Properties

Label 175.10.b.f.99.3
Level $175$
Weight $10$
Character 175.99
Analytic conductor $90.131$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,10,Mod(99,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.99");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 175.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(90.1312713287\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2 x^{9} + 2 x^{8} - 2016 x^{7} + 425617 x^{6} - 2170178 x^{5} + 5521250 x^{4} + \cdots + 231472080000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.3
Root \(11.3831 - 11.3831i\) of defining polynomial
Character \(\chi\) \(=\) 175.99
Dual form 175.10.b.f.99.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.7661i q^{2} -239.496i q^{3} -6.29742 q^{4} -5452.41 q^{6} -2401.00i q^{7} -11512.9i q^{8} -37675.5 q^{9} -21227.5 q^{11} +1508.21i q^{12} +47399.7i q^{13} -54661.5 q^{14} -265329. q^{16} -569500. i q^{17} +857725. i q^{18} -1.08959e6 q^{19} -575031. q^{21} +483268. i q^{22} -1.34776e6i q^{23} -2.75730e6 q^{24} +1.07911e6 q^{26} +4.30913e6i q^{27} +15120.1i q^{28} +6.23203e6 q^{29} -413669. q^{31} +145906. i q^{32} +5.08391e6i q^{33} -1.29653e7 q^{34} +237258. q^{36} -1.28411e7i q^{37} +2.48057e7i q^{38} +1.13520e7 q^{39} +3.90722e6 q^{41} +1.30912e7i q^{42} +1.27760e7i q^{43} +133678. q^{44} -3.06834e7 q^{46} +3.61213e7i q^{47} +6.35452e7i q^{48} -5.76480e6 q^{49} -1.36393e8 q^{51} -298496. i q^{52} +1.10032e8i q^{53} +9.81022e7 q^{54} -2.76425e7 q^{56} +2.60952e8i q^{57} -1.41879e8i q^{58} +8.68650e6 q^{59} +1.06957e8 q^{61} +9.41766e6i q^{62} +9.04588e7i q^{63} -1.32527e8 q^{64} +1.15741e8 q^{66} -1.89423e8i q^{67} +3.58638e6i q^{68} -3.22784e8 q^{69} +9.10989e7 q^{71} +4.33754e8i q^{72} -9.84572e7i q^{73} -2.92341e8 q^{74} +6.86157e6 q^{76} +5.09672e7i q^{77} -2.58442e8i q^{78} +2.41368e8 q^{79} +2.90454e8 q^{81} -8.89525e7i q^{82} +4.28456e8i q^{83} +3.62121e6 q^{84} +2.90861e8 q^{86} -1.49255e9i q^{87} +2.44390e8i q^{88} -5.29736e7 q^{89} +1.13807e8 q^{91} +8.48743e6i q^{92} +9.90722e7i q^{93} +8.22342e8 q^{94} +3.49439e7 q^{96} -3.01374e8i q^{97} +1.31242e8i q^{98} +7.99756e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 1664 q^{4} - 288 q^{6} - 135594 q^{9} + 20624 q^{11} - 9604 q^{14} - 1053392 q^{16} - 3310752 q^{19} + 672280 q^{21} - 13009152 q^{24} + 20438120 q^{26} + 6707452 q^{29} + 5356240 q^{31} - 43097224 q^{34}+ \cdots - 1396625336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 22.7661i − 1.00613i −0.864248 0.503066i \(-0.832205\pi\)
0.864248 0.503066i \(-0.167795\pi\)
\(3\) − 239.496i − 1.70708i −0.521030 0.853538i \(-0.674452\pi\)
0.521030 0.853538i \(-0.325548\pi\)
\(4\) −6.29742 −0.0122996
\(5\) 0 0
\(6\) −5452.41 −1.71754
\(7\) − 2401.00i − 0.377964i
\(8\) − 11512.9i − 0.993756i
\(9\) −37675.5 −1.91411
\(10\) 0 0
\(11\) −21227.5 −0.437151 −0.218576 0.975820i \(-0.570141\pi\)
−0.218576 + 0.975820i \(0.570141\pi\)
\(12\) 1508.21i 0.0209964i
\(13\) 47399.7i 0.460289i 0.973156 + 0.230144i \(0.0739198\pi\)
−0.973156 + 0.230144i \(0.926080\pi\)
\(14\) −54661.5 −0.380282
\(15\) 0 0
\(16\) −265329. −1.01215
\(17\) − 569500.i − 1.65376i −0.562376 0.826882i \(-0.690113\pi\)
0.562376 0.826882i \(-0.309887\pi\)
\(18\) 857725.i 1.92585i
\(19\) −1.08959e6 −1.91810 −0.959048 0.283245i \(-0.908589\pi\)
−0.959048 + 0.283245i \(0.908589\pi\)
\(20\) 0 0
\(21\) −575031. −0.645214
\(22\) 483268.i 0.439831i
\(23\) − 1.34776e6i − 1.00424i −0.864797 0.502121i \(-0.832553\pi\)
0.864797 0.502121i \(-0.167447\pi\)
\(24\) −2.75730e6 −1.69642
\(25\) 0 0
\(26\) 1.07911e6 0.463111
\(27\) 4.30913e6i 1.56046i
\(28\) 15120.1i 0.00464883i
\(29\) 6.23203e6 1.63621 0.818104 0.575071i \(-0.195026\pi\)
0.818104 + 0.575071i \(0.195026\pi\)
\(30\) 0 0
\(31\) −413669. −0.0804499 −0.0402250 0.999191i \(-0.512807\pi\)
−0.0402250 + 0.999191i \(0.512807\pi\)
\(32\) 145906.i 0.0245979i
\(33\) 5.08391e6i 0.746251i
\(34\) −1.29653e7 −1.66390
\(35\) 0 0
\(36\) 237258. 0.0235429
\(37\) − 1.28411e7i − 1.12640i −0.826320 0.563200i \(-0.809570\pi\)
0.826320 0.563200i \(-0.190430\pi\)
\(38\) 2.48057e7i 1.92986i
\(39\) 1.13520e7 0.785748
\(40\) 0 0
\(41\) 3.90722e6 0.215944 0.107972 0.994154i \(-0.465564\pi\)
0.107972 + 0.994154i \(0.465564\pi\)
\(42\) 1.30912e7i 0.649170i
\(43\) 1.27760e7i 0.569886i 0.958544 + 0.284943i \(0.0919747\pi\)
−0.958544 + 0.284943i \(0.908025\pi\)
\(44\) 133678. 0.00537680
\(45\) 0 0
\(46\) −3.06834e7 −1.01040
\(47\) 3.61213e7i 1.07975i 0.841746 + 0.539874i \(0.181528\pi\)
−0.841746 + 0.539874i \(0.818472\pi\)
\(48\) 6.35452e7i 1.72782i
\(49\) −5.76480e6 −0.142857
\(50\) 0 0
\(51\) −1.36393e8 −2.82310
\(52\) − 298496.i − 0.00566139i
\(53\) 1.10032e8i 1.91548i 0.287635 + 0.957740i \(0.407131\pi\)
−0.287635 + 0.957740i \(0.592869\pi\)
\(54\) 9.81022e7 1.57003
\(55\) 0 0
\(56\) −2.76425e7 −0.375604
\(57\) 2.60952e8i 3.27434i
\(58\) − 1.41879e8i − 1.64624i
\(59\) 8.68650e6 0.0933277 0.0466639 0.998911i \(-0.485141\pi\)
0.0466639 + 0.998911i \(0.485141\pi\)
\(60\) 0 0
\(61\) 1.06957e8 0.989066 0.494533 0.869159i \(-0.335339\pi\)
0.494533 + 0.869159i \(0.335339\pi\)
\(62\) 9.41766e6i 0.0809432i
\(63\) 9.04588e7i 0.723466i
\(64\) −1.32527e8 −0.987400
\(65\) 0 0
\(66\) 1.15741e8 0.750826
