Properties

Label 175.5.j.b.124.14
Level $175$
Weight $5$
Character 175.124
Analytic conductor $18.090$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,5,Mod(24,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.24");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 175.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.0897435397\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 124.14
Character \(\chi\) \(=\) 175.124
Dual form 175.5.j.b.24.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.04601 + 1.18127i) q^{2} +(4.41391 + 7.64511i) q^{3} +(-5.20922 - 9.02264i) q^{4} +20.8560i q^{6} +(-48.9708 + 1.69012i) q^{7} -62.4144i q^{8} +(1.53484 - 2.65843i) q^{9} +(56.4068 + 97.6995i) q^{11} +(45.9861 - 79.6502i) q^{12} -313.449 q^{13} +(-102.191 - 54.3896i) q^{14} +(-9.61965 + 16.6617i) q^{16} +(-203.517 - 352.502i) q^{17} +(6.28061 - 3.62611i) q^{18} +(-106.640 - 61.5688i) q^{19} +(-229.074 - 366.928i) q^{21} +266.526i q^{22} +(-499.612 - 288.451i) q^{23} +(477.165 - 275.491i) q^{24} +(-641.320 - 370.266i) q^{26} +742.152 q^{27} +(270.349 + 433.042i) q^{28} -741.613 q^{29} +(1263.78 - 729.642i) q^{31} +(-904.203 + 522.042i) q^{32} +(-497.949 + 862.473i) q^{33} -961.629i q^{34} -31.9814 q^{36} +(466.972 + 269.606i) q^{37} +(-145.458 - 251.941i) q^{38} +(-1383.53 - 2396.35i) q^{39} +1444.11i q^{41} +(-35.2491 - 1021.33i) q^{42} -1017.68i q^{43} +(587.672 - 1017.88i) q^{44} +(-681.475 - 1180.35i) q^{46} +(476.972 - 826.140i) q^{47} -169.841 q^{48} +(2395.29 - 165.533i) q^{49} +(1796.61 - 3111.82i) q^{51} +(1632.82 + 2828.14i) q^{52} +(-2734.35 + 1578.68i) q^{53} +(1518.45 + 876.678i) q^{54} +(105.488 + 3056.49i) q^{56} -1087.04i q^{57} +(-1517.35 - 876.041i) q^{58} +(790.264 - 456.259i) q^{59} +(-1476.15 - 852.257i) q^{61} +3447.60 q^{62} +(-70.6695 + 132.779i) q^{63} -2158.85 q^{64} +(-2037.62 + 1176.42i) q^{66} +(-4642.17 + 2680.16i) q^{67} +(-2120.33 + 3672.52i) q^{68} -5092.79i q^{69} -4952.36 q^{71} +(-165.924 - 95.7963i) q^{72} +(-696.902 - 1207.07i) q^{73} +(636.953 + 1103.24i) q^{74} +1282.90i q^{76} +(-2927.41 - 4689.09i) q^{77} -6537.28i q^{78} +(-5068.88 + 8779.55i) q^{79} +(3151.47 + 5458.50i) q^{81} +(-1705.88 + 2954.66i) q^{82} +6357.92 q^{83} +(-2117.36 + 3978.26i) q^{84} +(1202.15 - 2082.19i) q^{86} +(-3273.41 - 5669.71i) q^{87} +(6097.85 - 3520.60i) q^{88} +(156.641 + 90.4366i) q^{89} +(15349.8 - 529.765i) q^{91} +6010.43i q^{92} +(11156.4 + 6441.14i) q^{93} +(1951.78 - 1126.86i) q^{94} +(-7982.14 - 4608.49i) q^{96} +5069.26 q^{97} +(5096.32 + 2490.79i) q^{98} +346.303 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 116 q^{4} - 532 q^{9} + 180 q^{11} + 1380 q^{14} - 252 q^{16} + 3324 q^{19} + 3360 q^{21} - 3816 q^{24} - 2700 q^{26} - 1680 q^{29} - 7272 q^{31} - 8328 q^{36} - 5952 q^{39} + 7236 q^{44} + 4076 q^{46}+ \cdots + 73432 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.04601 + 1.18127i 0.511503 + 0.295316i 0.733451 0.679742i \(-0.237908\pi\)
−0.221948 + 0.975058i \(0.571242\pi\)
\(3\) 4.41391 + 7.64511i 0.490434 + 0.849457i 0.999939 0.0110107i \(-0.00350488\pi\)
−0.509505 + 0.860468i \(0.670172\pi\)
\(4\) −5.20922 9.02264i −0.325577 0.563915i
\(5\) 0 0
\(6\) 20.8560i 0.579333i
\(7\) −48.9708 + 1.69012i −0.999405 + 0.0344922i
\(8\) 62.4144i 0.975225i
\(9\) 1.53484 2.65843i 0.0189487 0.0328201i
\(10\) 0 0
\(11\) 56.4068 + 97.6995i 0.466172 + 0.807434i 0.999254 0.0386302i \(-0.0122994\pi\)
−0.533081 + 0.846064i \(0.678966\pi\)
\(12\) 45.9861 79.6502i 0.319348 0.553126i
\(13\) −313.449 −1.85473 −0.927363 0.374163i \(-0.877930\pi\)
−0.927363 + 0.374163i \(0.877930\pi\)
\(14\) −102.191 54.3896i −0.521385 0.277498i
\(15\) 0 0
\(16\) −9.61965 + 16.6617i −0.0375767 + 0.0650848i
\(17\) −203.517 352.502i −0.704211 1.21973i −0.966976 0.254869i \(-0.917968\pi\)
0.262765 0.964860i \(-0.415366\pi\)
\(18\) 6.28061 3.62611i 0.0193846 0.0111917i
\(19\) −106.640 61.5688i −0.295403 0.170551i 0.344973 0.938613i \(-0.387888\pi\)
−0.640376 + 0.768062i \(0.721221\pi\)
\(20\) 0 0
\(21\) −229.074 366.928i −0.519442 0.832035i
\(22\) 266.526i 0.550673i
\(23\) −499.612 288.451i −0.944446 0.545276i −0.0530948 0.998589i \(-0.516909\pi\)
−0.891351 + 0.453313i \(0.850242\pi\)
\(24\) 477.165 275.491i 0.828411 0.478284i
\(25\) 0 0
\(26\) −641.320 370.266i −0.948698 0.547731i
\(27\) 742.152 1.01804
\(28\) 270.349 + 433.042i 0.344834 + 0.552350i
\(29\) −741.613 −0.881822 −0.440911 0.897551i \(-0.645345\pi\)
−0.440911 + 0.897551i \(0.645345\pi\)
\(30\) 0 0
\(31\) 1263.78 729.642i 1.31506 0.759252i 0.332134 0.943232i \(-0.392231\pi\)
0.982930 + 0.183980i \(0.0588981\pi\)
\(32\) −904.203 + 522.042i −0.883011 + 0.509806i
\(33\) −497.949 + 862.473i −0.457253 + 0.791986i
\(34\) 961.629i 0.831859i
\(35\) 0 0
\(36\) −31.9814 −0.0246770
\(37\) 466.972 + 269.606i 0.341104 + 0.196937i 0.660760 0.750597i \(-0.270234\pi\)
−0.319656 + 0.947534i \(0.603567\pi\)
\(38\) −145.458 251.941i −0.100733 0.174474i
\(39\) −1383.53 2396.35i −0.909621 1.57551i
\(40\) 0 0
\(41\) 1444.11i 0.859077i 0.903049 + 0.429538i \(0.141324\pi\)
−0.903049 + 0.429538i \(0.858676\pi\)
\(42\) −35.2491 1021.33i −0.0199825 0.578988i
\(43\) 1017.68i 0.550396i −0.961388 0.275198i \(-0.911257\pi\)
0.961388 0.275198i \(-0.0887434\pi\)
\(44\) 587.672 1017.88i 0.303549 0.525763i
\(45\) 0 0
\(46\) −681.475 1180.35i −0.322058 0.557821i
\(47\) 476.972 826.140i 0.215922 0.373988i −0.737635 0.675199i \(-0.764058\pi\)
0.953557 + 0.301211i \(0.0973909\pi\)
\(48\) −169.841 −0.0737157
\(49\) 2395.29 165.533i 0.997621 0.0689434i
\(50\) 0 0
\(51\) 1796.61 3111.82i 0.690738 1.19639i
\(52\) 1632.82 + 2828.14i 0.603855 + 1.04591i
\(53\) −2734.35 + 1578.68i −0.973425 + 0.562007i −0.900279 0.435314i \(-0.856637\pi\)
−0.0731463 + 0.997321i \(0.523304\pi\)
\(54\) 1518.45 + 876.678i 0.520731 + 0.300644i
\(55\) 0 0
\(56\) 105.488 + 3056.49i 0.0336377 + 0.974645i
\(57\) 1087.04i 0.334576i
\(58\) −1517.35 876.041i −0.451055 0.260417i
\(59\) 790.264 456.259i 0.227022 0.131071i −0.382175 0.924090i \(-0.624825\pi\)
0.609198 + 0.793018i \(0.291492\pi\)
\(60\) 0 0
\(61\) −1476.15 852.257i −0.396709 0.229040i 0.288354 0.957524i \(-0.406892\pi\)
−0.685063 + 0.728484i \(0.740225\pi\)
\(62\) 3447.60 0.896878
\(63\) −70.6695 + 132.779i −0.0178054 + 0.0334541i
\(64\) −2158.85 −0.527063
\(65\) 0 0
\(66\) −2037.62 + 1176.42i −0.467773 + 0.270069i
\(67\) −4642.17 + 2680.16i −1.03412 + 0.597051i −0.918163 0.396203i \(-0.870328\pi\)
−0.115959 + 0.993254i \(0.536994\pi\)
