\(215\) 0 0
\(216\) −2.65187e10 −0.828914
\(217\) − 1.29945e10i − 0.397823i
\(218\) − 4.54045e10i − 1.36158i
\(219\) −1.62868e9 −0.0478451
\(220\) 0 0
\(221\) 2.57924e10 0.727322
\(222\) 4.21180e10i 1.16380i
\(223\) 7.31712e10i 1.98138i 0.136129 + 0.990691i \(0.456534\pi\)
−0.136129 + 0.990691i \(0.543466\pi\)
\(224\) −1.47803e10 −0.392253
\(225\) 0 0
\(226\) −4.11440e10 −1.04910
\(227\) 2.44357e10i 0.610813i 0.952222 + 0.305406i \(0.0987923\pi\)
−0.952222 + 0.305406i \(0.901208\pi\)
\(228\) 2.48441e10i 0.608859i
\(229\) 4.16163e10 1.00001 0.500004 0.866023i \(-0.333332\pi\)
0.500004 + 0.866023i \(0.333332\pi\)
\(230\) 0 0
\(231\) 1.24755e10 0.288274
\(232\) 5.89319e10i 1.33553i
\(233\) − 3.77622e10i − 0.839375i −0.907669 0.419687i \(-0.862140\pi\)
0.907669 0.419687i \(-0.137860\pi\)
\(234\) 2.69079e10 0.586690
\(235\) 0 0
\(236\) 1.39988e10 0.293755
\(237\) − 1.72925e10i − 0.356034i
\(238\) − 4.57722e10i − 0.924710i
\(239\) 3.14171e10 0.622839 0.311420 0.950273i \(-0.399196\pi\)
0.311420 + 0.950273i \(0.399196\pi\)
\(240\) 0 0
\(241\) 3.12996e10 0.597671 0.298835 0.954305i \(-0.403402\pi\)
0.298835 + 0.954305i \(0.403402\pi\)
\(242\) − 1.22433e11i − 2.29473i
\(243\) 5.58537e10i 1.02760i
\(244\) −1.58207e11 −2.85740
\(245\) 0 0
\(246\) 7.47531e9 0.130143
\(247\) − 2.18144e10i − 0.372912i
\(248\) − 6.02808e10i − 1.01192i
\(249\) 1.42141e10 0.234327
\(250\) 0 0
\(251\) 7.69585e10 1.22384 0.611920 0.790919i \(-0.290397\pi\)
0.611920 + 0.790919i \(0.290397\pi\)
\(252\) − 2.93619e10i − 0.458651i
\(253\) 1.60121e11i 2.45700i
\(254\) −1.20792e11 −1.82090
\(255\) 0 0
\(256\) −6.33632e10 −0.922056
\(257\) 7.48449e10i 1.07020i 0.844790 + 0.535098i \(0.179725\pi\)
−0.844790 + 0.535098i \(0.820275\pi\)
\(258\) 2.78722e10i 0.391636i
\(259\) −4.03544e10 −0.557240
\(260\) 0 0
\(261\) 7.91512e10 1.05578
\(262\) − 1.76250e11i − 2.31085i
\(263\) 8.16203e9i 0.105196i 0.998616 + 0.0525978i \(0.0167501\pi\)
−0.998616 + 0.0525978i \(0.983250\pi\)
\(264\) 5.78735e10 0.733267
\(265\) 0 0
\(266\) −3.87127e10 −0.474117
\(267\) 4.77368e10i 0.574848i
\(268\) − 1.58342e11i − 1.87495i
\(269\) 6.23895e9 0.0726484 0.0363242 0.999340i \(-0.488435\pi\)
0.0363242 + 0.999340i \(0.488435\pi\)
\(270\) 0 0
\(271\) 8.25889e10 0.930165 0.465083 0.885267i \(-0.346025\pi\)
0.465083 + 0.885267i \(0.346025\pi\)
\(272\) 6.49801e9i 0.0719814i
\(273\) − 8.14035e9i − 0.0886974i
\(274\) −1.25167e11 −1.34156
\(275\) 0 0
\(276\) −1.18990e11 −1.23430
\(277\) − 8.98709e10i − 0.917192i −0.888645 0.458596i \(-0.848353\pi\)
0.888645 0.458596i \(-0.151647\pi\)
\(278\) 1.44726e11i 1.45326i
\(279\) −8.09628e10 −0.799957
\(280\) 0 0
\(281\) −1.64133e10 −0.157042 −0.0785211 0.996912i \(-0.525020\pi\)
−0.0785211 + 0.996912i \(0.525020\pi\)
\(282\) 3.96324e10i 0.373189i
\(283\) − 2.99673e10i − 0.277721i −0.990312 0.138860i \(-0.955656\pi\)
0.990312 0.138860i \(-0.0443439\pi\)
\(284\) −1.15807e11 −1.05634
\(285\) 0 0
\(286\) −1.35988e11 −1.20186
\(287\) 7.16230e9i 0.0623137i
\(288\) 9.20893e10i 0.788756i
\(289\) −1.54775e11 −1.30515
\(290\) 0 0
\(291\) −9.61444e10 −0.785969
\(292\) − 1.93722e10i − 0.155940i
\(293\) − 1.61513e11i − 1.28028i −0.768260 0.640138i \(-0.778877\pi\)
0.768260 0.640138i \(-0.221123\pi\)
\(294\) −1.44462e10 −0.112769
\(295\) 0 0
\(296\) −1.87202e11 −1.41742
\(297\) − 1.80002e11i − 1.34237i
\(298\) 9.94817e9i 0.0730752i
\(299\) 1.04479e11 0.755980
\(300\) 0 0
\(301\) −2.67051e10 −0.187519
\(302\) − 1.37494e11i − 0.951157i
\(303\) − 6.75508e10i − 0.460404i
\(304\) 5.49580e9 0.0369063
\(305\) 0 0
\(306\) −2.85186e11 −1.85944
\(307\) − 1.65779e10i − 0.106514i −0.998581 0.0532570i \(-0.983040\pi\)
0.998581 0.0532570i \(-0.0169603\pi\)
\(308\) 1.48390e11i 0.939562i
\(309\) −1.05253e11 −0.656782
\(310\) 0 0
\(311\) 3.53749e10 0.214424 0.107212 0.994236i \(-0.465808\pi\)