\(67\) − 1.89423e8i − 1.14841i −0.818712 0.574204i \(-0.805312\pi\)
0.818712 0.574204i \(-0.194688\pi\)
\(68\) 3.58638e6i 0.0203407i
\(69\) −3.22784e8 −1.71432
\(70\) 0 0
\(71\) 9.10989e7 0.425452 0.212726 0.977112i \(-0.431766\pi\)
0.212726 + 0.977112i \(0.431766\pi\)
\(72\) 4.33754e8i 1.90216i
\(73\) − 9.84572e7i − 0.405784i −0.979201 0.202892i \(-0.934966\pi\)
0.979201 0.202892i \(-0.0650340\pi\)
\(74\) −2.92341e8 −1.13331
\(75\) 0 0
\(76\) 6.86157e6 0.0235919
\(77\) 5.09672e7i 0.165228i
\(78\) − 2.58442e8i − 0.790566i
\(79\) 2.41368e8 0.697200 0.348600 0.937272i \(-0.386657\pi\)
0.348600 + 0.937272i \(0.386657\pi\)
\(80\) 0 0
\(81\) 2.90454e8 0.749712
\(82\) − 8.89525e7i − 0.217268i
\(83\) 4.28456e8i 0.990956i 0.868620 + 0.495478i \(0.165007\pi\)
−0.868620 + 0.495478i \(0.834993\pi\)
\(84\) 3.62121e6 0.00793591
\(85\) 0 0
\(86\) 2.90861e8 0.573380
\(87\) − 1.49255e9i − 2.79313i
\(88\) 2.44390e8i 0.434422i
\(89\) −5.29736e7 −0.0894962 −0.0447481 0.998998i \(-0.514249\pi\)
−0.0447481 + 0.998998i \(0.514249\pi\)
\(90\) 0 0
\(91\) 1.13807e8 0.173973
\(92\) 8.48743e6i 0.0123518i
\(93\) 9.90722e7i 0.137334i
\(94\) 8.22342e8 1.08637
\(95\) 0 0
\(96\) 3.49439e7 0.0419905
\(97\) − 3.01374e8i − 0.345647i −0.984953 0.172824i \(-0.944711\pi\)
0.984953 0.172824i \(-0.0552890\pi\)
\(98\) 1.31242e8i 0.143733i
\(99\) 7.99756e8 0.836756
\(100\) 0 0
\(101\) 1.68070e9 1.60710 0.803552 0.595234i \(-0.202941\pi\)
0.803552 + 0.595234i \(0.202941\pi\)
\(102\) 3.10514e9i 2.84041i
\(103\) 4.68604e8i 0.410241i 0.978737 + 0.205120i \(0.0657586\pi\)
−0.978737 + 0.205120i \(0.934241\pi\)
\(104\) 5.45708e8 0.457415
\(105\) 0 0
\(106\) 2.50500e9 1.92722
\(107\) − 5.15481e8i − 0.380177i −0.981767 0.190089i \(-0.939123\pi\)
0.981767 0.190089i \(-0.0608775\pi\)
\(108\) − 2.71364e7i − 0.0191931i
\(109\) −5.36760e8 −0.364218 −0.182109 0.983278i \(-0.558292\pi\)
−0.182109 + 0.983278i \(0.558292\pi\)
\(110\) 0 0
\(111\) −3.07538e9 −1.92285
\(112\) 6.37054e8i 0.382556i
\(113\) − 5.40168e8i − 0.311656i −0.987784 0.155828i \(-0.950195\pi\)
0.987784 0.155828i \(-0.0498046\pi\)
\(114\) 5.94086e9 3.29441
\(115\) 0 0
\(116\) −3.92457e7 −0.0201248
\(117\) − 1.78581e9i − 0.881044i
\(118\) − 1.97758e8i − 0.0938999i
\(119\) −1.36737e9 −0.625064
\(120\) 0 0
\(121\) −1.90734e9 −0.808899
\(122\) − 2.43500e9i − 0.995130i
\(123\) − 9.35766e8i − 0.368633i
\(124\) 2.60505e6 0.000989505 0
\(125\) 0 0
\(126\) 2.05940e9 0.727902
\(127\) − 8.96674e8i − 0.305857i −0.988237 0.152928i \(-0.951130\pi\)
0.988237 0.152928i \(-0.0488704\pi\)
\(128\) 3.09182e9i 1.01805i
\(129\) 3.05981e9 0.972839
\(130\) 0 0
\(131\) −2.92350e9 −0.867325 −0.433663 0.901075i \(-0.642779\pi\)
−0.433663 + 0.901075i \(0.642779\pi\)
\(132\) − 3.20155e7i − 0.00917862i
\(133\) 2.61610e9i 0.724972i
\(134\) −4.31243e9 −1.15545
\(135\) 0 0
\(136\) −6.55659e9 −1.64344
\(137\) − 4.52069e9i − 1.09638i −0.836353 0.548191i \(-0.815317\pi\)
0.836353 0.548191i \(-0.184683\pi\)
\(138\) 7.34856e9i 1.72483i
\(139\) 7.23687e9 1.64431 0.822156 0.569262i \(-0.192771\pi\)
0.822156 + 0.569262i \(0.192771\pi\)
\(140\) 0 0
\(141\) 8.65091e9 1.84321
\(142\) − 2.07397e9i − 0.428061i
\(143\) − 1.00618e9i − 0.201216i
\(144\) 9.99638e9 1.93736
\(145\) 0 0
\(146\) −2.24149e9 −0.408272
\(147\) 1.38065e9i 0.243868i
\(148\) 8.08655e7i 0.0138543i
\(149\) −3.83905e9 −0.638096 −0.319048 0.947739i \(-0.603363\pi\)
−0.319048 + 0.947739i \(0.603363\pi\)
\(150\) 0 0
\(151\) −6.14269e9 −0.961528 −0.480764 0.876850i \(-0.659641\pi\)
−0.480764 + 0.876850i \(0.659641\pi\)
\(152\) 1.25443e10i 1.90612i
\(153\) 2.14562e10i 3.16549i
\(154\) 1.16033e9 0.166241
\(155\) 0 0
\(156\) −7.14886e7 −0.00966442
\(157\) − 9.31680e9i − 1.22382i −0.790926 0.611911i \(-0.790401\pi\)
0.790926 0.611911i \(-0.209599\pi\)
\(158\) − 5.49501e9i − 0.701474i
\(159\) 2.63523e10 3.26987
\(160\) 0 0
\(161\) −3.23598e9 −0.379568
\(162\) − 6.61251e9i − 0.754308i
\(163\) 6.53147e9i 0.724714i 0.932039 + 0.362357i \(0.118028\pi\)
−0.932039 + 0.362357i \(0.881972\pi\)
\(164\) −2.46054e7 −0.00265603
\(165\) 0 0
\(166\) 9.75429e9 0.997032
\(167\) − 2.73053e9i − 0.271659i −0.990732 0.135829i \(-0.956630\pi\)
0.990732 0.135829i \(-0.0433699\pi\)
\(168\) 6.62027e9i 0.641186i
\(169\) 8.35777e9 0.788134
\(170\) 0 0
\(171\) 4.10506e10 3.67145
\(172\) − 8.04560e7i − 0.00700939i
\(173\) 3.68616e8i 0.0312872i 0.999878 + 0.0156436i \(0.00497971\pi\)
−0.999878 + 0.0156436i \(0.995020\pi\)
\(174\) −3.39795e10 −2.81026
\(175\) 0 0
\(176\) 5.63226e9 0.442462
\(177\) − 2.08038e9i − 0.159318i
\(178\) 1.20600e9i 0.0900449i
\(179\) 1.97250e10 1.43608 0.718040 0.696001i \(-0.245039\pi\)
0.718040 + 0.696001i \(0.245039\pi\)
\(180\) 0 0
\(181\) −3.11426e9 −0.215676 −0.107838 0.994168i \(-0.534393\pi\)
−0.107838 + 0.994168i \(0.534393\pi\)
\(182\) − 2.59094e9i − 0.175039i
\(183\) − 2.56158e10i − 1.68841i
\(184\) −1.55167e10 −0.997972
\(185\) 0 0
\(186\) 2.25549e9 0.138176
\(187\) 1.20891e10i 0.722945i
\(188\) − 2.27471e8i − 0.0132805i
\(189\) 1.03462e10 0.589798
\(190\) 0 0
\(191\) −3.17752e10 −1.72758 −0.863790 0.503852i \(-0.831916\pi\)
−0.863790 + 0.503852i \(0.831916\pi\)
\(192\) 3.17396e10i 1.68557i
\(193\) − 2.21167e10i − 1.14739i −0.819068 0.573696i \(-0.805509\pi\)
0.819068 0.573696i \(-0.194491\pi\)