\(68\) −2120.33 + 3672.52i −0.458549 + 0.794230i
\(69\) 5092.79i 1.06969i
\(70\) 0 0
\(71\) −4952.36 −0.982416 −0.491208 0.871042i \(-0.663445\pi\)
−0.491208 + 0.871042i \(0.663445\pi\)
\(72\) −165.924 95.7963i −0.0320070 0.0184792i
\(73\) −696.902 1207.07i −0.130775 0.226510i 0.793200 0.608961i \(-0.208413\pi\)
−0.923976 + 0.382451i \(0.875080\pi\)
\(74\) 636.953 + 1103.24i 0.116317 + 0.201467i
\(75\) 0 0
\(76\) 1282.90i 0.222109i
\(77\) −2927.41 4689.09i −0.493745 0.790874i
\(78\) 6537.28i 1.07450i
\(79\) −5068.88 + 8779.55i −0.812190 + 1.40675i 0.0991386 + 0.995074i \(0.468391\pi\)
−0.911328 + 0.411680i \(0.864942\pi\)
\(80\) 0 0
\(81\) 3151.47 + 5458.50i 0.480333 + 0.831962i
\(82\) −1705.88 + 2954.66i −0.253699 + 0.439420i
\(83\) 6357.92 0.922909 0.461455 0.887164i \(-0.347328\pi\)
0.461455 + 0.887164i \(0.347328\pi\)
\(84\) −2117.36 + 3978.26i −0.300079 + 0.563812i
\(85\) 0 0
\(86\) 1202.15 2082.19i 0.162541 0.281529i
\(87\) −3273.41 5669.71i −0.432476 0.749070i
\(88\) 6097.85 3520.60i 0.787429 0.454623i
\(89\) 156.641 + 90.4366i 0.0197754 + 0.0114173i 0.509855 0.860260i \(-0.329699\pi\)
−0.490080 + 0.871678i \(0.663032\pi\)
\(90\) 0 0
\(91\) 15349.8 529.765i 1.85362 0.0639736i
\(92\) 6010.43i 0.710117i
\(93\) 11156.4 + 6441.14i 1.28990 + 0.744727i
\(94\) 1951.78 1126.86i 0.220890 0.127531i
\(95\) 0 0
\(96\) −7982.14 4608.49i −0.866117 0.500053i
\(97\) 5069.26 0.538768 0.269384 0.963033i \(-0.413180\pi\)
0.269384 + 0.963033i \(0.413180\pi\)
\(98\) 5096.32 + 2490.79i 0.530646 + 0.259349i
\(99\) 346.303 0.0353334
\(100\) 0 0
\(101\) 3450.13 1991.93i 0.338215 0.195269i −0.321267 0.946989i \(-0.604109\pi\)
0.659482 + 0.751720i \(0.270775\pi\)
\(102\) 7351.76 4244.54i 0.706629 0.407972i
\(103\) 2457.15 4255.91i 0.231610 0.401161i −0.726672 0.686985i \(-0.758934\pi\)
0.958282 + 0.285824i \(0.0922673\pi\)
\(104\) 19563.7i 1.80877i
\(105\) 0 0
\(106\) −7459.35 −0.663880
\(107\) −7404.44 4274.95i −0.646732 0.373391i 0.140471 0.990085i \(-0.455138\pi\)
−0.787203 + 0.616694i \(0.788472\pi\)
\(108\) −3866.03 6696.17i −0.331450 0.574089i
\(109\) 4551.17 + 7882.86i 0.383063 + 0.663484i 0.991498 0.130119i \(-0.0415359\pi\)
−0.608436 + 0.793603i \(0.708203\pi\)
\(110\) 0 0
\(111\) 4760.07i 0.386338i
\(112\) 442.922 832.197i 0.0353095 0.0663422i
\(113\) 10497.8i 0.822135i 0.911605 + 0.411068i \(0.134844\pi\)
−0.911605 + 0.411068i \(0.865156\pi\)
\(114\) 1284.08 2224.09i 0.0988057 0.171136i
\(115\) 0 0
\(116\) 3863.23 + 6691.31i 0.287101 + 0.497273i
\(117\) −481.095 + 833.280i −0.0351446 + 0.0608722i
\(118\) 2155.85 0.154830
\(119\) 10562.2 + 16918.3i 0.745863 + 1.19471i
\(120\) 0 0
\(121\) 957.041 1657.64i 0.0653672 0.113219i
\(122\) −2013.48 3487.46i −0.135278 0.234309i
\(123\) −11040.4 + 6374.16i −0.729749 + 0.421321i
\(124\) −13166.6 7601.73i −0.856308 0.494390i
\(125\) 0 0
\(126\) −301.438 + 188.189i −0.0189870 + 0.0118537i
\(127\) 3934.73i 0.243954i 0.992533 + 0.121977i \(0.0389234\pi\)
−0.992533 + 0.121977i \(0.961077\pi\)
\(128\) 10050.2 + 5802.49i 0.613416 + 0.354156i
\(129\) 7780.30 4491.96i 0.467538 0.269933i
\(130\) 0 0
\(131\) 6358.23 + 3670.93i 0.370505 + 0.213911i 0.673679 0.739024i \(-0.264713\pi\)
−0.303174 + 0.952935i \(0.598046\pi\)
\(132\) 10375.7 0.595484
\(133\) 5326.33 + 2834.84i 0.301110 + 0.160260i
\(134\) −12663.9 −0.705275
\(135\) 0 0
\(136\) −22001.2 + 12702.4i −1.18951 + 0.686764i
\(137\) −8323.71 + 4805.69i −0.443482 + 0.256044i −0.705073 0.709134i \(-0.749086\pi\)
0.261592 + 0.965179i \(0.415753\pi\)
\(138\) 6015.93 10419.9i 0.315896 0.547149i
\(139\) 6348.86i 0.328599i −0.986410 0.164300i \(-0.947464\pi\)
0.986410 0.164300i \(-0.0525364\pi\)
\(140\) 0 0
\(141\) 8421.25 0.423583
\(142\) −10132.6 5850.05i −0.502509 0.290124i
\(143\) −17680.6 30623.8i −0.864621 1.49757i
\(144\) 29.5293 + 51.1462i 0.00142406 + 0.00246654i
\(145\) 0 0
\(146\) 3292.90i 0.154480i
\(147\) 11838.1 + 17581.6i 0.547832 + 0.813623i
\(148\) 5617.76i 0.256472i
\(149\) 5996.35 10386.0i 0.270094 0.467816i −0.698792 0.715325i \(-0.746279\pi\)
0.968886 + 0.247509i \(0.0796120\pi\)
\(150\) 0 0
\(151\) −19255.3 33351.1i −0.844493 1.46271i −0.886061 0.463569i \(-0.846568\pi\)
0.0415675 0.999136i \(-0.486765\pi\)
\(152\) −3842.78 + 6655.89i −0.166325 + 0.288084i
\(153\) −1249.47 −0.0533754
\(154\) −450.460 13052.0i −0.0189939 0.550345i
\(155\) 0 0
\(156\) −14414.3 + 24966.3i −0.592302 + 1.02590i
\(157\) −2170.22 3758.93i −0.0880450 0.152498i 0.818640 0.574307i \(-0.194729\pi\)
−0.906685 + 0.421809i \(0.861395\pi\)
\(158\) −20742.0 + 11975.4i −0.830875 + 0.479706i
\(159\) −24138.3 13936.3i −0.954802 0.551255i
\(160\) 0 0
\(161\) 24953.9 + 13281.3i 0.962692 + 0.512376i
\(162\) 14890.9i 0.567401i
\(163\) 23180.5 + 13383.3i 0.872464 + 0.503718i 0.868166 0.496273i \(-0.165299\pi\)
0.00429800 + 0.999991i \(0.498632\pi\)
\(164\) 13029.7 7522.69i 0.484447 0.279695i
\(165\) 0 0
\(166\) 13008.4 + 7510.39i 0.472071 + 0.272550i
\(167\) −2791.76 −0.100103 −0.0500513 0.998747i \(-0.515938\pi\)
−0.0500513 + 0.998747i \(0.515938\pi\)
\(168\) −22901.6 + 14297.5i −0.811421 + 0.506573i
\(169\) 69689.1 2.44001
\(170\) 0 0
\(171\) −327.352 + 188.997i −0.0111950 + 0.00646343i
\(172\) −9182.19 + 5301.34i −0.310377 + 0.179196i
\(173\) −3552.47 + 6153.06i −0.118697 + 0.205589i −0.919251 0.393671i \(-0.871205\pi\)
0.800555 + 0.599260i \(0.204538\pi\)
\(174\) 15467.1i 0.510869i
\(175\) 0 0
\(176\) −2170.45 −0.0700689
\(177\) 6976.31 + 4027.77i 0.222679 + 0.128564i
\(178\) 213.659 + 370.068i 0.00674344 + 0.0116800i
\(179\) −22495.5 38963.4i −0.702085 1.21605i −0.967733 0.251977i \(-0.918919\pi\)
0.265648 0.964070i \(-0.414414\pi\)
\(180\) 0 0
\(181\) 61782.2i 1.88584i −0.333013 0.942922i \(-0.608065\pi\)
0.333013 0.942922i \(-0.391935\pi\)
\(182\) 32031.8 + 17048.3i 0.967025 + 0.514682i
\(183\) 15047.1i 0.449316i
\(184\) −18003.5 + 31183.0i −0.531767 + 0.921047i
\(185\) 0 0
\(186\) 15217.4 + 26357.3i 0.439860 + 0.761860i
\(187\) 22959.5 39767.0i 0.656567 1.13721i
\(188\) −9938.63 −0.281197
\(189\) −36343.8 + 1254.32i −1.01743 + 0.0351145i
\(190\) 0 0
\(191\) 19870.9 34417.3i 0.544690 0.943432i −0.453936 0.891034i \(-0.649980\pi\)
0.998626 0.0523972i \(-0.0166862\pi\)
\(192\) −9528.97 16504.7i −0.258490 0.447717i
\(193\) −63511.3 + 36668.3i −1.70505 + 0.984409i −0.764577 + 0.644533i \(0.777052\pi\)
−0.940470 + 0.339877i \(0.889615\pi\)
\(194\) 10371.8 + 5988.15i 0.275581 + 0.159107i
\(195\) 0 0
\(196\) −13971.1 20749.5i −0.363680 0.540127i