0.107212 + 0.994236i \(0.465808\pi\)
\(312\) − 3.77627e10i − 0.225615i
\(313\) − 8.44655e9i − 0.0497428i −0.999691 0.0248714i \(-0.992082\pi\)
0.999691 0.0248714i \(-0.00791762\pi\)
\(314\) 3.48137e11 2.02100
\(315\) 0 0
\(316\) 2.05685e11 1.16041
\(317\) 2.19980e11i 1.22354i 0.791037 + 0.611768i \(0.209541\pi\)
−0.791037 + 0.611768i \(0.790459\pi\)
\(318\) 6.97587e10i 0.382540i
\(319\) −4.00015e11 −2.16281
\(320\) 0 0
\(321\) 3.56965e10 0.187652
\(322\) − 1.85413e11i − 0.961147i
\(323\) 2.31202e11i 1.18190i
\(324\) −1.06939e11 −0.539120
\(325\) 0 0
\(326\) 2.31690e11 1.13613
\(327\) 8.55831e10i 0.413926i
\(328\) 3.32256e10i 0.158504i
\(329\) −3.79729e10 −0.178687
\(330\) 0 0
\(331\) 6.96186e10 0.318786 0.159393 0.987215i \(-0.449046\pi\)
0.159393 + 0.987215i \(0.449046\pi\)
\(332\) 1.69069e11i 0.763734i
\(333\) 2.51430e11i 1.12052i
\(334\) −7.43882e10 −0.327073
\(335\) 0 0
\(336\) 2.05084e9 0.00877818
\(337\) 2.90202e11i 1.22565i 0.790219 + 0.612825i \(0.209967\pi\)
−0.790219 + 0.612825i \(0.790033\pi\)
\(338\) − 2.97928e11i − 1.24161i
\(339\) 7.75524e10 0.318931
\(340\) 0 0
\(341\) 4.09171e11 1.63874
\(342\) 2.41201e11i 0.953371i
\(343\) − 1.38413e10i − 0.0539949i
\(344\) −1.23884e11 −0.476982
\(345\) 0 0
\(346\) 6.30254e11 2.36414
\(347\) 1.42619e11i 0.528075i 0.964512 + 0.264038i \(0.0850543\pi\)
−0.964512 + 0.264038i \(0.914946\pi\)
\(348\) − 2.97263e11i − 1.08651i
\(349\) −4.06617e11 −1.46714 −0.733569 0.679615i \(-0.762147\pi\)
−0.733569 + 0.679615i \(0.762147\pi\)
\(350\) 0 0
\(351\) −1.17452e11 −0.413027
\(352\) − 4.65402e11i − 1.61580i
\(353\) − 1.80418e11i − 0.618435i −0.950991 0.309217i \(-0.899933\pi\)
0.950991 0.309217i \(-0.100067\pi\)
\(354\) −4.29127e10 −0.145235
\(355\) 0 0
\(356\) −5.67803e11 −1.87358
\(357\) 8.62763e10i 0.281115i
\(358\) 2.53554e10i 0.0815826i
\(359\) 5.04299e11 1.60237 0.801186 0.598416i \(-0.204203\pi\)
0.801186 + 0.598416i \(0.204203\pi\)
\(360\) 0 0
\(361\) −1.27145e11 −0.394018
\(362\) − 6.56979e11i − 2.01077i
\(363\) 2.30775e11i 0.697605i
\(364\) 9.68249e10 0.289089
\(365\) 0 0
\(366\) 4.84977e11 1.41272
\(367\) − 1.80774e11i − 0.520162i −0.965587 0.260081i \(-0.916251\pi\)
0.965587 0.260081i \(-0.0837492\pi\)
\(368\) 2.63220e10i 0.0748177i
\(369\) 4.46251e10 0.125303
\(370\) 0 0
\(371\) −6.68377e10 −0.183164
\(372\) 3.04067e11i 0.823239i
\(373\) 3.96719e11i 1.06119i 0.847625 + 0.530596i \(0.178032\pi\)
−0.847625 + 0.530596i \(0.821968\pi\)
\(374\) 1.44128e12 3.80913
\(375\) 0 0
\(376\) −1.76154e11 −0.454515
\(377\) 2.61012e11i 0.665463i
\(378\) 2.08435e11i 0.525119i
\(379\) 7.29691e11 1.81661 0.908306 0.418306i \(-0.137376\pi\)
0.908306 + 0.418306i \(0.137376\pi\)
\(380\) 0 0
\(381\) 2.27681e11 0.553560
\(382\) 9.50833e11i 2.28465i
\(383\) − 6.45922e11i − 1.53386i −0.641731 0.766930i \(-0.721783\pi\)
0.641731 0.766930i \(-0.278217\pi\)
\(384\) 3.29908e11 0.774288
\(385\) 0 0
\(386\) −3.62496e11 −0.831113
\(387\) 1.66388e11i 0.377070i
\(388\) − 1.14358e12i − 2.56168i
\(389\) −4.16712e11 −0.922706 −0.461353 0.887217i \(-0.652636\pi\)
−0.461353 + 0.887217i \(0.652636\pi\)
\(390\) 0 0
\(391\) −1.10734e12 −2.39598
\(392\) − 6.42091e10i − 0.137344i
\(393\) 3.32214e11i 0.702508i
\(394\) 1.22309e12 2.55696
\(395\) 0 0
\(396\) 9.24550e11 1.88930
\(397\) 9.61738e11i 1.94312i 0.236793 + 0.971560i \(0.423904\pi\)
−0.236793 + 0.971560i \(0.576096\pi\)
\(398\) 4.34322e11i 0.867637i
\(399\) 7.29697e10 0.144133
\(400\) 0 0
\(401\) 2.17932e10 0.0420892 0.0210446 0.999779i \(-0.493301\pi\)
0.0210446 + 0.999779i \(0.493301\pi\)
\(402\) 4.85391e11i 0.926990i
\(403\) − 2.66986e11i − 0.504215i
\(404\) 8.03480e11 1.50058
\(405\) 0 0
\(406\) 4.63202e11 0.846064
\(407\) − 1.27068e12i − 2.29542i
\(408\) 4.00232e11i 0.715057i
\(409\) 8.91299e11 1.57496 0.787478 0.616342i \(-0.211386\pi\)