\(194\) −6.86112e9 −0.347766
\(195\) 0 0
\(196\) 3.63034e7 0.00175709
\(197\) − 2.15871e10i − 1.02116i −0.859829 0.510582i \(-0.829430\pi\)
0.859829 0.510582i \(-0.170570\pi\)
\(198\) − 1.82074e10i − 0.841886i
\(199\) −2.78732e10 −1.25993 −0.629966 0.776622i \(-0.716931\pi\)
−0.629966 + 0.776622i \(0.716931\pi\)
\(200\) 0 0
\(201\) −4.53661e10 −1.96042
\(202\) − 3.82631e10i − 1.61696i
\(203\) − 1.49631e10i − 0.618428i
\(204\) 8.58924e8 0.0347231
\(205\) 0 0
\(206\) 1.06683e10 0.412756
\(207\) 5.07776e10i 1.92223i
\(208\) − 1.25765e10i − 0.465881i
\(209\) 2.31292e10 0.838498
\(210\) 0 0
\(211\) 1.31458e10 0.456579 0.228290 0.973593i \(-0.426687\pi\)
0.228290 + 0.973593i \(0.426687\pi\)
\(212\) − 6.92917e8i − 0.0235597i
\(213\) − 2.18179e10i − 0.726280i
\(214\) −1.17355e10 −0.382508
\(215\) 0 0
\(216\) 4.96105e10 1.55072
\(217\) 9.93220e8i 0.0304072i
\(218\) 1.22200e10i 0.366451i
\(219\) −2.35801e10 −0.692704
\(220\) 0 0
\(221\) 2.69941e10 0.761209
\(222\) 7.00146e10i 1.93464i
\(223\) 5.58951e10i 1.51357i 0.653665 + 0.756784i \(0.273231\pi\)
−0.653665 + 0.756784i \(0.726769\pi\)
\(224\) 3.50320e8 0.00929713
\(225\) 0 0
\(226\) −1.22975e10 −0.313567
\(227\) 5.98856e10i 1.49695i 0.663165 + 0.748473i \(0.269213\pi\)
−0.663165 + 0.748473i \(0.730787\pi\)
\(228\) − 1.64332e9i − 0.0402732i
\(229\) −6.62019e10 −1.59078 −0.795391 0.606097i \(-0.792734\pi\)
−0.795391 + 0.606097i \(0.792734\pi\)
\(230\) 0 0
\(231\) 1.22065e10 0.282056
\(232\) − 7.17487e10i − 1.62599i
\(233\) 6.50041e10i 1.44490i 0.691421 + 0.722452i \(0.256985\pi\)
−0.691421 + 0.722452i \(0.743015\pi\)
\(234\) −4.06559e10 −0.886446
\(235\) 0 0
\(236\) −5.47025e7 −0.00114790
\(237\) − 5.78067e10i − 1.19017i
\(238\) 3.11297e10i 0.628896i
\(239\) −9.18633e9 −0.182117 −0.0910587 0.995846i \(-0.529025\pi\)
−0.0910587 + 0.995846i \(0.529025\pi\)
\(240\) 0 0
\(241\) 1.49904e10 0.286244 0.143122 0.989705i \(-0.454286\pi\)
0.143122 + 0.989705i \(0.454286\pi\)
\(242\) 4.34228e10i 0.813858i
\(243\) 1.52540e10i 0.280643i
\(244\) −6.73553e8 −0.0121652
\(245\) 0 0
\(246\) −2.13038e10 −0.370893
\(247\) − 5.16460e10i − 0.882878i
\(248\) 4.76253e9i 0.0799476i
\(249\) 1.02614e11 1.69164
\(250\) 0 0
\(251\) −1.03095e11 −1.63947 −0.819737 0.572741i \(-0.805880\pi\)
−0.819737 + 0.572741i \(0.805880\pi\)
\(252\) − 5.69657e8i − 0.00889837i
\(253\) 2.86097e10i 0.439006i
\(254\) −2.04138e10 −0.307732
\(255\) 0 0
\(256\) 2.53529e9 0.0368934
\(257\) − 7.34759e10i − 1.05062i −0.850911 0.525310i \(-0.823949\pi\)
0.850911 0.525310i \(-0.176051\pi\)
\(258\) − 6.96601e10i − 0.978804i
\(259\) −3.08314e10 −0.425739
\(260\) 0 0
\(261\) −2.34794e11 −3.13188
\(262\) 6.65568e10i 0.872643i
\(263\) − 8.95222e10i − 1.15380i −0.816815 0.576899i \(-0.804263\pi\)
0.816815 0.576899i \(-0.195737\pi\)
\(264\) 5.85305e10 0.741591
\(265\) 0 0
\(266\) 5.95584e10 0.729417
\(267\) 1.26870e10i 0.152777i
\(268\) 1.19288e9i 0.0141250i
\(269\) −1.00270e11 −1.16758 −0.583791 0.811904i \(-0.698431\pi\)
−0.583791 + 0.811904i \(0.698431\pi\)
\(270\) 0 0
\(271\) 1.05822e11 1.19183 0.595915 0.803048i \(-0.296790\pi\)
0.595915 + 0.803048i \(0.296790\pi\)
\(272\) 1.51105e11i 1.67385i
\(273\) − 2.72563e10i − 0.296985i
\(274\) −1.02919e11 −1.10310
\(275\) 0 0
\(276\) 2.03271e9 0.0210855
\(277\) 1.20160e10i 0.122631i 0.998118 + 0.0613156i \(0.0195296\pi\)
−0.998118 + 0.0613156i \(0.980470\pi\)
\(278\) − 1.64756e11i − 1.65439i
\(279\) 1.55852e10 0.153990
\(280\) 0 0
\(281\) −2.03641e11 −1.94844 −0.974218 0.225610i \(-0.927563\pi\)
−0.974218 + 0.225610i \(0.927563\pi\)
\(282\) − 1.96948e11i − 1.85451i
\(283\) 1.52674e11i 1.41490i 0.706765 + 0.707449i \(0.250154\pi\)
−0.706765 + 0.707449i \(0.749846\pi\)
\(284\) −5.73688e8 −0.00523291
\(285\) 0 0
\(286\) −2.29068e10 −0.202449
\(287\) − 9.38125e9i − 0.0816191i
\(288\) − 5.49707e9i − 0.0470831i
\(289\) −2.05742e11 −1.73493
\(290\) 0 0
\(291\) −7.21779e10 −0.590046
\(292\) 6.20026e8i 0.00499099i
\(293\) − 1.91313e11i − 1.51649i −0.651970 0.758244i \(-0.726057\pi\)
0.651970 0.758244i \(-0.273943\pi\)
\(294\) 3.14320e10 0.245363
\(295\) 0 0
\(296\) −1.47838e11 −1.11937
\(297\) − 9.14720e10i − 0.682157i
\(298\) 8.74004e10i 0.642008i
\(299\) 6.38836e10 0.462242
\(300\) 0 0
\(301\) 3.06753e10 0.215397
\(302\) 1.39845e11i 0.967423i
\(303\) − 4.02522e11i − 2.74345i
\(304\) 2.89098e11 1.94140
\(305\) 0 0
\(306\) 4.88474e11 3.18490
\(307\) 7.89027e10i 0.506955i 0.967341 + 0.253477i \(0.0815743\pi\)
−0.967341 + 0.253477i \(0.918426\pi\)
\(308\) − 3.20962e8i − 0.00203224i
\(309\) 1.12229e11 0.700312
\(310\) 0 0
\(311\) 1.17336e11 0.711230 0.355615 0.934633i \(-0.384271\pi\)
0.355615 + 0.934633i \(0.384271\pi\)
\(312\) − 1.30695e11i − 0.780842i
\(313\) − 1.77136e11i − 1.04318i −0.853198 0.521588i \(-0.825340\pi\)
0.853198 0.521588i \(-0.174660\pi\)
\(314\) −2.12108e11 −1.23133
\(315\) 0 0
\(316\) −1.51999e9 −0.00857531
\(317\) − 3.17183e11i − 1.76418i −0.471080 0.882091i \(-0.656136\pi\)
0.471080 0.882091i \(-0.343864\pi\)
\(318\) − 5.99939e11i − 3.28992i
\(319\) −1.32290e11 −0.715270
\(320\) 0 0
\(321\) −1.23456e11 −0.648991
\(322\) 7.36708e10i 0.381895i
\(323\) 6.20519e11i 3.17208i
\(324\) −1.82911e9 −0.00922118
\(325\) 0 0
\(326\) 1.48696e11 0.729157
\(327\) 1.28552e11i 0.621747i