\(197\) 70971.8i 1.82875i −0.404872 0.914373i \(-0.632684\pi\)
0.404872 0.914373i \(-0.367316\pi\)
\(198\) 708.539 + 409.075i 0.0180731 + 0.0104345i
\(199\) 2968.18 1713.68i 0.0749521 0.0432736i −0.462056 0.886851i \(-0.652888\pi\)
0.537008 + 0.843577i \(0.319555\pi\)
\(200\) 0 0
\(201\) −40980.3 23660.0i −1.01434 0.585628i
\(202\) 9412.01 0.230664
\(203\) 36317.4 1253.41i 0.881298 0.0304160i
\(204\) −37435.8 −0.899552
\(205\) 0 0
\(206\) 10054.7 5805.10i 0.236938 0.136796i
\(207\) −1533.65 + 885.454i −0.0357920 + 0.0206645i
\(208\) 3015.27 5222.59i 0.0696946 0.120715i
\(209\) 13891.6i 0.318024i
\(210\) 0 0
\(211\) −8102.71 −0.181998 −0.0909988 0.995851i \(-0.529006\pi\)
−0.0909988 + 0.995851i \(0.529006\pi\)
\(212\) 28487.7 + 16447.4i 0.633849 + 0.365953i
\(213\) −21859.3 37861.4i −0.481811 0.834520i
\(214\) −10099.7 17493.2i −0.220537 0.381981i
\(215\) 0 0
\(216\) 46320.9i 0.992819i
\(217\) −60655.0 + 37867.1i −1.28809 + 0.804160i
\(218\) 21504.6i 0.452499i
\(219\) 6152.12 10655.8i 0.128273 0.222176i
\(220\) 0 0
\(221\) 63792.1 + 110491.i 1.30612 + 2.26226i
\(222\) −5622.90 + 9739.16i −0.114092 + 0.197613i
\(223\) 74216.1 1.49241 0.746205 0.665716i \(-0.231874\pi\)
0.746205 + 0.665716i \(0.231874\pi\)
\(224\) 43397.3 27093.0i 0.864901 0.539960i
\(225\) 0 0
\(226\) −12400.7 + 21478.7i −0.242790 + 0.420524i
\(227\) −11947.1 20693.0i −0.231852 0.401580i 0.726501 0.687166i \(-0.241145\pi\)
−0.958353 + 0.285585i \(0.907812\pi\)
\(228\) −9807.94 + 5662.62i −0.188672 + 0.108930i
\(229\) −33123.8 19124.1i −0.631640 0.364678i 0.149747 0.988724i \(-0.452154\pi\)
−0.781387 + 0.624047i \(0.785487\pi\)
\(230\) 0 0
\(231\) 22927.3 43077.6i 0.429664 0.807287i
\(232\) 46287.3i 0.859975i
\(233\) −75396.1 43530.0i −1.38879 0.801820i −0.395613 0.918417i \(-0.629468\pi\)
−0.993179 + 0.116598i \(0.962801\pi\)
\(234\) −1968.65 + 1136.60i −0.0359531 + 0.0207576i
\(235\) 0 0
\(236\) −8233.33 4753.51i −0.147826 0.0853475i
\(237\) −89494.2 −1.59330
\(238\) 1625.27 + 47091.8i 0.0286927 + 0.831364i
\(239\) 7221.47 0.126424 0.0632121 0.998000i \(-0.479866\pi\)
0.0632121 + 0.998000i \(0.479866\pi\)
\(240\) 0 0
\(241\) −70163.0 + 40508.6i −1.20802 + 0.697451i −0.962326 0.271897i \(-0.912349\pi\)
−0.245694 + 0.969347i \(0.579016\pi\)
\(242\) 3916.23 2261.04i 0.0668710 0.0386080i
\(243\) 2236.58 3873.87i 0.0378767 0.0656043i
\(244\) 17758.4i 0.298280i
\(245\) 0 0
\(246\) −30118.3 −0.497691
\(247\) 33426.3 + 19298.7i 0.547891 + 0.316325i
\(248\) −45540.1 78877.8i −0.740442 1.28248i
\(249\) 28063.3 + 48607.0i 0.452626 + 0.783971i
\(250\) 0 0
\(251\) 9872.20i 0.156699i 0.996926 + 0.0783496i \(0.0249650\pi\)
−0.996926 + 0.0783496i \(0.975035\pi\)
\(252\) 1566.15 54.0523i 0.0246623 0.000851164i
\(253\) 65082.4i 1.01677i
\(254\) −4647.96 + 8050.50i −0.0720435 + 0.124783i
\(255\) 0 0
\(256\) 30979.4 + 53657.9i 0.472708 + 0.818754i
\(257\) 29846.8 51696.2i 0.451889 0.782694i −0.546615 0.837384i \(-0.684084\pi\)
0.998503 + 0.0546901i \(0.0174171\pi\)
\(258\) 21224.8 0.318863
\(259\) −23323.7 12413.6i −0.347694 0.185054i
\(260\) 0 0
\(261\) −1138.26 + 1971.52i −0.0167094 + 0.0289415i
\(262\) 8672.68 + 15021.5i 0.126343 + 0.218832i
\(263\) −48773.6 + 28159.4i −0.705136 + 0.407110i −0.809257 0.587454i \(-0.800130\pi\)
0.104121 + 0.994565i \(0.466797\pi\)
\(264\) 53830.7 + 31079.2i 0.772365 + 0.445925i
\(265\) 0 0
\(266\) 7549.02 + 12091.9i 0.106691 + 0.170896i
\(267\) 1596.71i 0.0223978i
\(268\) 48364.3 + 27923.1i 0.673372 + 0.388771i
\(269\) −34003.8 + 19632.1i −0.469919 + 0.271308i −0.716206 0.697889i \(-0.754123\pi\)
0.246287 + 0.969197i \(0.420789\pi\)
\(270\) 0 0
\(271\) −71447.6 41250.3i −0.972857 0.561679i −0.0727506 0.997350i \(-0.523178\pi\)
−0.900106 + 0.435671i \(0.856511\pi\)
\(272\) 7831.04 0.105848
\(273\) 71802.9 + 115013.i 0.963422 + 1.54320i
\(274\) −22707.2 −0.302456
\(275\) 0 0
\(276\) −45950.4 + 26529.5i −0.603213 + 0.348265i
\(277\) 15424.4 8905.27i 0.201024 0.116061i −0.396109 0.918204i \(-0.629640\pi\)
0.597133 + 0.802142i \(0.296306\pi\)
\(278\) 7499.69 12989.8i 0.0970407 0.168079i
\(279\) 4479.54i 0.0575473i
\(280\) 0 0
\(281\) 141355. 1.79019 0.895095 0.445876i \(-0.147108\pi\)
0.895095 + 0.445876i \(0.147108\pi\)
\(282\) 17230.0 + 9947.73i 0.216664 + 0.125091i
\(283\) 15127.4 + 26201.4i 0.188882 + 0.327154i 0.944878 0.327423i \(-0.106180\pi\)
−0.755996 + 0.654577i \(0.772847\pi\)
\(284\) 25798.0 + 44683.4i 0.319852 + 0.553999i
\(285\) 0 0
\(286\) 83542.1i 1.02135i
\(287\) −2440.71 70719.2i −0.0296315 0.858566i
\(288\) 3205.01i 0.0386406i
\(289\) −41077.7 + 71148.7i −0.491825 + 0.851866i
\(290\) 0 0
\(291\) 22375.3 + 38755.1i 0.264230 + 0.457660i
\(292\) −7260.64 + 12575.8i −0.0851548 + 0.147492i
\(293\) 126488. 1.47337 0.736687 0.676233i \(-0.236389\pi\)
0.736687 + 0.676233i \(0.236389\pi\)
\(294\) 3452.35 + 49956.1i 0.0399412 + 0.577954i
\(295\) 0 0
\(296\) 16827.3 29145.8i 0.192058 0.332653i
\(297\) 41862.4 + 72507.8i 0.474582 + 0.822000i
\(298\) 24537.2 14166.6i 0.276307 0.159526i
\(299\) 156603. + 90414.6i 1.75169 + 1.01134i
\(300\) 0 0
\(301\) 1720.00 + 49836.8i 0.0189844 + 0.550069i
\(302\) 90982.4i 0.997570i
\(303\) 30457.1 + 17584.4i 0.331744 + 0.191533i
\(304\) 2051.68 1184.54i 0.0222005 0.0128175i
\(305\) 0 0
\(306\) −2556.42 1475.95i −0.0273017 0.0157626i
\(307\) 100711. 1.06856 0.534282 0.845306i \(-0.320582\pi\)
0.534282 + 0.845306i \(0.320582\pi\)
\(308\) −27058.4 + 50839.5i −0.285234 + 0.535920i
\(309\) 43382.6 0.454358
\(310\) 0 0
\(311\) −137912. + 79623.3i −1.42587 + 0.823226i −0.996792 0.0800410i \(-0.974495\pi\)
−0.429078 + 0.903267i \(0.641162\pi\)
\(312\) −149567. + 86352.4i −1.53648 + 0.887085i
\(313\) 86242.1 149376.i 0.880300 1.52472i 0.0292920 0.999571i \(-0.490675\pi\)
0.851008 0.525153i \(-0.175992\pi\)
\(314\) 10254.4i 0.104004i
\(315\) 0 0
\(316\) 105620. 1.05772
\(317\) 63763.3 + 36813.7i 0.634530 + 0.366346i 0.782504 0.622645i \(-0.213942\pi\)
−0.147974 + 0.988991i \(0.547275\pi\)
\(318\) −32924.9 57027.6i −0.325589 0.563937i
\(319\) −41832.0 72455.2i −0.411081 0.712013i
\(320\) 0 0
\(321\) 75477.0i 0.732495i
\(322\) 35367.3 + 56650.9i 0.341107 + 0.546380i
\(323\) 50121.2i 0.480415i
\(324\) 32833.4 56869.1i 0.312770 0.541734i
\(325\) 0 0
\(326\) 31618.4 + 54764.7i 0.297512 + 0.515306i
\(327\) −40176.9 + 69588.4i −0.375734 + 0.650791i
\(328\) 90133.2 0.837793
\(329\) −21961.5 + 41262.9i −0.202894 + 0.381214i
\(330\) 0 0
\(331\) 25791.2 44671.7i 0.235405 0.407734i −0.723985 0.689816i \(-0.757692\pi\)