0.787478 + 0.616342i \(0.211386\pi\)
\(410\) 0 0
\(411\) 2.35927e11 0.407840
\(412\) − 1.25192e12i − 2.14063i
\(413\) − 4.11158e10i − 0.0695398i
\(414\) −1.15523e12 −1.93271
\(415\) 0 0
\(416\) −3.03677e11 −0.497155
\(417\) − 2.72794e11i − 0.441797i
\(418\) − 1.21899e12i − 1.95302i
\(419\) −1.00476e12 −1.59258 −0.796290 0.604915i \(-0.793207\pi\)
−0.796290 + 0.604915i \(0.793207\pi\)
\(420\) 0 0
\(421\) −9.93627e11 −1.54154 −0.770768 0.637115i \(-0.780127\pi\)
−0.770768 + 0.637115i \(0.780127\pi\)
\(422\) 1.62447e12i 2.49348i
\(423\) 2.36592e11i 0.359309i
\(424\) −3.10057e11 −0.465903
\(425\) 0 0
\(426\) 3.55001e11 0.522260
\(427\) 4.64670e11i 0.676425i
\(428\) 4.24590e11i 0.611608i
\(429\) 2.56324e11 0.365369
\(430\) 0 0
\(431\) −5.70989e11 −0.797040 −0.398520 0.917160i \(-0.630476\pi\)
−0.398520 + 0.917160i \(0.630476\pi\)
\(432\) − 2.95903e10i − 0.0408764i
\(433\) − 1.38637e11i − 0.189532i −0.995500 0.0947659i \(-0.969790\pi\)
0.995500 0.0947659i \(-0.0302103\pi\)
\(434\) −4.73804e11 −0.641054
\(435\) 0 0
\(436\) −1.01796e12 −1.34910
\(437\) 9.36549e11i 1.22847i
\(438\) 5.93848e10i 0.0770978i
\(439\) −1.11468e12 −1.43238 −0.716189 0.697906i \(-0.754115\pi\)
−0.716189 + 0.697906i \(0.754115\pi\)
\(440\) 0 0
\(441\) −8.62389e10 −0.108575
\(442\) − 9.40441e11i − 1.17201i
\(443\) − 8.81863e11i − 1.08789i −0.839121 0.543944i \(-0.816930\pi\)
0.839121 0.543944i \(-0.183070\pi\)
\(444\) 9.44282e11 1.15313
\(445\) 0 0
\(446\) 2.66796e12 3.19281
\(447\) − 1.87513e10i − 0.0222151i
\(448\) 5.23639e11i 0.614159i
\(449\) −9.45977e11 −1.09843 −0.549214 0.835681i \(-0.685073\pi\)
−0.549214 + 0.835681i \(0.685073\pi\)
\(450\) 0 0
\(451\) −2.25527e11 −0.256687
\(452\) 9.22443e11i 1.03948i
\(453\) 2.59163e11i 0.289155i
\(454\) 8.90972e11 0.984266
\(455\) 0 0
\(456\) 3.38503e11 0.366624
\(457\) − 2.09756e11i − 0.224953i −0.993654 0.112476i \(-0.964122\pi\)
0.993654 0.112476i \(-0.0358783\pi\)
\(458\) − 1.51741e12i − 1.61142i
\(459\) 1.24483e12 1.30904
\(460\) 0 0
\(461\) 1.13248e12 1.16782 0.583912 0.811817i \(-0.301521\pi\)
0.583912 + 0.811817i \(0.301521\pi\)
\(462\) − 4.54882e11i − 0.464526i
\(463\) 6.47872e11i 0.655202i 0.944816 + 0.327601i \(0.106240\pi\)
−0.944816 + 0.327601i \(0.893760\pi\)
\(464\) −6.57580e10 −0.0658594
\(465\) 0 0
\(466\) −1.37688e12 −1.35257
\(467\) − 1.63471e12i − 1.59043i −0.606327 0.795216i \(-0.707358\pi\)
0.606327 0.795216i \(-0.292642\pi\)
\(468\) − 6.03273e11i − 0.581310i
\(469\) −4.65067e11 −0.443851
\(470\) 0 0
\(471\) −6.56206e11 −0.614393
\(472\) − 1.90734e11i − 0.176885i
\(473\) − 8.40893e11i − 0.772442i
\(474\) −6.30519e11 −0.573714
\(475\) 0 0
\(476\) −1.02621e12 −0.916229
\(477\) 4.16436e11i 0.368312i
\(478\) − 1.14553e12i − 1.00365i
\(479\) 1.44714e12 1.25603 0.628016 0.778200i \(-0.283867\pi\)
0.628016 + 0.778200i \(0.283867\pi\)
\(480\) 0 0
\(481\) −8.29126e11 −0.706265
\(482\) − 1.14124e12i − 0.963089i
\(483\) 3.49487e11i 0.292192i
\(484\) −2.74495e12 −2.27368
\(485\) 0 0
\(486\) 2.03654e12 1.65588
\(487\) − 7.93797e11i − 0.639483i −0.947505 0.319742i \(-0.896404\pi\)
0.947505 0.319742i \(-0.103596\pi\)
\(488\) 2.15558e12i 1.72058i
\(489\) −4.36713e11 −0.345387
\(490\) 0 0
\(491\) 8.93419e11 0.693726 0.346863 0.937916i \(-0.387247\pi\)
0.346863 + 0.937916i \(0.387247\pi\)
\(492\) − 1.67596e11i − 0.128949i
\(493\) − 2.76636e12i − 2.10910i
\(494\) −7.95394e11 −0.600912
\(495\) 0 0
\(496\) 6.72630e10 0.0499010
\(497\) 3.40137e11i 0.250063i
\(498\) − 5.18274e11i − 0.377596i
\(499\) 2.29839e12 1.65948 0.829740 0.558150i \(-0.188489\pi\)
0.829740 + 0.558150i \(0.188489\pi\)
\(500\) 0 0
\(501\) 1.40215e11 0.0994315
\(502\) − 2.80606e12i − 1.97210i
\(503\) 1.28863e12i 0.897580i 0.893637 + 0.448790i \(0.148145\pi\)
−0.893637 + 0.448790i \(0.851855\pi\)
\(504\) −4.00058e11 −0.276176
\(505\) 0 0