\(328\) − 4.49835e10i − 0.214596i
\(329\) 8.67272e10 0.408107
\(330\) 0 0
\(331\) −7.29998e10 −0.334269 −0.167134 0.985934i \(-0.553451\pi\)
−0.167134 + 0.985934i \(0.553451\pi\)
\(332\) − 2.69816e9i − 0.0121884i
\(333\) 4.83793e11i 2.15606i
\(334\) −6.21637e10 −0.273324
\(335\) 0 0
\(336\) 1.52572e11 0.653053
\(337\) 1.07231e11i 0.452882i 0.974025 + 0.226441i \(0.0727091\pi\)
−0.974025 + 0.226441i \(0.927291\pi\)
\(338\) − 1.90274e11i − 0.792966i
\(339\) −1.29368e11 −0.532021
\(340\) 0 0
\(341\) 8.78116e9 0.0351688
\(342\) − 9.34565e11i − 3.69396i
\(343\) 1.38413e10i 0.0539949i
\(344\) 1.47089e11 0.566328
\(345\) 0 0
\(346\) 8.39196e9 0.0314790
\(347\) 2.66192e11i 0.985627i 0.870135 + 0.492813i \(0.164031\pi\)
−0.870135 + 0.492813i \(0.835969\pi\)
\(348\) 9.39919e9i 0.0343545i
\(349\) −7.30078e10 −0.263424 −0.131712 0.991288i \(-0.542047\pi\)
−0.131712 + 0.991288i \(0.542047\pi\)
\(350\) 0 0
\(351\) −2.04251e11 −0.718262
\(352\) − 3.09722e9i − 0.0107530i
\(353\) 1.03915e11i 0.356198i 0.984013 + 0.178099i \(0.0569948\pi\)
−0.984013 + 0.178099i \(0.943005\pi\)
\(354\) −4.73623e10 −0.160294
\(355\) 0 0
\(356\) 3.33597e8 0.00110077
\(357\) 3.27480e11i 1.06703i
\(358\) − 4.49063e11i − 1.44489i
\(359\) −8.28712e10 −0.263317 −0.131658 0.991295i \(-0.542030\pi\)
−0.131658 + 0.991295i \(0.542030\pi\)
\(360\) 0 0
\(361\) 8.64509e11 2.67909
\(362\) 7.08997e10i 0.216998i
\(363\) 4.56801e11i 1.38085i
\(364\) −7.16688e8 −0.00213980
\(365\) 0 0
\(366\) −5.83173e11 −1.69876
\(367\) 1.99606e11i 0.574348i 0.957878 + 0.287174i \(0.0927158\pi\)
−0.957878 + 0.287174i \(0.907284\pi\)
\(368\) 3.57600e11i 1.01644i
\(369\) −1.47206e11 −0.413341
\(370\) 0 0
\(371\) 2.64187e11 0.723983
\(372\) − 6.23899e8i − 0.00168916i
\(373\) 4.49796e10i 0.120317i 0.998189 + 0.0601583i \(0.0191606\pi\)
−0.998189 + 0.0601583i \(0.980839\pi\)
\(374\) 2.75221e11 0.727377
\(375\) 0 0
\(376\) 4.15861e11 1.07301
\(377\) 2.95396e11i 0.753128i
\(378\) − 2.35543e11i − 0.593414i
\(379\) 1.89077e9 0.00470718 0.00235359 0.999997i \(-0.499251\pi\)
0.00235359 + 0.999997i \(0.499251\pi\)
\(380\) 0 0
\(381\) −2.14750e11 −0.522121
\(382\) 7.23399e11i 1.73817i
\(383\) 3.12549e11i 0.742205i 0.928592 + 0.371103i \(0.121020\pi\)
−0.928592 + 0.371103i \(0.878980\pi\)
\(384\) 7.40480e11 1.73789
\(385\) 0 0
\(386\) −5.03511e11 −1.15443
\(387\) − 4.81343e11i − 1.09083i
\(388\) 1.89788e9i 0.00425134i
\(389\) −2.84599e11 −0.630173 −0.315086 0.949063i \(-0.602033\pi\)
−0.315086 + 0.949063i \(0.602033\pi\)
\(390\) 0 0
\(391\) −7.67551e11 −1.66078
\(392\) 6.63696e10i 0.141965i
\(393\) 7.00167e11i 1.48059i
\(394\) −4.91454e11 −1.02742
\(395\) 0 0
\(396\) −5.03639e9 −0.0102918
\(397\) 7.92352e11i 1.60089i 0.599408 + 0.800444i \(0.295403\pi\)
−0.599408 + 0.800444i \(0.704597\pi\)
\(398\) 6.34564e11i 1.26766i
\(399\) 6.26545e11 1.23758
\(400\) 0 0
\(401\) 6.62180e11 1.27887 0.639435 0.768845i \(-0.279168\pi\)
0.639435 + 0.768845i \(0.279168\pi\)
\(402\) 1.03281e12i 1.97244i
\(403\) − 1.96078e10i − 0.0370302i
\(404\) −1.05841e10 −0.0197668
\(405\) 0 0
\(406\) −3.40652e11 −0.622220
\(407\) 2.72583e11i 0.492407i
\(408\) 1.57028e12i 2.80547i
\(409\) −1.09286e12 −1.93112 −0.965560 0.260182i \(-0.916217\pi\)
−0.965560 + 0.260182i \(0.916217\pi\)
\(410\) 0 0
\(411\) −1.08269e12 −1.87161
\(412\) − 2.95100e9i − 0.00504581i
\(413\) − 2.08563e10i − 0.0352746i
\(414\) 1.15601e12 1.93402
\(415\) 0 0
\(416\) −6.91589e9 −0.0113221
\(417\) − 1.73320e12i − 2.80697i
\(418\) − 5.26562e11i − 0.843639i
\(419\) −3.74698e11 −0.593907 −0.296953 0.954892i \(-0.595971\pi\)
−0.296953 + 0.954892i \(0.595971\pi\)
\(420\) 0 0
\(421\) 7.35051e11 1.14038 0.570188 0.821514i \(-0.306870\pi\)
0.570188 + 0.821514i \(0.306870\pi\)
\(422\) − 2.99279e11i − 0.459379i
\(423\) − 1.36089e12i − 2.06676i
\(424\) 1.26679e12 1.90352
\(425\) 0 0
\(426\) −4.96709e11 −0.730732
\(427\) − 2.56804e11i − 0.373832i
\(428\) 3.24620e9i 0.00467604i
\(429\) −2.40976e11 −0.343491
\(430\) 0 0
\(431\) −5.29788e11 −0.739528 −0.369764 0.929126i \(-0.620561\pi\)
−0.369764 + 0.929126i \(0.620561\pi\)
\(432\) − 1.14333e12i − 1.57942i
\(433\) 1.82162e11i 0.249036i 0.992217 + 0.124518i \(0.0397384\pi\)
−0.992217 + 0.124518i \(0.960262\pi\)
\(434\) 2.26118e10 0.0305936
\(435\) 0 0
\(436\) 3.38020e9 0.00447975
\(437\) 1.46850e12i 1.92623i
\(438\) 5.36829e11i 0.696951i
\(439\) 8.13895e11 1.04587 0.522936 0.852372i \(-0.324837\pi\)
0.522936 + 0.852372i \(0.324837\pi\)
\(440\) 0 0
\(441\) 2.17192e11 0.273445
\(442\) − 6.14552e11i − 0.765876i
\(443\) − 5.65176e11i − 0.697215i −0.937269 0.348607i \(-0.886655\pi\)
0.937269 0.348607i \(-0.113345\pi\)
\(444\) 1.93670e10 0.0236504
\(445\) 0 0
\(446\) 1.27252e12 1.52285
\(447\) 9.19439e11i 1.08928i
\(448\) 3.18196e11i 0.373202i
\(449\) 5.86919e11 0.681506 0.340753 0.940153i \(-0.389318\pi\)
0.340753 + 0.940153i \(0.389318\pi\)
\(450\) 0 0
\(451\) −8.29406e10 −0.0944002
\(452\) 3.40166e9i 0.00383326i
\(453\) 1.47115e12i 1.64140i
\(454\) 1.36337e12 1.50612
\(455\) 0 0
\(456\) 3.00431e12 3.25389
\(457\) 2.06593e10i 0.0221561i 0.999939 + 0.0110781i \(0.00352633\pi\)
−0.999939 + 0.0110781i \(0.996474\pi\)
\(458\) 1.50716e12i 1.60054i
\(459\) 2.45405e12 2.58063
\(460\) 0 0
\(461\) 2.59983e11 0.268096 0.134048 0.990975i \(-0.457202\pi\)