0.959390 + 0.282082i \(0.0910249\pi\)
\(332\) −33119.8 57365.2i −0.300478 0.520442i
\(333\) 1433.46 827.607i 0.0129270 0.00746338i
\(334\) −5711.97 3297.81i −0.0512028 0.0295619i
\(335\) 0 0
\(336\) 8317.25 287.051i 0.0736718 0.00254262i
\(337\) 26290.2i 0.231491i 0.993279 + 0.115746i \(0.0369258\pi\)
−0.993279 + 0.115746i \(0.963074\pi\)
\(338\) 142585. + 82321.3i 1.24807 + 0.720574i
\(339\) −80257.2 + 46336.5i −0.698368 + 0.403203i
\(340\) 0 0
\(341\) 142571. + 82313.5i 1.22609 + 0.707885i
\(342\) −893.022 −0.00763502
\(343\) −117019. + 12154.6i −0.994649 + 0.103312i
\(344\) −63518.0 −0.536760
\(345\) 0 0
\(346\) −14536.8 + 8392.82i −0.121427 + 0.0701061i
\(347\) −48507.3 + 28005.7i −0.402854 + 0.232588i −0.687715 0.725981i \(-0.741386\pi\)
0.284860 + 0.958569i \(0.408053\pi\)
\(348\) −34103.9 + 59069.6i −0.281608 + 0.487759i
\(349\) 97457.4i 0.800136i 0.916485 + 0.400068i \(0.131014\pi\)
−0.916485 + 0.400068i \(0.868986\pi\)
\(350\) 0 0
\(351\) −232626. −1.88819
\(352\) −102006. 58893.4i −0.823270 0.475315i
\(353\) −7762.53 13445.1i −0.0622951 0.107898i 0.833196 0.552978i \(-0.186509\pi\)
−0.895491 + 0.445080i \(0.853175\pi\)
\(354\) 9515.73 + 16481.7i 0.0759339 + 0.131521i
\(355\) 0 0
\(356\) 1884.42i 0.0148688i
\(357\) −82722.1 + 155425.i −0.649061 + 1.21951i
\(358\) 106293.i 0.829349i
\(359\) −271.507 + 470.263i −0.00210665 + 0.00364882i −0.867077 0.498174i \(-0.834004\pi\)
0.864970 + 0.501823i \(0.167337\pi\)
\(360\) 0 0
\(361\) −57579.1 99729.8i −0.441825 0.765263i
\(362\) 72981.1 126407.i 0.556921 0.964615i
\(363\) 16897.2 0.128233
\(364\) −84740.7 135736.i −0.639572 1.02446i
\(365\) 0 0
\(366\) 17774.7 30786.6i 0.132690 0.229826i
\(367\) −88682.9 153603.i −0.658427 1.14043i −0.981023 0.193893i \(-0.937889\pi\)
0.322595 0.946537i \(-0.395445\pi\)
\(368\) 9612.18 5549.59i 0.0709784 0.0409794i
\(369\) 3839.06 + 2216.48i 0.0281950 + 0.0162784i
\(370\) 0 0
\(371\) 131235. 81930.6i 0.953461 0.595248i
\(372\) 134213.i 0.969862i
\(373\) −166006. 95843.8i −1.19318 0.688884i −0.234156 0.972199i \(-0.575232\pi\)
−0.959027 + 0.283315i \(0.908566\pi\)
\(374\) 93950.7 54242.5i 0.671671 0.387790i
\(375\) 0 0
\(376\) −51563.1 29769.9i −0.364723 0.210573i
\(377\) 232457. 1.63554
\(378\) −75841.5 40365.3i −0.530791 0.282504i
\(379\) −150128. −1.04516 −0.522582 0.852589i \(-0.675031\pi\)
−0.522582 + 0.852589i \(0.675031\pi\)
\(380\) 0 0
\(381\) −30081.4 + 17367.5i −0.207228 + 0.119643i
\(382\) 81312.0 46945.5i 0.557221 0.321712i
\(383\) 958.064 1659.42i 0.00653126 0.0113125i −0.862741 0.505646i \(-0.831254\pi\)
0.869273 + 0.494333i \(0.164588\pi\)
\(384\) 102447.i 0.694761i
\(385\) 0 0
\(386\) −173260. −1.16285
\(387\) −2705.43 1561.98i −0.0180640 0.0104293i
\(388\) −26406.9 45738.2i −0.175410 0.303819i
\(389\) −18629.1 32266.5i −0.123110 0.213232i 0.797883 0.602813i \(-0.205953\pi\)
−0.920992 + 0.389580i \(0.872620\pi\)
\(390\) 0 0
\(391\) 234819.i 1.53596i
\(392\) −10331.6 149500.i −0.0672353 0.972904i
\(393\) 64812.6i 0.419637i
\(394\) 83836.6 145209.i 0.540059 0.935409i
\(395\) 0 0
\(396\) −1803.97 3124.56i −0.0115037 0.0199250i
\(397\) −127391. + 220648.i −0.808274 + 1.39997i 0.105785 + 0.994389i \(0.466265\pi\)
−0.914059 + 0.405582i \(0.867069\pi\)
\(398\) 8097.23 0.0511176
\(399\) 1837.22 + 53233.1i 0.0115403 + 0.334377i
\(400\) 0 0
\(401\) −10345.4 + 17918.8i −0.0643368 + 0.111435i −0.896400 0.443247i \(-0.853827\pi\)
0.832063 + 0.554681i \(0.187160\pi\)
\(402\) −55897.4 96817.1i −0.345891 0.599101i
\(403\) −396129. + 228705.i −2.43908 + 1.40820i
\(404\) −35945.0 20752.9i −0.220230 0.127150i
\(405\) 0 0
\(406\) 75786.4 + 40336.0i 0.459769 + 0.244704i
\(407\) 60830.5i 0.367226i
\(408\) −194222. 112134.i −1.16675 0.673625i
\(409\) 76648.2 44252.9i 0.458200 0.264542i −0.253087 0.967444i \(-0.581446\pi\)
0.711287 + 0.702901i \(0.248113\pi\)
\(410\) 0 0
\(411\) −73480.1 42423.8i −0.434997 0.251146i
\(412\) −51199.4 −0.301627
\(413\) −37928.8 + 23679.0i −0.222366 + 0.138824i
\(414\) −4183.83 −0.0244103
\(415\) 0 0
\(416\) 283421. 163633.i 1.63774 0.945551i
\(417\) 48537.8 28023.3i 0.279131 0.161156i
\(418\) 16409.7 28422.4i 0.0939177 0.162670i
\(419\) 208106.i 1.18538i −0.805432 0.592688i \(-0.798067\pi\)
0.805432 0.592688i \(-0.201933\pi\)
\(420\) 0 0
\(421\) −20020.3 −0.112956 −0.0564778 0.998404i \(-0.517987\pi\)
−0.0564778 + 0.998404i \(0.517987\pi\)
\(422\) −16578.2 9571.45i −0.0930923 0.0537468i
\(423\) −1464.16 2535.99i −0.00818289 0.0141732i
\(424\) 98532.2 + 170663.i 0.548083 + 0.949308i
\(425\) 0 0
\(426\) 103286.i 0.569146i
\(427\) 73728.9 + 39240.9i 0.404373 + 0.215220i
\(428\) 89076.8i 0.486270i
\(429\) 156081. 270341.i 0.848080 1.46892i
\(430\) 0 0
\(431\) 12223.5 + 21171.8i 0.0658025 + 0.113973i 0.897050 0.441930i \(-0.145706\pi\)
−0.831247 + 0.555903i \(0.812373\pi\)
\(432\) −7139.24 + 12365.5i −0.0382546 + 0.0662590i
\(433\) −62356.0 −0.332585 −0.166292 0.986076i \(-0.553180\pi\)
−0.166292 + 0.986076i \(0.553180\pi\)
\(434\) −168832. + 5826.85i −0.896345 + 0.0309353i
\(435\) 0 0
\(436\) 47416.1 82127.1i 0.249433 0.432030i
\(437\) 35519.2 + 61521.1i 0.185995 + 0.322152i
\(438\) 25174.6 14534.6i 0.131224 0.0757625i
\(439\) −163500. 94396.7i −0.848376 0.489810i 0.0117263 0.999931i \(-0.496267\pi\)
−0.860103 + 0.510121i \(0.829601\pi\)
\(440\) 0 0
\(441\) 3236.33 6621.76i 0.0166409 0.0340484i
\(442\) 301421.i 1.54287i
\(443\) 250560. + 144661.i 1.27674 + 0.737129i 0.976248 0.216654i \(-0.0695144\pi\)
0.300496 + 0.953783i \(0.402848\pi\)
\(444\) 42948.4 24796.3i 0.217862 0.125783i
\(445\) 0 0
\(446\) 151847. + 87668.9i 0.763372 + 0.440733i
\(447\) 105869. 0.529852
\(448\) 105721. 3648.71i 0.526750 0.0181796i
\(449\) 236914. 1.17516 0.587581 0.809165i \(-0.300080\pi\)
0.587581 + 0.809165i \(0.300080\pi\)
\(450\) 0 0
\(451\) −141089. + 81457.6i −0.693648 + 0.400478i
\(452\) 94718.3 54685.6i 0.463614 0.267668i
\(453\) 169982. 294418.i 0.828337 1.43472i
\(454\) 56450.9i 0.273879i
\(455\) 0 0
\(456\) −67846.7 −0.326287
\(457\) −107036. 61797.0i −0.512502 0.295893i 0.221359 0.975192i \(-0.428951\pi\)
−0.733862 + 0.679299i \(0.762284\pi\)
\(458\) −45181.2 78256.1i −0.215390 0.373067i
\(459\) −151040. 261610.i −0.716915 1.24173i
\(460\) 0 0
\(461\) 74323.1i 0.349721i 0.984593 + 0.174861i \(0.0559475\pi\)
−0.984593 + 0.174861i \(0.944053\pi\)
\(462\) 97795.6 61054.1i 0.458179 0.286043i
\(463\) 24703.3i 0.115237i −0.998339 0.0576186i \(-0.981649\pi\)
0.998339 0.0576186i \(-0.0183507\pi\)
\(464\) 7134.05 12356.5i 0.0331360 0.0573933i