\(506\) 5.83831e12 3.95922
\(507\) 5.61566e11i 0.377455i
\(508\) 2.70814e12i 1.80420i
\(509\) −2.18603e12 −1.44353 −0.721765 0.692139i \(-0.756669\pi\)
−0.721765 + 0.692139i \(0.756669\pi\)
\(510\) 0 0
\(511\) −5.68982e10 −0.0369151
\(512\) − 1.47382e11i − 0.0947826i
\(513\) − 1.05283e12i − 0.671169i
\(514\) 2.72899e12 1.72452
\(515\) 0 0
\(516\) 6.24892e11 0.388044
\(517\) − 1.19569e12i − 0.736058i
\(518\) 1.47140e12i 0.897939i
\(519\) −1.18797e12 −0.718707
\(520\) 0 0
\(521\) −1.84809e12 −1.09889 −0.549443 0.835531i \(-0.685160\pi\)
−0.549443 + 0.835531i \(0.685160\pi\)
\(522\) − 2.88600e12i − 1.70130i
\(523\) − 9.46663e11i − 0.553271i −0.960975 0.276635i \(-0.910781\pi\)
0.960975 0.276635i \(-0.0892195\pi\)
\(524\) −3.95150e12 −2.28966
\(525\) 0 0
\(526\) 2.97603e11 0.169513
\(527\) 2.82967e12i 1.59804i
\(528\) 6.45769e10i 0.0361597i
\(529\) −2.68443e12 −1.49039
\(530\) 0 0
\(531\) −2.56174e11 −0.139833
\(532\) 8.67934e11i 0.469769i
\(533\) 1.47157e11i 0.0789786i
\(534\) 1.74058e12 0.926313
\(535\) 0 0
\(536\) −2.15742e12 −1.12900
\(537\) − 4.77926e10i − 0.0248014i
\(538\) − 2.27484e11i − 0.117066i
\(539\) 4.35835e11 0.222420
\(540\) 0 0
\(541\) −3.43412e12 −1.72357 −0.861783 0.507277i \(-0.830652\pi\)
−0.861783 + 0.507277i \(0.830652\pi\)
\(542\) − 3.01135e12i − 1.49887i
\(543\) 1.23834e12i 0.611282i
\(544\) 3.21855e12 1.57567
\(545\) 0 0
\(546\) −2.96813e11 −0.142927
\(547\) − 1.17006e12i − 0.558809i −0.960173 0.279405i \(-0.909863\pi\)
0.960173 0.279405i \(-0.0901370\pi\)
\(548\) 2.80623e12i 1.32926i
\(549\) 2.89515e12 1.36018
\(550\) 0 0
\(551\) −2.33970e12 −1.08138
\(552\) 1.62125e12i 0.743233i
\(553\) − 6.04118e11i − 0.274700i
\(554\) −3.27687e12 −1.47797
\(555\) 0 0
\(556\) 3.24473e12 1.43993
\(557\) 1.14677e12i 0.504812i 0.967621 + 0.252406i \(0.0812218\pi\)
−0.967621 + 0.252406i \(0.918778\pi\)
\(558\) 2.95206e12i 1.28905i
\(559\) −5.48687e11 −0.237668
\(560\) 0 0
\(561\) −2.71667e12 −1.15799
\(562\) 5.98459e11i 0.253059i
\(563\) − 1.28982e12i − 0.541056i −0.962712 0.270528i \(-0.912802\pi\)
0.962712 0.270528i \(-0.0871983\pi\)
\(564\) 8.88554e11 0.369767
\(565\) 0 0
\(566\) −1.09266e12 −0.447520
\(567\) 3.14092e11i 0.127624i
\(568\) 1.57788e12i 0.636072i
\(569\) −2.06212e12 −0.824724 −0.412362 0.911020i \(-0.635296\pi\)
−0.412362 + 0.911020i \(0.635296\pi\)
\(570\) 0 0
\(571\) −4.00715e12 −1.57751 −0.788756 0.614706i \(-0.789275\pi\)
−0.788756 + 0.614706i \(0.789275\pi\)
\(572\) 3.04883e12i 1.19083i
\(573\) − 1.79223e12i − 0.694541i
\(574\) 2.61151e11 0.100413
\(575\) 0 0
\(576\) 3.26256e12 1.23497
\(577\) 1.71845e12i 0.645424i 0.946497 + 0.322712i \(0.104595\pi\)
−0.946497 + 0.322712i \(0.895405\pi\)
\(578\) 5.64341e12i 2.10313i
\(579\) 6.83270e11 0.252661
\(580\) 0 0
\(581\) 4.96572e11 0.180796
\(582\) 3.50561e12i 1.26651i
\(583\) − 2.10459e12i − 0.754500i
\(584\) −2.63948e11 −0.0938990
\(585\) 0 0
\(586\) −5.88908e12 −2.06304
\(587\) 2.80000e12i 0.973389i 0.873572 + 0.486695i \(0.161798\pi\)
−0.873572 + 0.486695i \(0.838202\pi\)
\(588\) 3.23882e11i 0.111735i
\(589\) 2.39325e12 0.819348
\(590\) 0 0
\(591\) −2.30540e12 −0.777326
\(592\) − 2.08886e11i − 0.0698975i
\(593\) − 1.10112e12i − 0.365669i −0.983144 0.182834i \(-0.941473\pi\)
0.983144 0.182834i \(-0.0585272\pi\)
\(594\) −6.56322e12 −2.16311
\(595\) 0 0
\(596\) 2.23037e11 0.0724050
\(597\) − 8.18656e11i − 0.263765i
\(598\) − 3.80952e12i − 1.21819i
\(599\) −2.24275e12 −0.711805 −0.355902 0.934523i \(-0.615826\pi\)
−0.355902 + 0.934523i \(0.615826\pi\)
\(600\) 0 0
\(601\) −9.54770e11 −0.298513 −0.149257 0.988798i \(-0.547688\pi\)
−0.149257 + 0.988798i \(0.547688\pi\)
\(602\) 9.73721e11i 0.302169i
\(603\) 2.89763e12i 0.892512i
\(604\) −3.08260e12 −0.942434
\(605\) 0 0
\(606\) −2.46303e12 −0.741897
\(607\) 5.12222e11i 0.153147i 0.997064 + 0.0765736i \(0.0243980\pi\)