0.134048 + 0.990975i \(0.457202\pi\)
\(462\) − 2.77894e11i − 0.283786i
\(463\) − 6.62434e11i − 0.669928i −0.942231 0.334964i \(-0.891276\pi\)
0.942231 0.334964i \(-0.108724\pi\)
\(464\) −1.65353e12 −1.65608
\(465\) 0 0
\(466\) 1.47989e12 1.45376
\(467\) 5.78561e11i 0.562890i 0.959577 + 0.281445i \(0.0908137\pi\)
−0.959577 + 0.281445i \(0.909186\pi\)
\(468\) 1.12460e10i 0.0108365i
\(469\) −4.54805e11 −0.434058
\(470\) 0 0
\(471\) −2.23134e12 −2.08916
\(472\) − 1.00007e11i − 0.0927450i
\(473\) − 2.71203e11i − 0.249126i
\(474\) −1.31604e12 −1.19747
\(475\) 0 0
\(476\) 8.61089e9 0.00768806
\(477\) − 4.14551e12i − 3.66644i
\(478\) 2.09137e11i 0.183234i
\(479\) −1.30509e12 −1.13274 −0.566370 0.824151i \(-0.691653\pi\)
−0.566370 + 0.824151i \(0.691653\pi\)
\(480\) 0 0
\(481\) 6.08662e11 0.518470
\(482\) − 3.41274e11i − 0.287999i
\(483\) 7.75006e11i 0.647952i
\(484\) 1.20113e10 0.00994916
\(485\) 0 0
\(486\) 3.47274e11 0.282364
\(487\) − 2.26035e12i − 1.82094i −0.413579 0.910468i \(-0.635722\pi\)
0.413579 0.910468i \(-0.364278\pi\)
\(488\) − 1.23139e12i − 0.982890i
\(489\) 1.56426e12 1.23714
\(490\) 0 0
\(491\) −2.05833e11 −0.159827 −0.0799133 0.996802i \(-0.525464\pi\)
−0.0799133 + 0.996802i \(0.525464\pi\)
\(492\) 5.89291e9i 0.00453405i
\(493\) − 3.54914e12i − 2.70590i
\(494\) −1.17578e12 −0.888291
\(495\) 0 0
\(496\) 1.09758e11 0.0814273
\(497\) − 2.18729e11i − 0.160806i
\(498\) − 2.33612e12i − 1.70201i
\(499\) 2.10713e11 0.152139 0.0760693 0.997103i \(-0.475763\pi\)
0.0760693 + 0.997103i \(0.475763\pi\)
\(500\) 0 0
\(501\) −6.53952e11 −0.463742
\(502\) 2.34707e12i 1.64953i
\(503\) 7.30487e10i 0.0508811i 0.999676 + 0.0254406i \(0.00809886\pi\)
−0.999676 + 0.0254406i \(0.991901\pi\)
\(504\) 1.04144e12 0.718949
\(505\) 0 0
\(506\) 6.51332e11 0.441697
\(507\) − 2.00165e12i − 1.34541i
\(508\) 5.64673e9i 0.00376193i
\(509\) 1.52888e11 0.100958 0.0504792 0.998725i \(-0.483925\pi\)
0.0504792 + 0.998725i \(0.483925\pi\)
\(510\) 0 0
\(511\) −2.36396e11 −0.153372
\(512\) 1.52529e12i 0.980932i
\(513\) − 4.69516e12i − 2.99311i
\(514\) −1.67276e12 −1.05706
\(515\) 0 0
\(516\) −1.92689e10 −0.0119656
\(517\) − 7.66764e11i − 0.472014i
\(518\) 7.01911e11i 0.428350i
\(519\) 8.82820e10 0.0534096
\(520\) 0 0
\(521\) −3.12005e11 −0.185520 −0.0927601 0.995688i \(-0.529569\pi\)
−0.0927601 + 0.995688i \(0.529569\pi\)
\(522\) 5.34536e12i 3.15108i
\(523\) 7.13578e11i 0.417046i 0.978017 + 0.208523i \(0.0668656\pi\)
−0.978017 + 0.208523i \(0.933134\pi\)
\(524\) 1.84105e10 0.0106678
\(525\) 0 0
\(526\) −2.03808e12 −1.16087
\(527\) 2.35585e11i 0.133045i
\(528\) − 1.34891e12i − 0.755317i
\(529\) −1.53155e10 −0.00850315
\(530\) 0 0
\(531\) −3.27268e11 −0.178640
\(532\) − 1.64746e10i − 0.00891689i
\(533\) 1.85201e11i 0.0993966i
\(534\) 2.88834e11 0.153713
\(535\) 0 0
\(536\) −2.18081e12 −1.14124
\(537\) − 4.72407e12i − 2.45150i
\(538\) 2.28277e12i 1.17474i
\(539\) 1.22372e11 0.0624502
\(540\) 0 0
\(541\) −7.80203e9 −0.00391580 −0.00195790 0.999998i \(-0.500623\pi\)
−0.00195790 + 0.999998i \(0.500623\pi\)
\(542\) − 2.40916e12i − 1.19914i
\(543\) 7.45854e11i 0.368175i
\(544\) 8.30934e10 0.0406791
\(545\) 0 0
\(546\) −6.20520e11 −0.298806
\(547\) 2.00379e12i 0.956994i 0.878089 + 0.478497i \(0.158818\pi\)
−0.878089 + 0.478497i \(0.841182\pi\)
\(548\) 2.84687e10i 0.0134851i
\(549\) −4.02966e12 −1.89318
\(550\) 0 0
\(551\) −6.79033e12 −3.13840
\(552\) 3.71618e12i 1.70362i
\(553\) − 5.79524e11i − 0.263517i
\(554\) 2.73558e11 0.123383
\(555\) 0 0
\(556\) −4.55736e10 −0.0202245
\(557\) − 6.30817e11i − 0.277687i −0.990314 0.138843i \(-0.955662\pi\)
0.990314 0.138843i \(-0.0443385\pi\)
\(558\) − 3.54815e11i − 0.154934i
\(559\) −6.05580e11 −0.262312
\(560\) 0 0
\(561\) 2.89528e12 1.23412
\(562\) 4.63611e12i 1.96038i
\(563\) 2.72592e12i 1.14347i 0.820438 + 0.571736i \(0.193730\pi\)
−0.820438 + 0.571736i \(0.806270\pi\)
\(564\) −5.44784e10 −0.0226709
\(565\) 0 0
\(566\) 3.47579e12 1.42357
\(567\) − 6.97379e11i − 0.283364i
\(568\) − 1.04881e12i − 0.422796i
\(569\) 3.54264e12 1.41684 0.708422 0.705789i \(-0.249408\pi\)
0.708422 + 0.705789i \(0.249408\pi\)
\(570\) 0 0
\(571\) 3.74623e12 1.47480 0.737398 0.675458i \(-0.236054\pi\)
0.737398 + 0.675458i \(0.236054\pi\)
\(572\) 6.33631e9i 0.00247488i
\(573\) 7.61004e12i 2.94911i
\(574\) −2.13575e11 −0.0821196
\(575\) 0 0
\(576\) 4.99300e12 1.88999
\(577\) − 3.74243e12i − 1.40560i −0.711386 0.702802i \(-0.751932\pi\)
0.711386 0.702802i \(-0.248068\pi\)
\(578\) 4.68396e12i 1.74557i
\(579\) −5.29686e12 −1.95869
\(580\) 0 0
\(581\) 1.02872e12 0.374546
\(582\) 1.64321e12i 0.593664i
\(583\) − 2.33570e12i − 0.837354i
\(584\) −1.13353e12 −0.403250
\(585\) 0 0
\(586\) −4.35545e12 −1.52579
\(587\) 2.19633e12i 0.763532i 0.924259 + 0.381766i \(0.124684\pi\)
−0.924259 + 0.381766i \(0.875316\pi\)
\(588\) − 8.69452e9i − 0.00299949i
\(589\) 4.50728e11 0.154311
\(590\) 0 0
\(591\) −5.17002e12 −1.74321
\(592\) 3.40710e12i 1.14008i
\(593\) − 5.88312e12i − 1.95372i −0.213884 0.976859i \(-0.568611\pi\)
0.213884 0.976859i \(-0.431389\pi\)
\(594\) −2.08246e12 −0.686339
\(595\) 0 0
\(596\) 2.41761e10 0.00784835
\(597\) 6.67552e12i 2.15080i
\(598\) − 1.45438e12i − 0.465076i
\(599\) 1.32770e12 0.421385 0.210692 0.977552i \(-0.432428\pi\)