\(465\) 0 0
\(466\) −102841. 178126.i −0.473581 0.820266i
\(467\) 33003.7 57164.2i 0.151332 0.262114i −0.780386 0.625298i \(-0.784977\pi\)
0.931717 + 0.363185i \(0.118311\pi\)
\(468\) 10024.5 0.0457690
\(469\) 222801. 139096.i 1.01291 0.632365i
\(470\) 0 0
\(471\) 19158.3 33183.2i 0.0863605 0.149581i
\(472\) −28477.1 49323.9i −0.127824 0.221398i
\(473\) 99427.1 57404.2i 0.444408 0.256579i
\(474\) −183106. 105716.i −0.814979 0.470528i
\(475\) 0 0
\(476\) 97627.4 183430.i 0.430881 0.809574i
\(477\) 9692.09i 0.0425972i
\(478\) 14775.2 + 8530.48i 0.0646663 + 0.0373351i
\(479\) −299681. + 173021.i −1.30613 + 0.754096i −0.981449 0.191726i \(-0.938592\pi\)
−0.324685 + 0.945822i \(0.605258\pi\)
\(480\) 0 0
\(481\) −146372. 84507.7i −0.632655 0.365264i
\(482\) −191406. −0.823874
\(483\) 8607.41 + 249398.i 0.0368959 + 1.06905i
\(484\) −19941.8 −0.0851281
\(485\) 0 0
\(486\) 9152.14 5283.99i 0.0387481 0.0223712i
\(487\) −180193. + 104034.i −0.759766 + 0.438651i −0.829212 0.558935i \(-0.811210\pi\)
0.0694459 + 0.997586i \(0.477877\pi\)
\(488\) −53193.1 + 92133.2i −0.223365 + 0.386880i
\(489\) 236290.i 0.988161i
\(490\) 0 0
\(491\) 31227.4 0.129531 0.0647653 0.997901i \(-0.479370\pi\)
0.0647653 + 0.997901i \(0.479370\pi\)
\(492\) 115024. + 66408.9i 0.475178 + 0.274344i
\(493\) 150931. + 261420.i 0.620989 + 1.07558i
\(494\) 45593.7 + 78970.6i 0.186832 + 0.323602i
\(495\) 0 0
\(496\) 28075.6i 0.114121i
\(497\) 242521. 8370.08i 0.981832 0.0338857i
\(498\) 132601.i 0.534672i
\(499\) −46479.8 + 80505.4i −0.186665 + 0.323314i −0.944136 0.329555i \(-0.893101\pi\)
0.757471 + 0.652869i \(0.226435\pi\)
\(500\) 0 0
\(501\) −12322.6 21343.3i −0.0490937 0.0850328i
\(502\) −11661.7 + 20198.6i −0.0462758 + 0.0801521i
\(503\) −401841. −1.58825 −0.794123 0.607757i \(-0.792069\pi\)
−0.794123 + 0.607757i \(0.792069\pi\)
\(504\) 8287.35 + 4410.79i 0.0326253 + 0.0173642i
\(505\) 0 0
\(506\) 76879.6 133159.i 0.300269 0.520081i
\(507\) 307601. + 532781.i 1.19666 + 2.07268i
\(508\) 35501.7 20496.9i 0.137569 0.0794256i
\(509\) 241739. + 139568.i 0.933064 + 0.538704i 0.887779 0.460270i \(-0.152247\pi\)
0.0452844 + 0.998974i \(0.485581\pi\)
\(510\) 0 0
\(511\) 36168.0 + 57933.4i 0.138510 + 0.221864i
\(512\) 39300.4i 0.149919i
\(513\) −79143.3 45693.4i −0.300732 0.173628i
\(514\) 122134. 70514.0i 0.462285 0.266900i
\(515\) 0 0
\(516\) −81058.6 46799.2i −0.304439 0.175768i
\(517\) 107618. 0.402628
\(518\) −33056.7 52949.8i −0.123197 0.197335i
\(519\) −62721.1 −0.232851
\(520\) 0 0
\(521\) −213004. + 122978.i −0.784715 + 0.453056i −0.838099 0.545518i \(-0.816333\pi\)
0.0533834 + 0.998574i \(0.482999\pi\)
\(522\) −4657.78 + 2689.17i −0.0170938 + 0.00986910i
\(523\) −140056. + 242584.i −0.512034 + 0.886869i 0.487869 + 0.872917i \(0.337774\pi\)
−0.999903 + 0.0139516i \(0.995559\pi\)
\(524\) 76490.8i 0.278578i
\(525\) 0 0
\(526\) −133055. −0.480905
\(527\) −514399. 296989.i −1.85216 1.06935i
\(528\) −9580.19 16593.4i −0.0343642 0.0595205i
\(529\) 26487.6 + 45877.8i 0.0946522 + 0.163942i
\(530\) 0 0
\(531\) 2801.15i 0.00993451i
\(532\) −2168.26 62824.9i −0.00766104 0.221977i
\(533\) 452654.i 1.59335i
\(534\) −1886.14 + 3266.90i −0.00661443 + 0.0114565i
\(535\) 0 0
\(536\) 167281. + 289739.i 0.582259 + 1.00850i
\(537\) 198586. 343961.i 0.688653 1.19278i
\(538\) −92762.8 −0.320486
\(539\) 151283. + 224681.i 0.520730 + 0.773373i
\(540\) 0 0
\(541\) −96042.2 + 166350.i −0.328146 + 0.568366i −0.982144 0.188130i \(-0.939757\pi\)
0.653998 + 0.756496i \(0.273091\pi\)
\(542\) −97455.0 168797.i −0.331746 0.574601i
\(543\) 472331. 272701.i 1.60194 0.924883i
\(544\) 368041. + 212489.i 1.24365 + 0.718022i
\(545\) 0 0
\(546\) 11048.8 + 320136.i 0.0370620 + 1.07386i
\(547\) 103731.i 0.346685i 0.984862 + 0.173342i \(0.0554567\pi\)
−0.984862 + 0.173342i \(0.944543\pi\)
\(548\) 86720.1 + 50067.9i 0.288774 + 0.166724i
\(549\) −4531.33 + 2616.16i −0.0150342 + 0.00868001i
\(550\) 0 0
\(551\) 79085.8 + 45660.2i 0.260493 + 0.150396i
\(552\) −317863. −1.04319
\(553\) 233389. 438509.i 0.763184 1.43393i
\(554\) 42078.0 0.137099
\(555\) 0 0
\(556\) −57283.5 + 33072.6i −0.185302 + 0.106984i
\(557\) 46316.6 26740.9i 0.149289 0.0861918i −0.423495 0.905898i \(-0.639197\pi\)
0.572784 + 0.819707i \(0.305864\pi\)
\(558\) 5291.53 9165.19i 0.0169947 0.0294356i
\(559\) 318991.i 1.02083i
\(560\) 0 0
\(561\) 405364. 1.28801
\(562\) 289214. + 166978.i 0.915687 + 0.528672i
\(563\) 1221.39 + 2115.51i 0.00385334 + 0.00667417i 0.867946 0.496659i \(-0.165440\pi\)
−0.864092 + 0.503333i \(0.832107\pi\)
\(564\) −43868.2 75981.9i −0.137909 0.238865i
\(565\) 0 0
\(566\) 71477.9i 0.223120i
\(567\) −163555. 261981.i −0.508744 0.814899i
\(568\) 309099.i 0.958077i
\(569\) −312029. + 540450.i −0.963763 + 1.66929i −0.250860 + 0.968023i \(0.580714\pi\)
−0.712903 + 0.701263i \(0.752620\pi\)
\(570\) 0 0
\(571\) −38637.1 66921.3i −0.118504 0.205254i 0.800671 0.599104i \(-0.204476\pi\)
−0.919175 + 0.393850i \(0.871143\pi\)
\(572\) −184205. + 319052.i −0.563001 + 0.975146i
\(573\) 350832. 1.06854
\(574\) 78544.4 147575.i 0.238392 0.447910i
\(575\) 0 0
\(576\) −3313.50 + 5739.15i −0.00998715 + 0.0172983i
\(577\) −275875. 477830.i −0.828631 1.43523i −0.899112 0.437718i \(-0.855787\pi\)
0.0704812 0.997513i \(-0.477547\pi\)
\(578\) −168091. + 97047.3i −0.503140 + 0.290488i
\(579\) −560666. 323701.i −1.67243 0.965576i
\(580\) 0 0
\(581\) −311353. + 10745.6i −0.922360 + 0.0318332i
\(582\) 105724.i 0.312126i
\(583\) −308472. 178096.i −0.907567 0.523984i
\(584\) −75338.5 + 43496.7i −0.220898 + 0.127535i
\(585\) 0 0
\(586\) 258795. + 149416.i 0.753635 + 0.435112i
\(587\) 45284.3 0.131423 0.0657115 0.997839i \(-0.479068\pi\)
0.0657115 + 0.997839i \(0.479068\pi\)
\(588\) 96965.1 198397.i 0.280453 0.573827i
\(589\) −179693. −0.517964
\(590\) 0 0
\(591\) 542588. 313263.i 1.55344 0.896880i
\(592\) −8984.21 + 5187.03i −0.0256352 + 0.0148005i
\(593\) −17416.4 + 30166.0i −0.0495277 + 0.0857844i −0.889726 0.456494i \(-0.849105\pi\)
0.840199 + 0.542279i \(0.182438\pi\)
\(594\) 197802.i 0.560607i
\(595\) 0 0
\(596\) −124945. −0.351745
\(597\) 26202.5 + 15128.0i 0.0735181 + 0.0424457i
\(598\) 213607. + 369979.i 0.597329 + 1.03460i
\(599\) −53294.7 92309.1i −0.148535 0.257271i 0.782151 0.623089i \(-0.214123\pi\)
−0.930686 + 0.365818i \(0.880789\pi\)
\(600\) 0 0
\(601\) 112464.i 0.311362i 0.987807 + 0.155681i \(0.0497573\pi\)
−0.987807 + 0.155681i \(0.950243\pi\)
\(602\) −55351.3 + 103998.i −0.152734 + 0.286968i