−0.997064 + 0.0765736i \(0.975602\pi\)
\(608\) − 2.72215e12i − 0.807877i
\(609\) −8.73091e11 −0.257206
\(610\) 0 0
\(611\) −7.80195e11 −0.226474
\(612\) 6.39385e12i 1.84239i
\(613\) 1.54411e12i 0.441680i 0.975310 + 0.220840i \(0.0708798\pi\)
−0.975310 + 0.220840i \(0.929120\pi\)
\(614\) −6.04463e11 −0.171637
\(615\) 0 0
\(616\) 2.02182e12 0.565756
\(617\) 2.69330e12i 0.748171i 0.927394 + 0.374085i \(0.122043\pi\)
−0.927394 + 0.374085i \(0.877957\pi\)
\(618\) 3.83772e12i 1.05834i
\(619\) −2.16325e12 −0.592242 −0.296121 0.955150i \(-0.595693\pi\)
−0.296121 + 0.955150i \(0.595693\pi\)
\(620\) 0 0
\(621\) 5.04253e12 1.36062
\(622\) − 1.28984e12i − 0.345524i
\(623\) 1.66770e12i 0.443527i
\(624\) 4.21367e10 0.0111258
\(625\) 0 0
\(626\) −3.07978e11 −0.0801557
\(627\) 2.29767e12i 0.593724i
\(628\) − 7.80520e12i − 2.00247i
\(629\) 8.78758e12 2.23842
\(630\) 0 0
\(631\) −6.47015e11 −0.162473 −0.0812367 0.996695i \(-0.525887\pi\)
−0.0812367 + 0.996695i \(0.525887\pi\)
\(632\) − 2.80248e12i − 0.698739i
\(633\) − 3.06198e12i − 0.758028i
\(634\) 8.02090e12 1.97161
\(635\) 0 0
\(636\) 1.56398e12 0.379031
\(637\) − 2.84385e11i − 0.0684350i
\(638\) 1.45853e13i 3.48516i
\(639\) 2.11924e12 0.502836
\(640\) 0 0
\(641\) 4.33378e12 1.01392 0.506962 0.861968i \(-0.330768\pi\)
0.506962 + 0.861968i \(0.330768\pi\)
\(642\) − 1.30156e12i − 0.302383i
\(643\) − 3.66638e12i − 0.845840i −0.906167 0.422920i \(-0.861005\pi\)
0.906167 0.422920i \(-0.138995\pi\)
\(644\) −4.15695e12 −0.952332
\(645\) 0 0
\(646\) 8.43006e12 1.90452
\(647\) 5.62143e12i 1.26118i 0.776116 + 0.630591i \(0.217187\pi\)
−0.776116 + 0.630591i \(0.782813\pi\)
\(648\) 1.45706e12i 0.324630i
\(649\) 1.29466e12 0.286453
\(650\) 0 0
\(651\) 8.93075e11 0.194883
\(652\) − 5.19446e12i − 1.12571i
\(653\) 7.11463e12i 1.53124i 0.643294 + 0.765620i \(0.277567\pi\)
−0.643294 + 0.765620i \(0.722433\pi\)
\(654\) 3.12053e12 0.667003
\(655\) 0 0
\(656\) −3.70741e10 −0.00781633
\(657\) 3.54507e11i 0.0742303i
\(658\) 1.38456e12i 0.287936i
\(659\) −7.21268e12 −1.48975 −0.744873 0.667206i \(-0.767490\pi\)
−0.744873 + 0.667206i \(0.767490\pi\)
\(660\) 0 0
\(661\) 6.13573e12 1.25014 0.625072 0.780567i \(-0.285070\pi\)
0.625072 + 0.780567i \(0.285070\pi\)
\(662\) − 2.53843e12i − 0.513693i
\(663\) 1.77264e12i 0.356295i
\(664\) 2.30358e12 0.459882
\(665\) 0 0
\(666\) 9.16764e12 1.80561
\(667\) − 1.12059e13i − 2.19221i
\(668\) 1.66778e12i 0.324074i
\(669\) −5.02886e12 −0.970626
\(670\) 0 0
\(671\) −1.46316e13 −2.78637
\(672\) − 1.01581e12i − 0.192154i
\(673\) − 5.72507e12i − 1.07575i −0.843023 0.537877i \(-0.819226\pi\)
0.843023 0.537877i \(-0.180774\pi\)
\(674\) 1.05813e13 1.97502
\(675\) 0 0
\(676\) −6.67952e12 −1.23023
\(677\) 5.22145e12i 0.955306i 0.878549 + 0.477653i \(0.158512\pi\)
−0.878549 + 0.477653i \(0.841488\pi\)
\(678\) − 2.82771e12i − 0.513927i
\(679\) −3.35882e12 −0.606419
\(680\) 0 0
\(681\) −1.67940e12 −0.299221
\(682\) − 1.49192e13i − 2.64067i
\(683\) − 8.77130e12i − 1.54231i −0.636649 0.771154i \(-0.719680\pi\)
0.636649 0.771154i \(-0.280320\pi\)
\(684\) 5.40771e12 0.944628
\(685\) 0 0
\(686\) −5.04680e11 −0.0870077
\(687\) 2.86018e12i 0.489877i
\(688\) − 1.38233e11i − 0.0235215i
\(689\) −1.37326e12 −0.232148
\(690\) 0 0
\(691\) 3.10716e12 0.518457 0.259229 0.965816i \(-0.416532\pi\)
0.259229 + 0.965816i \(0.416532\pi\)
\(692\) − 1.41302e13i − 2.34246i
\(693\) − 2.71550e12i − 0.447249i
\(694\) 5.20018e12 0.850943
\(695\) 0 0
\(696\) −4.05023e12 −0.654242
\(697\) − 1.55966e12i − 0.250313i
\(698\) 1.48260e13i 2.36415i
\(699\) 2.59530e12 0.411187
\(700\) 0 0
\(701\) 2.85667e12 0.446816 0.223408 0.974725i \(-0.428282\pi\)
0.223408 + 0.974725i \(0.428282\pi\)
\(702\) 4.28253e12i 0.665554i
\(703\) − 7.43225e12i − 1.14768i
\(704\) −1.64884e13 −2.52989
\(705\) 0 0
\(706\) −6.57839e12 −0.996549