0.210692 + 0.977552i \(0.432428\pi\)
\(600\) 0 0
\(601\) −5.90463e11 −0.184611 −0.0923055 0.995731i \(-0.529424\pi\)
−0.0923055 + 0.995731i \(0.529424\pi\)
\(602\) − 6.98357e11i − 0.216717i
\(603\) 7.13660e12i 2.19818i
\(604\) 3.86830e10 0.0118265
\(605\) 0 0
\(606\) −9.16386e12 −2.76027
\(607\) − 1.15860e12i − 0.346404i −0.984886 0.173202i \(-0.944589\pi\)
0.984886 0.173202i \(-0.0554114\pi\)
\(608\) − 1.58977e11i − 0.0471811i
\(609\) −3.58361e12 −1.05570
\(610\) 0 0
\(611\) −1.71214e12 −0.496996
\(612\) − 1.35118e11i − 0.0389344i
\(613\) − 4.56114e12i − 1.30467i −0.757929 0.652337i \(-0.773789\pi\)
0.757929 0.652337i \(-0.226211\pi\)
\(614\) 1.79631e12 0.510063
\(615\) 0 0
\(616\) 5.86781e11 0.164196
\(617\) 5.85962e10i 0.0162774i 0.999967 + 0.00813872i \(0.00259066\pi\)
−0.999967 + 0.00813872i \(0.997409\pi\)
\(618\) − 2.55502e12i − 0.704606i
\(619\) −2.31615e12 −0.634101 −0.317050 0.948409i \(-0.602692\pi\)
−0.317050 + 0.948409i \(0.602692\pi\)
\(620\) 0 0
\(621\) 5.80769e12 1.56708
\(622\) − 2.67129e12i − 0.715590i
\(623\) 1.27190e11i 0.0338264i
\(624\) −3.01202e12 −0.795294
\(625\) 0 0
\(626\) −4.03271e12 −1.04957
\(627\) − 5.53935e12i − 1.43138i
\(628\) 5.86718e10i 0.0150526i
\(629\) −7.31298e12 −1.86280
\(630\) 0 0
\(631\) 1.36072e12 0.341693 0.170847 0.985298i \(-0.445350\pi\)
0.170847 + 0.985298i \(0.445350\pi\)
\(632\) − 2.77884e12i − 0.692847i
\(633\) − 3.14837e12i − 0.779416i
\(634\) −7.22103e12 −1.77500
\(635\) 0 0
\(636\) −1.65951e11 −0.0402182
\(637\) − 2.73250e11i − 0.0657555i
\(638\) 3.01174e12i 0.719655i
\(639\) −3.43219e12 −0.814363
\(640\) 0 0
\(641\) −5.19542e12 −1.21551 −0.607756 0.794124i \(-0.707930\pi\)
−0.607756 + 0.794124i \(0.707930\pi\)
\(642\) 2.81061e12i 0.652970i
\(643\) − 5.15183e12i − 1.18854i −0.804267 0.594268i \(-0.797442\pi\)
0.804267 0.594268i \(-0.202558\pi\)
\(644\) 2.03783e10 0.00466855
\(645\) 0 0
\(646\) 1.41268e13 3.19152
\(647\) 9.10873e11i 0.204357i 0.994766 + 0.102178i \(0.0325812\pi\)
−0.994766 + 0.102178i \(0.967419\pi\)
\(648\) − 3.34396e12i − 0.745030i
\(649\) −1.84393e11 −0.0407983
\(650\) 0 0
\(651\) 2.37872e11 0.0519075
\(652\) − 4.11314e10i − 0.00891372i
\(653\) − 3.27767e12i − 0.705433i −0.935730 0.352717i \(-0.885258\pi\)
0.935730 0.352717i \(-0.114742\pi\)
\(654\) 2.92663e12 0.625559
\(655\) 0 0
\(656\) −1.03670e12 −0.218567
\(657\) 3.70942e12i 0.776715i
\(658\) − 1.97444e12i − 0.410609i
\(659\) −2.27024e12 −0.468907 −0.234453 0.972127i \(-0.575330\pi\)
−0.234453 + 0.972127i \(0.575330\pi\)
\(660\) 0 0
\(661\) −3.17394e12 −0.646684 −0.323342 0.946282i \(-0.604806\pi\)
−0.323342 + 0.946282i \(0.604806\pi\)
\(662\) 1.66192e12i 0.336318i
\(663\) − 6.46499e12i − 1.29944i
\(664\) 4.93277e12 0.984769
\(665\) 0 0
\(666\) 1.10141e13 2.16928
\(667\) − 8.39930e12i − 1.64315i
\(668\) 1.71953e10i 0.00334130i
\(669\) 1.33867e13 2.58378
\(670\) 0 0
\(671\) −2.27043e12 −0.432371
\(672\) − 8.39003e10i − 0.0158709i
\(673\) − 4.96227e12i − 0.932423i −0.884673 0.466212i \(-0.845619\pi\)
0.884673 0.466212i \(-0.154381\pi\)
\(674\) 2.44124e12 0.455659
\(675\) 0 0
\(676\) −5.26324e10 −0.00969377
\(677\) − 6.67904e12i − 1.22198i −0.791638 0.610991i \(-0.790771\pi\)
0.791638 0.610991i \(-0.209229\pi\)
\(678\) 2.94522e12i 0.535283i
\(679\) −7.23599e11 −0.130642
\(680\) 0 0
\(681\) 1.43424e13 2.55540
\(682\) − 1.99913e11i − 0.0353844i
\(683\) 5.75109e12i 1.01125i 0.862755 + 0.505623i \(0.168737\pi\)
−0.862755 + 0.505623i \(0.831263\pi\)
\(684\) −2.58513e11 −0.0451575
\(685\) 0 0
\(686\) 3.15113e11 0.0543260
\(687\) 1.58551e13i 2.71559i
\(688\) − 3.38985e12i − 0.576809i
\(689\) −5.21548e12 −0.881674
\(690\) 0 0
\(691\) 4.84476e12 0.808391 0.404196 0.914673i \(-0.367552\pi\)
0.404196 + 0.914673i \(0.367552\pi\)
\(692\) − 2.32133e9i 0 0.000384821i
\(693\) − 1.92021e12i − 0.316264i
\(694\) 6.06017e12 0.991669
\(695\) 0 0
\(696\) −1.71835e13 −2.77569
\(697\) − 2.22516e12i − 0.357120i
\(698\) 1.66211e12i 0.265039i
\(699\) 1.55682e13 2.46656
\(700\) 0 0
\(701\) −2.61772e12 −0.409441 −0.204721 0.978820i \(-0.565629\pi\)
−0.204721 + 0.978820i \(0.565629\pi\)
\(702\) 4.65001e12i 0.722665i
\(703\) 1.39914e13i 2.16054i
\(704\) 2.81321e12 0.431643
\(705\) 0 0
\(706\) 2.36574e12 0.358382
\(707\) − 4.03536e12i − 0.607429i
\(708\) 1.31010e10i 0.00195955i
\(709\) −2.83866e12 −0.421897 −0.210948 0.977497i \(-0.567655\pi\)
−0.210948 + 0.977497i \(0.567655\pi\)
\(710\) 0 0
\(711\) −9.09364e12 −1.33452
\(712\) 6.09880e11i 0.0889373i
\(713\) 5.57529e11i 0.0807912i
\(714\) 7.45545e12 1.07357
\(715\) 0 0
\(716\) −1.24217e11 −0.0176633
\(717\) 2.20009e12i 0.310889i
\(718\) 1.88666e12i 0.264931i
\(719\) 3.57178e12 0.498430 0.249215 0.968448i \(-0.419827\pi\)
0.249215 + 0.968448i \(0.419827\pi\)
\(720\) 0 0
\(721\) 1.12512e12 0.155056
\(722\) − 1.96815e13i − 2.69552i
\(723\) − 3.59015e12i − 0.488641i
\(724\) 1.96118e10 0.00265273
\(725\) 0 0
\(726\) 1.03996e13 1.38932
\(727\) − 2.44104e12i − 0.324094i −0.986783 0.162047i \(-0.948190\pi\)
0.986783 0.162047i \(-0.0518096\pi\)
\(728\) − 1.31024e12i − 0.172887i
\(729\) 9.37027e12 1.22879
\(730\) 0 0
\(731\) 7.27595e12 0.942457
\(732\) 1.61313e11i 0.0207669i
\(733\) − 2.05203e12i − 0.262553i −0.991346 0.131276i \(-0.958092\pi\)
0.991346 0.131276i \(-0.0419075\pi\)