\(603\) 16454.5i 0.0452533i
\(604\) −200610. + 347467.i −0.549894 + 0.952445i
\(605\) 0 0
\(606\) 41543.8 + 71955.9i 0.113125 + 0.195939i
\(607\) 166739. 288800.i 0.452542 0.783826i −0.546001 0.837784i \(-0.683851\pi\)
0.998543 + 0.0539585i \(0.0171839\pi\)
\(608\) 128566. 0.347792
\(609\) 169884. + 272118.i 0.458056 + 0.733707i
\(610\) 0 0
\(611\) −149506. + 258953.i −0.400477 + 0.693646i
\(612\) 6508.75 + 11273.5i 0.0173778 + 0.0300992i
\(613\) 281175. 162337.i 0.748266 0.432012i −0.0768010 0.997046i \(-0.524471\pi\)
0.825067 + 0.565035i \(0.191137\pi\)
\(614\) 206056. + 118967.i 0.546574 + 0.315564i
\(615\) 0 0
\(616\) −292667. + 182713.i −0.771280 + 0.481512i
\(617\) 54190.8i 0.142349i 0.997464 + 0.0711747i \(0.0226748\pi\)
−0.997464 + 0.0711747i \(0.977325\pi\)
\(618\) 88761.2 + 51246.3i 0.232405 + 0.134179i
\(619\) 27588.2 15928.1i 0.0720016 0.0415702i −0.463567 0.886062i \(-0.653431\pi\)
0.535569 + 0.844492i \(0.320097\pi\)
\(620\) 0 0
\(621\) −370788. 214074.i −0.961484 0.555113i
\(622\) −376225. −0.972449
\(623\) −7823.68 4164.01i −0.0201574 0.0107284i
\(624\) 53236.4 0.136722
\(625\) 0 0
\(626\) 352905. 203750.i 0.900552 0.519934i
\(627\) 106203. 61316.3i 0.270148 0.155970i
\(628\) −22610.3 + 39162.3i −0.0573308 + 0.0992998i
\(629\) 219478.i 0.554740i
\(630\) 0 0
\(631\) 83642.3 0.210071 0.105036 0.994468i \(-0.466504\pi\)
0.105036 + 0.994468i \(0.466504\pi\)
\(632\) 547970. + 316371.i 1.37190 + 0.792068i
\(633\) −35764.6 61946.1i −0.0892578 0.154599i
\(634\) 86973.6 + 150643.i 0.216376 + 0.374774i
\(635\) 0 0
\(636\) 290389.i 0.717903i
\(637\) −750799. + 51886.1i −1.85031 + 0.127871i
\(638\) 197659.i 0.485596i
\(639\) −7601.10 + 13165.5i −0.0186155 + 0.0322430i
\(640\) 0 0
\(641\) −142082. 246094.i −0.345799 0.598942i 0.639699 0.768625i \(-0.279059\pi\)
−0.985499 + 0.169683i \(0.945726\pi\)
\(642\) 89158.4 154427.i 0.216318 0.374673i
\(643\) −121681. −0.294307 −0.147153 0.989114i \(-0.547011\pi\)
−0.147153 + 0.989114i \(0.547011\pi\)
\(644\) −10158.3 294336.i −0.0244935 0.709694i
\(645\) 0 0
\(646\) −59206.4 + 102549.i −0.141874 + 0.245733i
\(647\) 288279. + 499313.i 0.688659 + 1.19279i 0.972272 + 0.233853i \(0.0751335\pi\)
−0.283613 + 0.958939i \(0.591533\pi\)
\(648\) 340689. 196697.i 0.811350 0.468433i
\(649\) 89152.6 + 51472.3i 0.211663 + 0.122204i
\(650\) 0 0
\(651\) −557224. 296572.i −1.31482 0.699792i
\(652\) 278866.i 0.655995i
\(653\) 377668. + 218047.i 0.885694 + 0.511355i 0.872531 0.488558i \(-0.162477\pi\)
0.0131622 + 0.999913i \(0.495810\pi\)
\(654\) −164405. + 94919.1i −0.384378 + 0.221921i
\(655\) 0 0
\(656\) −24061.3 13891.8i −0.0559129 0.0322813i
\(657\) −4278.54 −0.00991208
\(658\) −93675.9 + 58482.1i −0.216359 + 0.135074i
\(659\) 378597. 0.871779 0.435890 0.900000i \(-0.356434\pi\)
0.435890 + 0.900000i \(0.356434\pi\)
\(660\) 0 0
\(661\) 651728. 376275.i 1.49164 0.861197i 0.491684 0.870774i \(-0.336382\pi\)
0.999954 + 0.00957646i \(0.00304833\pi\)
\(662\) 105538. 60932.6i 0.240821 0.139038i
\(663\) −563145. + 975395.i −1.28113 + 2.21898i
\(664\) 396826.i 0.900044i
\(665\) 0 0
\(666\) 3910.49 0.00881623
\(667\) 370519. + 213919.i 0.832834 + 0.480837i
\(668\) 14542.9 + 25189.1i 0.0325911 + 0.0564494i
\(669\) 327583. + 567390.i 0.731929 + 1.26774i
\(670\) 0 0
\(671\) 192293.i 0.427088i
\(672\) 398681. + 212191.i 0.882850 + 0.469881i
\(673\) 97686.9i 0.215678i 0.994168 + 0.107839i \(0.0343931\pi\)
−0.994168 + 0.107839i \(0.965607\pi\)
\(674\) −31055.8 + 53790.1i −0.0683632 + 0.118408i
\(675\) 0 0
\(676\) −363026. 628779.i −0.794409 1.37596i
\(677\) −207216. + 358909.i −0.452112 + 0.783082i −0.998517 0.0544397i \(-0.982663\pi\)
0.546405 + 0.837521i \(0.315996\pi\)
\(678\) −218943. −0.476290
\(679\) −248246. + 8567.66i −0.538447 + 0.0185833i
\(680\) 0 0
\(681\) 105467. 182674.i 0.227417 0.393897i
\(682\) 194468. + 336829.i 0.418100 + 0.724170i
\(683\) 555211. 320551.i 1.19019 0.687157i 0.231840 0.972754i \(-0.425525\pi\)
0.958350 + 0.285597i \(0.0921919\pi\)
\(684\) 3410.51 + 1969.06i 0.00728965 + 0.00420868i
\(685\) 0 0
\(686\) −253781. 113363.i −0.539276 0.240891i
\(687\) 337647.i 0.715401i
\(688\) 16956.3 + 9789.75i 0.0358224 + 0.0206821i
\(689\) 857079. 494835.i 1.80544 1.04237i
\(690\) 0 0
\(691\) 510907. + 294973.i 1.07001 + 0.617768i 0.928183 0.372124i \(-0.121370\pi\)
0.141823 + 0.989892i \(0.454704\pi\)
\(692\) 74022.5 0.154579
\(693\) −16958.7 + 585.292i −0.0353124 + 0.00121873i
\(694\) −132329. −0.274748
\(695\) 0 0
\(696\) −353872. + 204308.i −0.730512 + 0.421761i
\(697\) 509050. 293900.i 1.04784 0.604971i
\(698\) −115123. + 199399.i −0.236293 + 0.409272i
\(699\) 768549.i 1.57296i
\(700\) 0 0
\(701\) 726881. 1.47920 0.739601 0.673046i \(-0.235014\pi\)
0.739601 + 0.673046i \(0.235014\pi\)
\(702\) −475956. 274794.i −0.965813 0.557612i
\(703\) −33198.7 57501.8i −0.0671754 0.116351i
\(704\) −121774. 210919.i −0.245702 0.425569i
\(705\) 0 0
\(706\) 36678.4i 0.0735870i
\(707\) −165589. + 103378.i −0.331279 + 0.206818i
\(708\) 83926.3i 0.167429i
\(709\) −27376.8 + 47418.0i −0.0544616 + 0.0943302i −0.891971 0.452093i \(-0.850678\pi\)
0.837509 + 0.546423i \(0.184011\pi\)
\(710\) 0 0
\(711\) 15559.9 + 26950.5i 0.0307798 + 0.0533123i
\(712\) 5644.54 9776.63i 0.0111344 0.0192854i
\(713\) −841864. −1.65601
\(714\) −352848. + 220284.i −0.692136 + 0.432103i
\(715\) 0 0
\(716\) −234368. + 405938.i −0.457165 + 0.791833i
\(717\) 31874.9 + 55209.0i 0.0620027 + 0.107392i
\(718\) −1111.01 + 641.443i −0.00215511 + 0.00124425i
\(719\) −729749. 421321.i −1.41161 0.814996i −0.416073 0.909331i \(-0.636594\pi\)
−0.995540 + 0.0943355i \(0.969927\pi\)
\(720\) 0 0
\(721\) −113136. + 212568.i −0.217635 + 0.408911i
\(722\) 272065.i 0.521912i
\(723\) −619386. 357603.i −1.18491 0.684107i
\(724\) −557438. + 321837.i −1.06346 + 0.613987i
\(725\) 0 0
\(726\) 34571.8 + 19960.0i 0.0655916 + 0.0378693i
\(727\) −163904. −0.310113 −0.155057 0.987906i \(-0.549556\pi\)
−0.155057 + 0.987906i \(0.549556\pi\)
\(728\) −33065.0 958051.i −0.0623886 1.80770i
\(729\) 550026. 1.03497
\(730\) 0 0
\(731\) −358735. + 207116.i −0.671334 + 0.387595i
\(732\) −135765. + 78383.9i −0.253376 + 0.146287i
\(733\) 285664. 494785.i 0.531677 0.920892i −0.467639 0.883920i \(-0.654895\pi\)
0.999316 0.0369727i \(-0.0117715\pi\)
\(734\) 419032.i 0.777777i
\(735\) 0 0
\(736\) 602334. 1.11194
\(737\) −523701. 302359.i −0.964158 0.556657i
\(738\) 5236.50 + 9069.89i 0.00961454 + 0.0166529i
\(739\) −443959. 768959.i −0.812931 1.40804i −0.910804 0.412839i \(-0.864537\pi\)
