Properties

Label 175.2.o.c
Level $175$
Weight $2$
Character orbit 175.o
Analytic conductor $1.397$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(68,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{24}^{7} q^{2} + (\zeta_{24}^{5} - 2 \zeta_{24}) q^{3} + \zeta_{24}^{2} q^{4} + ( - 2 \zeta_{24}^{4} + 1) q^{6} + ( - \zeta_{24}^{7} + 3 \zeta_{24}^{3}) q^{7} + (3 \zeta_{24}^{5} - 3 \zeta_{24}) q^{8}+ \cdots + (5 \zeta_{24}^{5} - 8 \zeta_{24}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{11} - 4 q^{16} - 36 q^{21} + 24 q^{26} + 72 q^{31} - 28 q^{46} - 24 q^{51} - 60 q^{56} + 12 q^{61} + 48 q^{66} + 16 q^{71} - 36 q^{81} + 20 q^{86} - 24 q^{91} + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(\zeta_{24}^{4}\) \(\zeta_{24}^{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
68.1
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0.258819 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
−0.258819 0.965926i −1.67303 0.448288i 0.866025 0.500000i 0 1.73205i 2.38014 1.15539i −2.12132 2.12132i 0 0
68.2 0.258819 + 0.965926i 1.67303 + 0.448288i 0.866025 0.500000i 0 1.73205i −2.38014 + 1.15539i 2.12132 + 2.12132i 0 0
82.1 −0.965926 + 0.258819i 0.448288 1.67303i −0.866025 + 0.500000i 0 1.73205i −1.15539 2.38014i 2.12132 2.12132i 0 0
82.2 0.965926 0.258819i −0.448288 + 1.67303i −0.866025 + 0.500000i 0 1.73205i 1.15539 + 2.38014i −2.12132 + 2.12132i 0 0
143.1 −0.965926 0.258819i 0.448288 + 1.67303i −0.866025 0.500000i 0 1.73205i −1.15539 + 2.38014i 2.12132 + 2.12132i 0 0
143.2 0.965926 + 0.258819i −0.448288 1.67303i −0.866025 0.500000i 0 1.73205i 1.15539 2.38014i −2.12132 2.12132i 0 0
157.1 −0.258819 + 0.965926i −1.67303 + 0.448288i 0.866025 + 0.500000i 0 1.73205i 2.38014 + 1.15539i −2.12132 + 2.12132i 0 0
157.2 0.258819 0.965926i 1.67303 0.448288i 0.866025 + 0.500000i 0 1.73205i −2.38014 1.15539i 2.12132 2.12132i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 68.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
7.d odd 6 1 inner
35.i odd 6 1 inner
35.k even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.2.o.c 8
5.b even 2 1 inner 175.2.o.c 8
5.c odd 4 2 inner 175.2.o.c 8
7.d odd 6 1 inner 175.2.o.c 8
35.i odd 6 1 inner 175.2.o.c 8
35.k even 12 2 inner 175.2.o.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.2.o.c 8 1.a even 1 1 trivial
175.2.o.c 8 5.b even 2 1 inner
175.2.o.c 8 5.c odd 4 2 inner
175.2.o.c 8 7.d odd 6 1 inner
175.2.o.c 8 35.i odd 6 1 inner
175.2.o.c 8 35.k even 12 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - T_{2}^{4} + 1 \) acting on \(S_{2}^{\mathrm{new}}(175, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 23T^{4} + 2401 \) Copy content Toggle raw display
$11$ \( (T^{2} + 4 T + 16)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 144)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 144 T^{4} + 20736 \) Copy content Toggle raw display
$19$ \( (T^{4} + 12 T^{2} + 144)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} - 2401 T^{4} + 5764801 \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 18 T + 108)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} - 256 T^{4} + 65536 \) Copy content Toggle raw display
$41$ \( (T^{2} + 75)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 625)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} - 144 T^{4} + 20736 \) Copy content Toggle raw display
$53$ \( T^{8} - 16T^{4} + 256 \) Copy content Toggle raw display
$59$ \( (T^{4} + 12 T^{2} + 144)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 3 T + 3)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} - 6561 T^{4} + 43046721 \) Copy content Toggle raw display
$71$ \( (T - 2)^{8} \) Copy content Toggle raw display
$73$ \( T^{8} - 11664 T^{4} + 136048896 \) Copy content Toggle raw display
$79$ \( (T^{4} - 4 T^{2} + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 729)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 147 T^{2} + 21609)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 2304)^{2} \) Copy content Toggle raw display
show more
show less