\(734\) 4.54425e12 0.577870
\(735\) 0 0
\(736\) 1.96647e11 0.0247023
\(737\) 4.02098e12i 0.502028i
\(738\) 3.35132e12i 0.415875i
\(739\) −5.67988e12 −0.700550 −0.350275 0.936647i \(-0.613912\pi\)
−0.350275 + 0.936647i \(0.613912\pi\)
\(740\) 0 0
\(741\) −1.23690e13 −1.50714
\(742\) − 6.01452e12i − 0.728422i
\(743\) − 1.78018e12i − 0.214296i −0.994243 0.107148i \(-0.965828\pi\)
0.994243 0.107148i \(-0.0341719\pi\)
\(744\) 1.14061e12 0.136477
\(745\) 0 0
\(746\) 1.02401e12 0.121054
\(747\) − 1.61423e13i − 1.89680i
\(748\) − 7.61298e10i − 0.00889196i
\(749\) −1.23767e12 −0.143693
\(750\) 0 0
\(751\) 4.66195e12 0.534796 0.267398 0.963586i \(-0.413836\pi\)
0.267398 + 0.963586i \(0.413836\pi\)
\(752\) − 9.58401e12i − 1.09287i
\(753\) 2.46908e13i 2.79871i
\(754\) 6.72503e12 0.757745
\(755\) 0 0
\(756\) −6.51544e10 −0.00725430
\(757\) − 6.36622e12i − 0.704612i −0.935885 0.352306i \(-0.885398\pi\)
0.935885 0.352306i \(-0.114602\pi\)
\(758\) − 4.30454e10i − 0.00473604i
\(759\) 6.85191e12 0.749417
\(760\) 0 0
\(761\) −9.79260e12 −1.05844 −0.529221 0.848484i \(-0.677516\pi\)
−0.529221 + 0.848484i \(0.677516\pi\)
\(762\) 4.88903e12i 0.525322i
\(763\) 1.28876e12i 0.137661i
\(764\) 2.00102e11 0.0212486
\(765\) 0 0
\(766\) 7.11554e12 0.746756
\(767\) 4.11737e11i 0.0429577i
\(768\) − 6.07193e11i − 0.0629798i
\(769\) −1.05064e13 −1.08339 −0.541696 0.840575i \(-0.682217\pi\)
−0.541696 + 0.840575i \(0.682217\pi\)
\(770\) 0 0
\(771\) −1.75972e13 −1.79349
\(772\) 1.39278e11i 0.0141125i
\(773\) 6.50971e12i 0.655774i 0.944717 + 0.327887i \(0.106337\pi\)
−0.944717 + 0.327887i \(0.893663\pi\)
\(774\) −1.09583e13 −1.09751
\(775\) 0 0
\(776\) −3.46969e12 −0.343489
\(777\) 7.38400e12i 0.726770i
\(778\) 6.47921e12i 0.634036i
\(779\) −4.25726e12 −0.414201
\(780\) 0 0
\(781\) −1.93380e12 −0.185987
\(782\) 1.74742e13i 1.67096i
\(783\) 2.68546e13i 2.55323i
\(784\) 1.52957e12 0.144593
\(785\) 0 0
\(786\) 1.59401e13 1.48967
\(787\) 1.85396e13i 1.72272i 0.507996 + 0.861359i \(0.330386\pi\)
−0.507996 + 0.861359i \(0.669614\pi\)
\(788\) 1.35943e11i 0.0125599i
\(789\) −2.14402e13 −1.96962
\(790\) 0 0
\(791\) −1.29694e12 −0.117795
\(792\) − 9.20751e12i − 0.831532i
\(793\) 5.06973e12i 0.455256i
\(794\) 1.80388e13 1.61070
\(795\) 0 0
\(796\) 1.75529e11 0.0154967
\(797\) 4.13989e12i 0.363435i 0.983351 + 0.181718i \(0.0581656\pi\)
−0.983351 + 0.181718i \(0.941834\pi\)
\(798\) − 1.42640e13i − 1.24517i
\(799\) 2.05711e13 1.78565
\(800\) 0 0
\(801\) 1.99580e12 0.171306
\(802\) − 1.50753e13i − 1.28671i
\(803\) 2.09000e12i 0.177389i
\(804\) 2.85689e11 0.0241125
\(805\) 0 0
\(806\) −4.46394e11 −0.0372572
\(807\) 2.40144e13i 1.99315i
\(808\) − 1.93497e13i − 1.59707i
\(809\) 1.06411e13 0.873408 0.436704 0.899605i \(-0.356146\pi\)
0.436704 + 0.899605i \(0.356146\pi\)
\(810\) 0 0
\(811\) 1.16080e11 0.00942244 0.00471122 0.999989i \(-0.498500\pi\)
0.00471122 + 0.999989i \(0.498500\pi\)
\(812\) 9.42288e10i 0.00760644i
\(813\) − 2.53440e13i − 2.03455i
\(814\) 6.20567e12 0.495426
\(815\) 0 0
\(816\) 3.61890e13 2.85740
\(817\) − 1.39206e13i − 1.09310i
\(818\) 2.48802e13i 1.94296i
\(819\) −4.28772e12 −0.333003
\(820\) 0 0
\(821\) −2.47649e13 −1.90236 −0.951179 0.308641i \(-0.900126\pi\)
−0.951179 + 0.308641i \(0.900126\pi\)
\(822\) 2.46486e13i 1.88308i
\(823\) 7.59942e12i 0.577406i 0.957419 + 0.288703i \(0.0932240\pi\)
−0.957419 + 0.288703i \(0.906776\pi\)
\(824\) 5.39499e12 0.407679
\(825\) 0 0
\(826\) −4.74817e11 −0.0354908
\(827\) 9.92558e12i 0.737872i 0.929455 + 0.368936i \(0.120278\pi\)
−0.929455 + 0.368936i \(0.879722\pi\)
\(828\) − 3.19768e11i − 0.0236428i
\(829\) −2.17549e12 −0.159978 −0.0799891 0.996796i \(-0.525489\pi\)
−0.0799891 + 0.996796i \(0.525489\pi\)
\(830\) 0 0
\(831\) 2.87779e12 0.209341
\(832\) − 6.28172e12i − 0.454489i
\(833\) 3.28305e12i 0.236252i
\(834\) −3.94584e13 −2.82418
\(835\) 0 0
\(836\) −1.45654e11 −0.0103132
\(837\) − 1.78255e12i − 0.125539i
\(838\) 8.53043e12i 0.597548i
\(839\) 8.79323e12 0.612660 0.306330 0.951925i \(-0.400899\pi\)
0.306330 + 0.951925i \(0.400899\pi\)
\(840\) 0 0
\(841\) 2.43310e13 1.67717
\(842\) − 1.67343e13i − 1.14737i
\(843\) 4.87712e13i 3.32613i
\(844\) −8.27846e10 −0.00561576
\(845\) 0 0
\(846\) −3.09821e13 −2.07943
\(847\) 4.57953e12i 0.305735i
\(848\) − 2.91946e13i − 1.93875i
\(849\) 3.65647e13 2.41534
\(850\) 0 0
\(851\) −1.73067e13 −1.13118
\(852\) 1.37396e11i 0.00893298i
\(853\) − 2.98980e13i − 1.93362i −0.255494 0.966811i \(-0.582238\pi\)
0.255494 0.966811i \(-0.417762\pi\)
\(854\) −5.84643e12 −0.376124
\(855\) 0 0
\(856\) −5.93468e12 −0.377803
\(857\) − 1.46014e13i − 0.924654i −0.886709 0.462327i \(-0.847015\pi\)
0.886709 0.462327i \(-0.152985\pi\)
\(858\) 5.48609e12i 0.345597i
\(859\) 6.23914e11 0.0390981 0.0195490 0.999809i \(-0.493777\pi\)
0.0195490 + 0.999809i \(0.493777\pi\)
\(860\) 0 0
\(861\) −2.24677e12 −0.139330
\(862\) 1.20612e13i 0.744062i
\(863\) 2.27436e12i 0.139576i 0.997562 + 0.0697879i \(0.0222322\pi\)
−0.997562 + 0.0697879i \(0.977768\pi\)
\(864\) −6.28727e11 −0.0383840
\(865\) 0 0
\(866\) 4.14712e12 0.250563
\(867\) 4.92745e13i 2.96167i
\(868\) − 6.25472e9i 0 0.000373998i
\(869\) −5.12363e12 −0.304782
\(870\) 0 0
\(871\) 8.97860e12 0.528600
\(872\) 6.17966e12i 0.361943i