\(707\) − 2.35990e12i − 0.355227i
\(708\) 9.62097e11i 0.143903i
\(709\) −3.61602e12 −0.537431 −0.268716 0.963220i \(-0.586599\pi\)
−0.268716 + 0.963220i \(0.586599\pi\)
\(710\) 0 0
\(711\) −3.76399e12 −0.552376
\(712\) 7.73636e12i 1.12818i
\(713\) 1.14624e13i 1.66101i
\(714\) 3.14580e12 0.452990
\(715\) 0 0
\(716\) 5.68466e11 0.0808344
\(717\) 2.15921e12i 0.305112i
\(718\) − 1.83877e13i − 2.58207i
\(719\) 1.61890e12 0.225913 0.112956 0.993600i \(-0.463968\pi\)
0.112956 + 0.993600i \(0.463968\pi\)
\(720\) 0 0
\(721\) −3.67703e12 −0.506744
\(722\) 4.63595e12i 0.634923i
\(723\) 2.15114e12i 0.292783i
\(724\) −1.47294e13 −1.99233
\(725\) 0 0
\(726\) 8.41452e12 1.12412
\(727\) 9.74494e12i 1.29382i 0.762566 + 0.646911i \(0.223939\pi\)
−0.762566 + 0.646911i \(0.776061\pi\)
\(728\) − 1.31925e12i − 0.174074i
\(729\) −1.26380e12 −0.165732
\(730\) 0 0
\(731\) 5.81531e12 0.753259
\(732\) − 1.08731e13i − 1.39977i
\(733\) − 1.72463e12i − 0.220662i −0.993895 0.110331i \(-0.964809\pi\)
0.993895 0.110331i \(-0.0351910\pi\)
\(734\) −6.59137e12 −0.838191
\(735\) 0 0
\(736\) 1.30377e13 1.63776
\(737\) − 1.46441e13i − 1.82834i
\(738\) − 1.62712e12i − 0.201913i
\(739\) −3.28397e12 −0.405041 −0.202520 0.979278i \(-0.564913\pi\)
−0.202520 + 0.979278i \(0.564913\pi\)
\(740\) 0 0
\(741\) 1.49924e12 0.182680
\(742\) 2.43703e12i 0.295151i
\(743\) − 4.22418e12i − 0.508502i −0.967138 0.254251i \(-0.918171\pi\)
0.967138 0.254251i \(-0.0818289\pi\)
\(744\) 4.14293e12 0.495712
\(745\) 0 0
\(746\) 1.44652e13 1.71001
\(747\) − 3.09392e12i − 0.363552i
\(748\) − 3.23133e13i − 3.77420i
\(749\) 1.24706e12 0.144784
\(750\) 0 0
\(751\) 4.20239e12 0.482077 0.241038 0.970516i \(-0.422512\pi\)
0.241038 + 0.970516i \(0.422512\pi\)
\(752\) − 1.96558e11i − 0.0224136i
\(753\) 5.28915e12i 0.599526i
\(754\) 9.51699e12 1.07233
\(755\) 0 0
\(756\) 4.67309e12 0.520303
\(757\) 1.42679e13i 1.57917i 0.613639 + 0.789587i \(0.289705\pi\)
−0.613639 + 0.789587i \(0.710295\pi\)
\(758\) − 2.66059e13i − 2.92730i
\(759\) −1.10047e13 −1.20362
\(760\) 0 0
\(761\) −1.04976e13 −1.13464 −0.567321 0.823497i \(-0.692020\pi\)
−0.567321 + 0.823497i \(0.692020\pi\)
\(762\) − 8.30170e12i − 0.892010i
\(763\) 2.98986e12i 0.319367i
\(764\) 2.13176e13 2.26369
\(765\) 0 0
\(766\) −2.35516e13 −2.47167
\(767\) − 8.44770e11i − 0.0881372i
\(768\) − 4.35478e12i − 0.451690i
\(769\) 4.68130e12 0.482723 0.241361 0.970435i \(-0.422406\pi\)
0.241361 + 0.970435i \(0.422406\pi\)
\(770\) 0 0
\(771\) −5.14388e12 −0.524260
\(772\) 8.12712e12i 0.823490i
\(773\) 1.76519e13i 1.77821i 0.457701 + 0.889106i \(0.348673\pi\)
−0.457701 + 0.889106i \(0.651327\pi\)
\(774\) 6.06682e12 0.607613
\(775\) 0 0
\(776\) −1.55814e13 −1.54251
\(777\) − 2.77345e12i − 0.272977i
\(778\) 1.51941e13i 1.48685i
\(779\) −1.31911e12 −0.128340
\(780\) 0 0
\(781\) −1.07102e13 −1.03008
\(782\) 4.03756e13i 3.86090i
\(783\) 1.25973e13i 1.19770i
\(784\) 7.16464e10 0.00677286
\(785\) 0 0
\(786\) 1.21132e13 1.13202
\(787\) − 1.53402e12i − 0.142542i −0.997457 0.0712712i \(-0.977294\pi\)
0.997457 0.0712712i \(-0.0227056\pi\)
\(788\) − 2.74215e13i − 2.53351i
\(789\) −5.60954e11 −0.0515325
\(790\) 0 0
\(791\) 2.70931e12 0.246073
\(792\) − 1.25971e13i − 1.13764i
\(793\) 9.54716e12i 0.857324i
\(794\) 3.50668e13 3.13115
\(795\) 0 0
\(796\) 9.73746e12 0.859680
\(797\) − 6.94555e12i − 0.609740i −0.952394 0.304870i \(-0.901387\pi\)
0.952394 0.304870i \(-0.0986130\pi\)
\(798\) − 2.66061e12i − 0.232257i
\(799\) 8.26897e12 0.717779
\(800\) 0 0
\(801\) 1.03907e13 0.891861
\(802\) − 7.94621e11i − 0.0678228i
\(803\) − 1.79162e12i − 0.152063i
\(804\) 1.08824e13 0.918488
\(805\) 0 0
\(806\) −9.73482e12 −0.812494
\(807\) 4.28786e11i 0.0355885i
\(808\) − 1.09475e13i − 0.903572i
\(809\) −2.20581e12 −0.181050 −0.0905251 0.995894i \(-0.528855\pi\)