0.0978725 0.995199i \(-0.468796\pi\)
\(740\) 0 0
\(741\) 340730.i 0.620546i
\(742\) 365291. 12607.2i 0.663485 0.0228987i
\(743\) 1.05528e6i 1.91157i 0.294074 + 0.955783i \(0.404989\pi\)
−0.294074 + 0.955783i \(0.595011\pi\)
\(744\) 402020. 696319.i 0.726276 1.25795i
\(745\) 0 0
\(746\) −226434. 392195.i −0.406877 0.704732i
\(747\) 9758.41 16902.1i 0.0174879 0.0302899i
\(748\) −478404. −0.855051
\(749\) 369827. + 196834.i 0.659227 + 0.350862i
\(750\) 0 0
\(751\) −323750. + 560751.i −0.574023 + 0.994237i 0.422124 + 0.906538i \(0.361285\pi\)
−0.996147 + 0.0876993i \(0.972049\pi\)
\(752\) 9176.61 + 15894.4i 0.0162273 + 0.0281065i
\(753\) −75474.1 + 43575.0i −0.133109 + 0.0768506i
\(754\) 475611. + 274594.i 0.836583 + 0.483001i
\(755\) 0 0
\(756\) 200640. + 321383.i 0.351055 + 0.562314i
\(757\) 131510.i 0.229491i 0.993395 + 0.114745i \(0.0366052\pi\)
−0.993395 + 0.114745i \(0.963395\pi\)
\(758\) −307165. 177342.i −0.534605 0.308654i
\(759\) 497563. 287268.i 0.863702 0.498659i
\(760\) 0 0
\(761\) 21820.4 + 12598.0i 0.0376784 + 0.0217536i 0.518721 0.854944i \(-0.326408\pi\)
−0.481042 + 0.876697i \(0.659742\pi\)
\(762\) −82062.6 −0.141330
\(763\) −236198. 378338.i −0.405720 0.649877i
\(764\) −414047. −0.709354
\(765\) 0 0
\(766\) 3920.42 2263.46i 0.00668152 0.00385758i
\(767\) −247707. + 143014.i −0.421064 + 0.243101i
\(768\) −273480. + 473682.i −0.463664 + 0.803090i
\(769\) 319994.i 0.541115i −0.962704 0.270557i \(-0.912792\pi\)
0.962704 0.270557i \(-0.0872080\pi\)
\(770\) 0 0
\(771\) 526964. 0.886487
\(772\) 661689. + 382026.i 1.11025 + 0.641001i
\(773\) 413601. + 716378.i 0.692186 + 1.19890i 0.971120 + 0.238591i \(0.0766856\pi\)
−0.278934 + 0.960310i \(0.589981\pi\)
\(774\) −3690.23 6391.67i −0.00615987 0.0106692i
\(775\) 0 0
\(776\) 316395.i 0.525420i
\(777\) −8045.08 233105.i −0.0133257 0.386108i
\(778\) 88023.6i 0.145425i
\(779\) 88912.1 154000.i 0.146516 0.253774i
\(780\) 0 0
\(781\) −279347. 483843.i −0.457975 0.793236i
\(782\) −277383. + 480442.i −0.453593 + 0.785646i
\(783\) −550389. −0.897731
\(784\) −20283.7 + 41502.0i −0.0330002 + 0.0675206i
\(785\) 0 0
\(786\) −76560.8 + 132607.i −0.123926 + 0.214646i
\(787\) 73573.4 + 127433.i 0.118788 + 0.205746i 0.919287 0.393587i \(-0.128766\pi\)
−0.800500 + 0.599333i \(0.795433\pi\)
\(788\) −640354. + 369708.i −1.03126 + 0.595397i
\(789\) −430564. 248586.i −0.691646 0.399322i
\(790\) 0 0
\(791\) −17742.6 514088.i −0.0283573 0.821646i
\(792\) 21614.3i 0.0344580i
\(793\) 462698. + 267139.i 0.735786 + 0.424806i
\(794\) −521288. + 300966.i −0.826869 + 0.477393i
\(795\) 0 0
\(796\) −30923.8 17853.9i −0.0488053 0.0281777i
\(797\) −85804.0 −0.135080 −0.0675400 0.997717i \(-0.521515\pi\)
−0.0675400 + 0.997717i \(0.521515\pi\)
\(798\) −59123.4 + 111086.i −0.0928440 + 0.174443i
\(799\) −388288. −0.608219
\(800\) 0 0
\(801\) 480.838 277.612i 0.000749434 0.000432686i
\(802\) −42333.7 + 24441.4i −0.0658169 + 0.0379994i
\(803\) 78620.1 136174.i 0.121928 0.211185i
\(804\) 493000.i 0.762667i
\(805\) 0 0
\(806\) −1.08065e6 −1.66346
\(807\) −300179. 173308.i −0.460928 0.266117i
\(808\) −124325. 215338.i −0.190431 0.329836i
\(809\) 189747. + 328652.i 0.289920 + 0.502156i 0.973790 0.227447i \(-0.0730379\pi\)
−0.683870 + 0.729604i \(0.739705\pi\)
\(810\) 0 0
\(811\) 686920.i 1.04439i −0.852825 0.522197i \(-0.825112\pi\)
0.852825 0.522197i \(-0.174888\pi\)
\(812\) −200495. 321150.i −0.304082 0.487074i
\(813\) 728299.i 1.10187i
\(814\) −71857.0 + 124460.i −0.108448 + 0.187837i
\(815\) 0 0
\(816\) 34565.5 + 59869.2i 0.0519113 + 0.0899131i
\(817\) −62657.5 + 108526.i −0.0938705 + 0.162589i
\(818\) 209097. 0.312494
\(819\) 22151.3 41619.5i 0.0330241 0.0620482i
\(820\) 0 0
\(821\) 407240. 705361.i 0.604177 1.04647i −0.388004 0.921658i \(-0.626835\pi\)
0.992181 0.124808i \(-0.0398314\pi\)
\(822\) −100227. 173599.i −0.148335 0.256923i
\(823\) 158119. 91290.1i 0.233445 0.134780i −0.378715 0.925513i \(-0.623634\pi\)
0.612160 + 0.790734i \(0.290301\pi\)
\(824\) −265630. 153362.i −0.391222 0.225872i
\(825\) 0 0
\(826\) −105574. + 3643.65i −0.154738 + 0.00534043i
\(827\) 1.07962e6i 1.57855i −0.614040 0.789275i \(-0.710457\pi\)
0.614040 0.789275i \(-0.289543\pi\)
\(828\) 15978.3 + 9225.06i 0.0233061 + 0.0134558i
\(829\) 1.00399e6 579653.i 1.46090 0.843450i 0.461845 0.886961i \(-0.347188\pi\)
0.999053 + 0.0435111i \(0.0138544\pi\)
\(830\) 0 0
\(831\) 136164. + 78614.1i 0.197178 + 0.113841i
\(832\) 676689. 0.977558
\(833\) −545832. 810654.i −0.786627 1.16828i
\(834\) 132412. 0.190368
\(835\) 0 0
\(836\) −125339. + 72364.5i −0.179339 + 0.103541i
\(837\) 937914. 541505.i 1.33879 0.772950i
\(838\) 245828. 425787.i 0.350061 0.606324i
\(839\) 652032.i 0.926286i 0.886284 + 0.463143i \(0.153278\pi\)
−0.886284 + 0.463143i \(0.846722\pi\)
\(840\) 0 0
\(841\) −157292. −0.222389
\(842\) −40961.9 23649.3i −0.0577771 0.0333576i
\(843\) 623929. + 1.08068e6i 0.877970 + 1.52069i
\(844\) 42208.9 + 73107.9i 0.0592541 + 0.102631i
\(845\) 0 0
\(846\) 6918.22i 0.00966616i
\(847\) −44065.5 + 82793.7i −0.0614231 + 0.115407i
\(848\) 60745.3i 0.0844736i
\(849\) −133542. + 231301.i −0.185269 + 0.320895i
\(850\) 0 0
\(851\) −155536. 269397.i −0.214770 0.371992i
\(852\) −227740. + 394457.i −0.313732 + 0.543400i
\(853\) −440903. −0.605962 −0.302981 0.952997i \(-0.597982\pi\)
−0.302981 + 0.952997i \(0.597982\pi\)
\(854\) 104496. + 167381.i 0.143280 + 0.229504i
\(855\) 0 0
\(856\) −266819. + 462144.i −0.364140 + 0.630710i
\(857\) 572878. + 992254.i 0.780011 + 1.35102i 0.931935 + 0.362626i \(0.118120\pi\)
−0.151924 + 0.988392i \(0.548547\pi\)
\(858\) 638689. 368747.i 0.867590 0.500904i
\(859\) −66164.8 38200.3i −0.0896687 0.0517703i 0.454495 0.890749i \(-0.349820\pi\)
−0.544164 + 0.838979i \(0.683153\pi\)
\(860\) 0 0
\(861\) 529883. 330808.i 0.714782 0.446241i
\(862\) 57756.9i 0.0777301i
\(863\) 483775. + 279307.i 0.649563 + 0.375026i 0.788289 0.615305i \(-0.210967\pi\)
−0.138725 + 0.990331i \(0.544301\pi\)
\(864\) −671056. + 387434.i −0.898941 + 0.519004i
\(865\) 0 0
\(866\) −127581. 73658.9i −0.170118 0.0982177i
\(867\) −725253. −0.964831
\(868\) 657627. + 350010.i 0.872851 + 0.464559i
\(869\) −1.14368e6 −1.51448
\(870\) 0 0
\(871\) 1.45508e6 840093.i 1.91801 1.10737i
\(872\) 492004. 284058.i 0.647046 0.373572i
\(873\) 7780.53 13476.3i 0.0102089 0.0176824i
\(874\) 167830.i 0.219709i
\(875\) 0 0
\(876\) −128191. −0.167051
\(877\) −1.32839e6 766947.i −1.72714 0.997163i −0.901202 0.433399i \(-0.857314\pi\)