\(873\) 1.13544e13i 0.661607i
\(874\) 3.34322e13 1.93804
\(875\) 0 0
\(876\) 1.48494e11 0.00852001
\(877\) − 2.75045e13i − 1.57002i −0.619482 0.785011i \(-0.712657\pi\)
0.619482 0.785011i \(-0.287343\pi\)
\(878\) − 1.85293e13i − 1.05228i
\(879\) −4.58186e13 −2.58876
\(880\) 0 0
\(881\) −1.54100e13 −0.861809 −0.430904 0.902398i \(-0.641805\pi\)
−0.430904 + 0.902398i \(0.641805\pi\)
\(882\) − 4.94461e12i − 0.275121i
\(883\) − 1.77905e13i − 0.984838i −0.870358 0.492419i \(-0.836113\pi\)
0.870358 0.492419i \(-0.163887\pi\)
\(884\) −1.69993e11 −0.00936260
\(885\) 0 0
\(886\) −1.28669e13 −0.701489
\(887\) 1.07061e13i 0.580734i 0.956915 + 0.290367i \(0.0937773\pi\)
−0.956915 + 0.290367i \(0.906223\pi\)
\(888\) 3.54066e13i 1.91085i
\(889\) −2.15292e12 −0.115603
\(890\) 0 0
\(891\) −6.16560e12 −0.327737
\(892\) − 3.51995e11i − 0.0186163i
\(893\) − 3.93572e13i − 2.07106i
\(894\) 2.09321e13 1.09596
\(895\) 0 0
\(896\) 7.42347e12 0.384787
\(897\) − 1.52999e13i − 0.789082i
\(898\) − 1.33619e13i − 0.685684i
\(899\) −2.57800e12 −0.131633
\(900\) 0 0
\(901\) 6.26632e13 3.16775
\(902\) 1.88824e12i 0.0949789i
\(903\) − 7.34661e12i − 0.367699i
\(904\) −6.21890e12 −0.309710
\(905\) 0 0
\(906\) 3.34924e13 1.65147
\(907\) 9.46109e12i 0.464203i 0.972692 + 0.232102i \(0.0745602\pi\)
−0.972692 + 0.232102i \(0.925440\pi\)
\(908\) − 3.77125e11i − 0.0184119i
\(909\) −6.33212e13 −3.07618
\(910\) 0 0
\(911\) 3.69156e13 1.77573 0.887865 0.460104i \(-0.152188\pi\)
0.887865 + 0.460104i \(0.152188\pi\)
\(912\) − 6.92380e13i − 3.31411i
\(913\) − 9.09504e12i − 0.433198i
\(914\) 4.70334e11 0.0222920
\(915\) 0 0
\(916\) 4.16901e11 0.0195660
\(917\) 7.01932e12i 0.327818i
\(918\) − 5.58692e13i − 2.59645i
\(919\) −2.21297e13 −1.02343 −0.511713 0.859156i \(-0.670989\pi\)
−0.511713 + 0.859156i \(0.670989\pi\)
\(920\) 0 0
\(921\) 1.88969e13 0.865411
\(922\) − 5.91882e12i − 0.269740i
\(923\) 4.31806e12i 0.195831i
\(924\) −7.68692e10 −0.00346919
\(925\) 0 0
\(926\) −1.50811e13 −0.674035
\(927\) − 1.76549e13i − 0.785246i
\(928\) 9.09289e11i 0.0402472i
\(929\) −1.24192e13 −0.547043 −0.273521 0.961866i \(-0.588188\pi\)
−0.273521 + 0.961866i \(0.588188\pi\)
\(930\) 0 0
\(931\) 6.28124e12 0.274014
\(932\) − 4.09358e11i − 0.0177718i
\(933\) − 2.81016e13i − 1.21412i
\(934\) 1.31716e13 0.566341
\(935\) 0 0
\(936\) −2.05598e13 −0.875543
\(937\) 3.54355e13i 1.50179i 0.660420 + 0.750896i \(0.270378\pi\)
−0.660420 + 0.750896i \(0.729622\pi\)
\(938\) 1.03542e13i 0.436719i
\(939\) −4.24234e13 −1.78078
\(940\) 0 0
\(941\) 1.16327e13 0.483646 0.241823 0.970320i \(-0.422255\pi\)
0.241823 + 0.970320i \(0.422255\pi\)
\(942\) 5.07990e13i 2.10197i
\(943\) − 5.26602e12i − 0.216860i
\(944\) −2.30478e12 −0.0944615
\(945\) 0 0
\(946\) −6.17425e12 −0.250654
\(947\) − 3.20915e13i − 1.29663i −0.761373 0.648314i \(-0.775474\pi\)
0.761373 0.648314i \(-0.224526\pi\)
\(948\) 3.64033e11i 0.0146387i
\(949\) 4.66684e12 0.186778
\(950\) 0 0
\(951\) −7.59641e13 −3.01159
\(952\) 1.57424e13i 0.621161i
\(953\) 3.35135e12i 0.131614i 0.997832 + 0.0658069i \(0.0209621\pi\)
−0.997832 + 0.0658069i \(0.979038\pi\)
\(954\) −9.43772e13 −3.68892
\(955\) 0 0
\(956\) 5.78502e10 0.00223998
\(957\) 3.16830e13i 1.22102i
\(958\) 2.97118e13i 1.13968i
\(959\) −1.08542e13 −0.414394
\(960\) 0 0
\(961\) −2.62685e13 −0.993528
\(962\) − 1.38569e13i − 0.521648i
\(963\) 1.94210e13i 0.727701i
\(964\) −9.44009e10 −0.00352070
\(965\) 0 0
\(966\) 1.76439e13 0.651924
\(967\) − 3.10299e13i − 1.14120i −0.821229 0.570599i \(-0.806711\pi\)
0.821229 0.570599i \(-0.193289\pi\)
\(968\) 2.19590e13i 0.803848i
\(969\) 1.48612e14 5.41498
\(970\) 0 0
\(971\) −1.95452e13 −0.705591 −0.352796 0.935700i \(-0.614769\pi\)
−0.352796 + 0.935700i \(0.614769\pi\)
\(972\) − 9.60606e10i − 0.00345181i
\(973\) − 1.73757e13i − 0.621492i
\(974\) −5.14594e13 −1.83210
\(975\) 0 0
\(976\) −2.83788e13 −1.00108
\(977\) 2.92875e13i 1.02839i 0.857674 + 0.514194i \(0.171909\pi\)
−0.857674 + 0.514194i \(0.828091\pi\)
\(978\) − 3.56122e13i − 1.24473i
\(979\) 1.12450e12 0.0391234
\(980\) 0 0
\(981\) 2.02227e13 0.697153
\(982\) 4.68603e12i 0.160806i
\(983\) 2.28350e13i 0.780029i 0.920809 + 0.390014i \(0.127530\pi\)
−0.920809 + 0.390014i \(0.872470\pi\)
\(984\) −1.07734e13 −0.366331
\(985\) 0 0
\(986\) −8.08002e13 −2.72249
\(987\) − 2.07708e13i − 0.696669i
\(988\) 3.25236e11i 0.0108591i
\(989\) 1.72191e13 0.572304
\(990\) 0 0
\(991\) −9.28345e11 −0.0305758 −0.0152879 0.999883i \(-0.504866\pi\)
−0.0152879 + 0.999883i \(0.504866\pi\)
\(992\) − 6.03568e10i − 0.00197890i
\(993\) 1.74832e13i 0.570622i
\(994\) −4.97961e12 −0.161792
\(995\) 0 0
\(996\) −6.46200e11 −0.0208066
\(997\) 3.95911e13i 1.26902i 0.772914 + 0.634511i \(0.218798\pi\)
−0.772914 + 0.634511i \(0.781202\pi\)
\(998\) − 4.79713e12i − 0.153071i
\(999\) 5.53337e13 1.75770
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.10.b.f.99.3 10
5.2 odd 4 35.10.a.d.1.4 5
5.3 odd 4 175.10.a.f.1.2 5
5.4 even 2 inner 175.10.b.f.99.8 10
15.2 even 4 315.10.a.j.1.2 5
35.27 even 4 245.10.a.f.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.10.a.d.1.4 5 5.2 odd 4
175.10.a.f.1.2 5 5.3 odd 4
175.10.b.f.99.3 10 1.1 even 1 trivial
175.10.b.f.99.8 10 5.4 even 2 inner
245.10.a.f.1.4 5 35.27 even 4
315.10.a.j.1.2 5 15.2 even 4