−0.0905251 + 0.995894i \(0.528855\pi\)
\(810\) 0 0
\(811\) 9.32362e12 0.756816 0.378408 0.925639i \(-0.376472\pi\)
0.378408 + 0.925639i \(0.376472\pi\)
\(812\) − 1.03849e13i − 0.838304i
\(813\) 5.67611e12i 0.455663i
\(814\) −4.63316e13 −3.69885
\(815\) 0 0
\(816\) −4.46590e11 −0.0352617
\(817\) − 4.91840e12i − 0.386211i
\(818\) − 3.24985e13i − 2.53789i
\(819\) −1.77187e12 −0.137612
\(820\) 0 0
\(821\) −2.27617e12 −0.174848 −0.0874238 0.996171i \(-0.527863\pi\)
−0.0874238 + 0.996171i \(0.527863\pi\)
\(822\) − 8.60237e12i − 0.657196i
\(823\) − 1.21606e13i − 0.923969i −0.886888 0.461984i \(-0.847138\pi\)
0.886888 0.461984i \(-0.152862\pi\)
\(824\) −1.70576e13 −1.28898
\(825\) 0 0
\(826\) −1.49916e12 −0.112057
\(827\) − 1.00142e13i − 0.744458i −0.928141 0.372229i \(-0.878594\pi\)
0.928141 0.372229i \(-0.121406\pi\)
\(828\) 2.59001e13i 1.91498i
\(829\) 5.39146e12 0.396470 0.198235 0.980154i \(-0.436479\pi\)
0.198235 + 0.980154i \(0.436479\pi\)
\(830\) 0 0
\(831\) 6.17658e12 0.449307
\(832\) 1.07587e13i 0.778407i
\(833\) 3.01408e12i 0.216896i
\(834\) −9.94660e12 −0.711914
\(835\) 0 0
\(836\) −2.73296e13 −1.93510
\(837\) − 1.28856e13i − 0.907488i
\(838\) 3.66357e13i 2.56629i
\(839\) 1.69446e13 1.18060 0.590300 0.807184i \(-0.299010\pi\)
0.590300 + 0.807184i \(0.299010\pi\)
\(840\) 0 0
\(841\) 1.34876e13 0.929722
\(842\) 3.62296e13i 2.48404i
\(843\) − 1.12804e12i − 0.0769307i
\(844\) 3.64205e13 2.47062
\(845\) 0 0
\(846\) 8.62660e12 0.578993
\(847\) 8.06218e12i 0.538242i
\(848\) − 3.45971e11i − 0.0229751i
\(849\) 2.05957e12 0.136048
\(850\) 0 0
\(851\) 3.55966e13 2.32662
\(852\) − 7.95910e12i − 0.517470i
\(853\) − 1.32813e13i − 0.858956i −0.903077 0.429478i \(-0.858698\pi\)
0.903077 0.429478i \(-0.141302\pi\)
\(854\) 1.69428e13 1.08999
\(855\) 0 0
\(856\) 5.78508e12 0.368279
\(857\) − 8.21516e10i − 0.00520238i −0.999997 0.00260119i \(-0.999172\pi\)
0.999997 0.00260119i \(-0.000827986\pi\)
\(858\) − 9.34606e12i − 0.588757i
\(859\) 1.80741e13 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(860\) 0 0
\(861\) −4.92245e11 −0.0305258
\(862\) 2.08194e13i 1.28436i
\(863\) 1.87322e13i 1.14958i 0.818300 + 0.574791i \(0.194917\pi\)
−0.818300 + 0.574791i \(0.805083\pi\)
\(864\) −1.46565e13 −0.894783
\(865\) 0 0
\(866\) −5.05496e12 −0.305413
\(867\) − 1.06373e13i − 0.639359i
\(868\) 1.06226e13i 0.635175i
\(869\) 1.90225e13 1.13156
\(870\) 0 0
\(871\) −9.55531e12 −0.562553
\(872\) 1.38698e13i 0.812357i
\(873\) 2.09273e13i 1.21941i
\(874\) 3.41484e13 1.97956
\(875\) 0 0
\(876\) 1.33140e12 0.0763907
\(877\) 1.95650e13i 1.11682i 0.829566 + 0.558409i \(0.188588\pi\)
−0.829566 + 0.558409i \(0.811412\pi\)
\(878\) 4.06432e13i 2.30814i
\(879\) 1.11004e13 0.627173
\(880\) 0 0
\(881\) 2.30530e12 0.128925 0.0644623 0.997920i \(-0.479467\pi\)
0.0644623 + 0.997920i \(0.479467\pi\)
\(882\) 3.14444e12i 0.174958i
\(883\) − 6.82366e12i − 0.377741i −0.982002 0.188871i \(-0.939517\pi\)
0.982002 0.188871i \(-0.0604826\pi\)
\(884\) −2.10846e13 −1.16126
\(885\) 0 0
\(886\) −3.21544e13 −1.75303
\(887\) 6.96936e12i 0.378039i 0.981973 + 0.189020i \(0.0605310\pi\)
−0.981973 + 0.189020i \(0.939469\pi\)
\(888\) − 1.28659e13i − 0.694356i
\(889\) 7.95409e12 0.427103
\(890\) 0 0
\(891\) −9.89014e12 −0.525718
\(892\) − 5.98155e13i − 3.16353i
\(893\) − 6.99362e12i − 0.368019i
\(894\) −6.83710e11 −0.0357976
\(895\) 0 0
\(896\) 1.15254e13 0.597406
\(897\) 7.18059e12i 0.370334i
\(898\) 3.44921e13i 1.77001i
\(899\) −2.86355e13 −1.46213
\(900\) 0 0
\(901\) 1.45546e13 0.735763
\(902\) 8.22315e12i 0.413627i
\(903\) − 1.83537e12i − 0.0918606i
\(904\) 1.25684e13 0.625923
\(905\) 0 0
\(906\) 9.44958e12 0.465946
\(907\) 2.37471e13i 1.16514i 0.812780 + 0.582571i \(0.197953\pi\)
−0.812780 + 0.582571i \(0.802047\pi\)
\(908\) − 1.99755e13i − 0.975240i
\(909\) −1.47035e13 −0.714304
\(910\) 0 0