−0.825936 0.563764i \(-0.809353\pi\)
\(878\) −223015. 386274.i −0.289298 0.501079i
\(879\) 558305. + 967013.i 0.722593 + 1.25157i
\(880\) 0 0
\(881\) 1.04666e6i 1.34851i 0.738498 + 0.674256i \(0.235536\pi\)
−0.738498 + 0.674256i \(0.764464\pi\)
\(882\) 14443.6 9725.23i 0.0185669 0.0125015i
\(883\) 554282.i 0.710901i 0.934695 + 0.355450i \(0.115673\pi\)
−0.934695 + 0.355450i \(0.884327\pi\)
\(884\) 664615. 1.15115e6i 0.850482 1.47308i
\(885\) 0 0
\(886\) 341766. + 591955.i 0.435372 + 0.754087i
\(887\) 82488.6 142874.i 0.104845 0.181596i −0.808830 0.588043i \(-0.799899\pi\)
0.913675 + 0.406446i \(0.133232\pi\)
\(888\) 297097. 0.376766
\(889\) −6650.16 192687.i −0.00841450 0.243809i
\(890\) 0 0
\(891\) −355528. + 615793.i −0.447836 + 0.775674i
\(892\) −386608. 669625.i −0.485894 0.841593i
\(893\) −101729. + 58733.3i −0.127568 + 0.0736514i
\(894\) 216610. + 125060.i 0.271021 + 0.156474i
\(895\) 0 0
\(896\) −501974. 267167.i −0.625267 0.332787i
\(897\) 1.59633e6i 1.98398i
\(898\) 484729. + 279858.i 0.601099 + 0.347045i
\(899\) −937232. + 541111.i −1.15965 + 0.669526i
\(900\) 0 0
\(901\) 1.11297e6 + 642575.i 1.37099 + 0.791543i
\(902\) −384892. −0.473070
\(903\) −373416. + 233125.i −0.457949 + 0.285899i
\(904\) 655217. 0.801767
\(905\) 0 0
\(906\) 695571. 401588.i 0.847393 0.489243i
\(907\) −168830. + 97474.0i −0.205227 + 0.118488i −0.599091 0.800681i \(-0.704471\pi\)
0.393864 + 0.919169i \(0.371138\pi\)
\(908\) −124471. + 215589.i −0.150971 + 0.261490i
\(909\) 12229.2i 0.0148003i
\(910\) 0 0
\(911\) −1.42407e6 −1.71591 −0.857955 0.513726i \(-0.828265\pi\)
−0.857955 + 0.513726i \(0.828265\pi\)
\(912\) 18111.9 + 10456.9i 0.0217758 + 0.0125723i
\(913\) 358630. + 621166.i 0.430234 + 0.745188i
\(914\) −145997. 252875.i −0.174764 0.302701i
\(915\) 0 0
\(916\) 398486.i 0.474922i
\(917\) −317572. 169022.i −0.377663 0.201004i
\(918\) 713675.i 0.846867i
\(919\) −616265. + 1.06740e6i −0.729687 + 1.26385i 0.227329 + 0.973818i \(0.427001\pi\)
−0.957016 + 0.290037i \(0.906333\pi\)
\(920\) 0 0
\(921\) 444529. + 769948.i 0.524060 + 0.907699i
\(922\) −87795.3 + 152066.i −0.103278 + 0.178883i
\(923\) 1.55231e6 1.82211
\(924\) −508107. + 17536.2i −0.595130 + 0.0205396i
\(925\) 0 0
\(926\) 29181.1 50543.2i 0.0340314 0.0589442i
\(927\) −7542.69 13064.3i −0.00877741 0.0152029i
\(928\) 670568. 387153.i 0.778659 0.449559i
\(929\) 310706. + 179386.i 0.360013 + 0.207854i 0.669087 0.743184i \(-0.266685\pi\)
−0.309073 + 0.951038i \(0.600019\pi\)
\(930\) 0 0
\(931\) −265626. 129823.i −0.306458 0.149779i
\(932\) 907030.i 1.04421i
\(933\) −1.21746e6 702900.i −1.39859 0.807477i
\(934\) 135052. 77972.4i 0.154813 0.0893813i
\(935\) 0 0
\(936\) 52008.7 + 30027.2i 0.0593641 + 0.0342739i
\(937\) 941678. 1.07256 0.536282 0.844039i \(-0.319828\pi\)
0.536282 + 0.844039i \(0.319828\pi\)
\(938\) 620163. 21403.5i 0.704856 0.0243265i
\(939\) 1.52266e6 1.72692
\(940\) 0 0
\(941\) −700931. + 404683.i −0.791583 + 0.457020i −0.840519 0.541781i \(-0.817750\pi\)
0.0489369 + 0.998802i \(0.484417\pi\)
\(942\) 78396.2 45262.1i 0.0883473 0.0510074i
\(943\) 416555. 721494.i 0.468434 0.811352i
\(944\) 17556.2i 0.0197009i
\(945\) 0 0
\(946\) 271239. 0.303088
\(947\) 982974. + 567520.i 1.09608 + 0.632822i 0.935188 0.354150i \(-0.115230\pi\)
0.160891 + 0.986972i \(0.448563\pi\)
\(948\) 466195. + 807474.i 0.518742 + 0.898487i
\(949\) 218443. + 378354.i 0.242552 + 0.420113i
\(950\) 0 0
\(951\) 649970.i 0.718674i
\(952\) 1.05595e6 659231.i 1.16511 0.727384i
\(953\) 175576.i 0.193322i −0.995317 0.0966608i \(-0.969184\pi\)
0.995317 0.0966608i \(-0.0308162\pi\)
\(954\) −11448.9 + 19830.1i −0.0125796 + 0.0217886i
\(955\) 0 0
\(956\) −37618.3 65156.8i −0.0411607 0.0712925i
\(957\) 369285. 639621.i 0.403216 0.698391i
\(958\) −817533. −0.890788
\(959\) 399497. 249407.i 0.434386 0.271189i
\(960\) 0 0
\(961\) 602993. 1.04441e6i 0.652928 1.13091i
\(962\) −199652. 345808.i −0.215737 0.373667i
\(963\) −22729.3 + 13122.8i −0.0245095 + 0.0141505i
\(964\) 730990. + 422037.i 0.786606 + 0.454147i
\(965\) 0 0
\(966\) −276994. + 520439.i −0.296836 + 0.557719i
\(967\) 406655.i 0.434884i −0.976073 0.217442i \(-0.930229\pi\)
0.976073 0.217442i \(-0.0697712\pi\)
\(968\) −103461. 59733.1i −0.110414 0.0637477i
\(969\) −383182. + 221230.i −0.408092 + 0.235612i
\(970\) 0 0
\(971\) −593480. 342646.i −0.629459 0.363418i 0.151084 0.988521i \(-0.451724\pi\)
−0.780543 + 0.625103i \(0.785057\pi\)
\(972\) −46603.4 −0.0493270
\(973\) 10730.3 + 310909.i 0.0113341 + 0.328404i
\(974\) −491569. −0.518163
\(975\) 0 0
\(976\) 28400.1 16396.8i 0.0298140 0.0172131i
\(977\) −1.15497e6 + 666825.i −1.20999 + 0.698590i −0.962758 0.270365i \(-0.912856\pi\)
−0.247236 + 0.968955i \(0.579522\pi\)
\(978\) −279121. + 483452.i −0.291820 + 0.505447i
\(979\) 20405.0i 0.0212897i
\(980\) 0 0
\(981\) 27941.3 0.0290341
\(982\) 63891.5 + 36887.8i 0.0662553 + 0.0382525i
\(983\) −511263. 885533.i −0.529099 0.916427i −0.999424 0.0339336i \(-0.989197\pi\)
0.470325 0.882493i \(-0.344137\pi\)
\(984\) 397839. + 689078.i 0.410882 + 0.711669i
\(985\) 0 0
\(986\) 713157.i 0.733552i
\(987\) −412396. + 14232.9i −0.423331 + 0.0146103i
\(988\) 402124.i 0.411952i
\(989\) −293552. + 508446.i −0.300118 + 0.519820i
\(990\) 0 0
\(991\) −683213. 1.18336e6i −0.695679 1.20495i −0.969951 0.243300i \(-0.921770\pi\)
0.274272 0.961652i \(-0.411563\pi\)
\(992\) −761807. + 1.31949e6i −0.774144 + 1.34086i
\(993\) 455361. 0.461803
\(994\) 506089. + 269357.i 0.512217 + 0.272618i
\(995\) 0 0
\(996\) 292376. 506410.i 0.294729 0.510485i
\(997\) −190668. 330246.i −0.191817 0.332237i 0.754035 0.656834i \(-0.228105\pi\)
−0.945852 + 0.324597i \(0.894771\pi\)
\(998\) −190196. + 109810.i −0.190960 + 0.110251i
\(999\) 346564. + 200089.i 0.347258 + 0.200490i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.5.j.b.124.14 40
5.2 odd 4 175.5.i.b.26.4 20
5.3 odd 4 35.5.h.a.26.7 20
5.4 even 2 inner 175.5.j.b.124.7 40
7.3 odd 6 inner 175.5.j.b.24.7 40
35.3 even 12 35.5.h.a.31.7 yes 20
35.17 even 12 175.5.i.b.101.4 20
35.23 odd 12 245.5.d.a.146.7 20
35.24 odd 6 inner 175.5.j.b.24.14 40
35.33 even 12 245.5.d.a.146.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.5.h.a.26.7 20 5.3 odd 4
35.5.h.a.31.7 yes 20 35.3 even 12
175.5.i.b.26.4 20 5.2 odd 4
175.5.i.b.101.4 20 35.17 even 12
175.5.j.b.24.7 40 7.3 odd 6 inner
175.5.j.b.24.14 40 35.24 odd 6 inner
175.5.j.b.124.7 40 5.4 even 2 inner
175.5.j.b.124.14 40 1.1 even 1 trivial
245.5.d.a.146.7 20 35.23 odd 12
245.5.d.a.146.8 20 35.33 even 12