Properties

Label 175.4.k.b
Level 175175
Weight 44
Character orbit 175.k
Analytic conductor 10.32510.325
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 175.k (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.325334251010.3253342510
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3ζ12q2+(2ζ1232ζ12)q3+ζ122q46q6+(7ζ123+14ζ12)q721ζ123q8+(23ζ12223)q9+45ζ122q11+1035q99+O(q100) q + 3 \zeta_{12} q^{2} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{3} + \zeta_{12}^{2} q^{4} - 6 q^{6} + (7 \zeta_{12}^{3} + 14 \zeta_{12}) q^{7} - 21 \zeta_{12}^{3} q^{8} + (23 \zeta_{12}^{2} - 23) q^{9} + 45 \zeta_{12}^{2} q^{11} + \cdots - 1035 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q424q646q9+90q11+42q14+142q16242q19140q21+84q24354q26+648q29+176q31+648q3492q36236q39+780q4190q44+4140q99+O(q100) 4 q + 2 q^{4} - 24 q^{6} - 46 q^{9} + 90 q^{11} + 42 q^{14} + 142 q^{16} - 242 q^{19} - 140 q^{21} + 84 q^{24} - 354 q^{26} + 648 q^{29} + 176 q^{31} + 648 q^{34} - 92 q^{36} - 236 q^{39} + 780 q^{41} - 90 q^{44}+ \cdots - 4140 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1+ζ122-1 + \zeta_{12}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
74.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−2.59808 + 1.50000i 1.73205 + 1.00000i 0.500000 0.866025i 0 −6.00000 −12.1244 + 14.0000i 21.0000i −11.5000 19.9186i 0
74.2 2.59808 1.50000i −1.73205 1.00000i 0.500000 0.866025i 0 −6.00000 12.1244 14.0000i 21.0000i −11.5000 19.9186i 0
149.1 −2.59808 1.50000i 1.73205 1.00000i 0.500000 + 0.866025i 0 −6.00000 −12.1244 14.0000i 21.0000i −11.5000 + 19.9186i 0
149.2 2.59808 + 1.50000i −1.73205 + 1.00000i 0.500000 + 0.866025i 0 −6.00000 12.1244 + 14.0000i 21.0000i −11.5000 + 19.9186i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.4.k.b 4
5.b even 2 1 inner 175.4.k.b 4
5.c odd 4 1 35.4.e.a 2
5.c odd 4 1 175.4.e.b 2
7.c even 3 1 inner 175.4.k.b 4
15.e even 4 1 315.4.j.b 2
20.e even 4 1 560.4.q.b 2
35.f even 4 1 245.4.e.a 2
35.j even 6 1 inner 175.4.k.b 4
35.k even 12 1 245.4.a.f 1
35.k even 12 1 245.4.e.a 2
35.k even 12 1 1225.4.a.a 1
35.l odd 12 1 35.4.e.a 2
35.l odd 12 1 175.4.e.b 2
35.l odd 12 1 245.4.a.e 1
35.l odd 12 1 1225.4.a.b 1
105.w odd 12 1 2205.4.a.g 1
105.x even 12 1 315.4.j.b 2
105.x even 12 1 2205.4.a.e 1
140.w even 12 1 560.4.q.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.4.e.a 2 5.c odd 4 1
35.4.e.a 2 35.l odd 12 1
175.4.e.b 2 5.c odd 4 1
175.4.e.b 2 35.l odd 12 1
175.4.k.b 4 1.a even 1 1 trivial
175.4.k.b 4 5.b even 2 1 inner
175.4.k.b 4 7.c even 3 1 inner
175.4.k.b 4 35.j even 6 1 inner
245.4.a.e 1 35.l odd 12 1
245.4.a.f 1 35.k even 12 1
245.4.e.a 2 35.f even 4 1
245.4.e.a 2 35.k even 12 1
315.4.j.b 2 15.e even 4 1
315.4.j.b 2 105.x even 12 1
560.4.q.b 2 20.e even 4 1
560.4.q.b 2 140.w even 12 1
1225.4.a.a 1 35.k even 12 1
1225.4.a.b 1 35.l odd 12 1
2205.4.a.e 1 105.x even 12 1
2205.4.a.g 1 105.w odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T249T22+81 T_{2}^{4} - 9T_{2}^{2} + 81 acting on S4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
33 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+98T2+117649 T^{4} + 98 T^{2} + 117649 Copy content Toggle raw display
1111 (T245T+2025)2 (T^{2} - 45 T + 2025)^{2} Copy content Toggle raw display
1313 (T2+3481)2 (T^{2} + 3481)^{2} Copy content Toggle raw display
1717 T42916T2+8503056 T^{4} - 2916 T^{2} + 8503056 Copy content Toggle raw display
1919 (T2+121T+14641)2 (T^{2} + 121 T + 14641)^{2} Copy content Toggle raw display
2323 T44761T2+22667121 T^{4} - 4761 T^{2} + 22667121 Copy content Toggle raw display
2929 (T162)4 (T - 162)^{4} Copy content Toggle raw display
3131 (T288T+7744)2 (T^{2} - 88 T + 7744)^{2} Copy content Toggle raw display
3737 T4++4499860561 T^{4} + \cdots + 4499860561 Copy content Toggle raw display
4141 (T195)4 (T - 195)^{4} Copy content Toggle raw display
4343 (T2+81796)2 (T^{2} + 81796)^{2} Copy content Toggle raw display
4747 T42025T2+4100625 T^{4} - 2025 T^{2} + 4100625 Copy content Toggle raw display
5353 T4++127027375281 T^{4} + \cdots + 127027375281 Copy content Toggle raw display
5959 (T2+360T+129600)2 (T^{2} + 360 T + 129600)^{2} Copy content Toggle raw display
6161 (T2+392T+153664)2 (T^{2} + 392 T + 153664)^{2} Copy content Toggle raw display
6767 T4++6146560000 T^{4} + \cdots + 6146560000 Copy content Toggle raw display
7171 (T48)4 (T - 48)^{4} Copy content Toggle raw display
7373 T4++199115858176 T^{4} + \cdots + 199115858176 Copy content Toggle raw display
7979 (T2782T+611524)2 (T^{2} - 782 T + 611524)^{2} Copy content Toggle raw display
8383 (T2+589824)2 (T^{2} + 589824)^{2} Copy content Toggle raw display
8989 (T2+1194T+1425636)2 (T^{2} + 1194 T + 1425636)^{2} Copy content Toggle raw display
9797 (T2+813604)2 (T^{2} + 813604)^{2} Copy content Toggle raw display
show more
show less