\(911\) 1.81347e13 0.872326 0.436163 0.899868i \(-0.356337\pi\)
0.436163 + 0.899868i \(0.356337\pi\)
\(912\) 3.77711e11i 0.0180794i
\(913\) 1.56361e13i 0.744749i
\(914\) −7.64811e12 −0.362490
\(915\) 0 0
\(916\) −3.40202e13 −1.59664
\(917\) 1.16060e13i 0.542024i
\(918\) − 4.53888e13i − 2.10939i
\(919\) −6.30502e12 −0.291586 −0.145793 0.989315i \(-0.546573\pi\)
−0.145793 + 0.989315i \(0.546573\pi\)
\(920\) 0 0
\(921\) 1.13935e12 0.0521784
\(922\) − 4.12925e13i − 1.88184i
\(923\) 6.98848e12i 0.316939i
\(924\) −1.01984e13 −0.460266
\(925\) 0 0
\(926\) 2.36227e13 1.05580
\(927\) 2.29099e13i 1.01898i
\(928\) 3.25708e13i 1.44166i
\(929\) −4.17837e13 −1.84050 −0.920252 0.391327i \(-0.872016\pi\)
−0.920252 + 0.391327i \(0.872016\pi\)
\(930\) 0 0
\(931\) 2.54921e12 0.111207
\(932\) 3.08696e13i 1.34017i
\(933\) 2.43122e12i 0.105041i
\(934\) −5.96047e13 −2.56283
\(935\) 0 0
\(936\) −8.21964e12 −0.350035
\(937\) − 2.80323e13i − 1.18804i −0.804451 0.594019i \(-0.797540\pi\)
0.804451 0.594019i \(-0.202460\pi\)
\(938\) 1.69572e13i 0.715225i
\(939\) 5.80508e11 0.0243676
\(940\) 0 0
\(941\) −1.31067e13 −0.544931 −0.272465 0.962166i \(-0.587839\pi\)
−0.272465 + 0.962166i \(0.587839\pi\)
\(942\) 2.39265e13i 0.990035i
\(943\) − 6.31785e12i − 0.260176i
\(944\) 2.12827e11 0.00872274
\(945\) 0 0
\(946\) −3.06606e13 −1.24472
\(947\) 2.61465e13i 1.05643i 0.849112 + 0.528213i \(0.177138\pi\)
−0.849112 + 0.528213i \(0.822862\pi\)
\(948\) 1.41362e13i 0.568453i
\(949\) −1.16904e12 −0.0467875
\(950\) 0 0
\(951\) −1.51186e13 −0.599377
\(952\) 1.39822e13i 0.551707i
\(953\) − 1.54925e13i − 0.608420i −0.952605 0.304210i \(-0.901608\pi\)
0.952605 0.304210i \(-0.0983925\pi\)
\(954\) 1.51841e13 0.593500
\(955\) 0 0
\(956\) −2.56826e13 −0.994442
\(957\) − 2.74920e13i − 1.05950i
\(958\) − 5.27655e13i − 2.02398i
\(959\) 8.24217e12 0.314672
\(960\) 0 0
\(961\) 2.85129e12 0.107842
\(962\) 3.02316e13i 1.13808i
\(963\) − 7.76990e12i − 0.291137i
\(964\) −2.55866e13 −0.954257
\(965\) 0 0
\(966\) 1.27430e13 0.470840
\(967\) − 9.68529e12i − 0.356200i −0.984012 0.178100i \(-0.943005\pi\)
0.984012 0.178100i \(-0.0569950\pi\)
\(968\) 3.74001e13i 1.36910i
\(969\) −1.58899e13 −0.578979
\(970\) 0 0
\(971\) 2.06318e12 0.0744820 0.0372410 0.999306i \(-0.488143\pi\)
0.0372410 + 0.999306i \(0.488143\pi\)
\(972\) − 4.56589e13i − 1.64069i
\(973\) − 9.53011e12i − 0.340871i
\(974\) −2.89434e13 −1.03047
\(975\) 0 0
\(976\) −2.40526e12 −0.0848474
\(977\) 3.09066e13i 1.08524i 0.839979 + 0.542619i \(0.182567\pi\)
−0.839979 + 0.542619i \(0.817433\pi\)
\(978\) 1.59234e13i 0.556558i
\(979\) −5.25125e13 −1.82701
\(980\) 0 0
\(981\) 1.86285e13 0.642196
\(982\) − 3.25758e13i − 1.11787i
\(983\) − 3.07721e13i − 1.05115i −0.850746 0.525577i \(-0.823849\pi\)
0.850746 0.525577i \(-0.176151\pi\)
\(984\) −2.28350e12 −0.0776468
\(985\) 0 0
\(986\) −1.00867e14 −3.39862
\(987\) − 2.60977e12i − 0.0875337i
\(988\) 1.78327e13i 0.595401i
\(989\) 2.35566e13 0.782940
\(990\) 0 0
\(991\) 3.91433e13 1.28922 0.644608 0.764513i \(-0.277021\pi\)
0.644608 + 0.764513i \(0.277021\pi\)
\(992\) − 3.33163e13i − 1.09233i
\(993\) 4.78469e12i 0.156165i
\(994\) 1.24020e13 0.402953
\(995\) 0 0
\(996\) −1.16196e13 −0.374133
\(997\) 3.07488e13i 0.985599i 0.870143 + 0.492800i \(0.164026\pi\)
−0.870143 + 0.492800i \(0.835974\pi\)
\(998\) − 8.38039e13i − 2.67409i
\(999\) −4.00164e13 −1.27114
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.f.99.1 10
5.2 odd 4 175.10.a.f.1.5 5
5.3 odd 4 35.10.a.d.1.1 5
5.4 even 2 inner 175.10.b.f.99.10 10
15.8 even 4 315.10.a.j.1.5 5
35.13 even 4 245.10.a.f.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.1 5 5.3 odd 4
175.10.a.f.1.5 5 5.2 odd 4
175.10.b.f.99.1 10 1.1 even 1 trivial
175.10.b.f.99.10 10 5.4 even 2 inner
245.10.a.f.1.1 5 35.13 even 4
315.10.a.j.1.5 5 15.8 even 4