gp: [N,k,chi] = [175,6,Mod(99,175)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0]))
N = Newforms(chi, 6, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("175.99");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 29 x 2 + 196 x^{4} + 29x^{2} + 196 x 4 + 2 9 x 2 + 1 9 6
x^4 + 29*x^2 + 196
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 15 ν ) / 14 ( \nu^{3} + 15\nu ) / 14 ( ν 3 + 1 5 ν ) / 1 4
(v^3 + 15*v) / 14
β 3 \beta_{3} β 3 = = =
ν 2 + 15 \nu^{2} + 15 ν 2 + 1 5
v^2 + 15
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 15 \beta_{3} - 15 β 3 − 1 5
b3 - 15
ν 3 \nu^{3} ν 3 = = =
14 β 2 − 15 β 1 14\beta_{2} - 15\beta_1 1 4 β 2 − 1 5 β 1
14*b2 - 15*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 175 Z ) × \left(\mathbb{Z}/175\mathbb{Z}\right)^\times ( Z / 1 7 5 Z ) × .
n n n
101 101 1 0 1
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 + 69 T 2 2 + 36 T_{2}^{4} + 69T_{2}^{2} + 36 T 2 4 + 6 9 T 2 2 + 3 6
T2^4 + 69*T2^2 + 36
acting on S 6 n e w ( 175 , [ χ ] ) S_{6}^{\mathrm{new}}(175, [\chi]) S 6 n e w ( 1 7 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 69 T 2 + 36 T^{4} + 69T^{2} + 36 T 4 + 6 9 T 2 + 3 6
T^4 + 69*T^2 + 36
3 3 3
T 4 + 1044 T 2 + 254016 T^{4} + 1044 T^{2} + 254016 T 4 + 1 0 4 4 T 2 + 2 5 4 0 1 6
T^4 + 1044*T^2 + 254016
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 2401 ) 2 (T^{2} + 2401)^{2} ( T 2 + 2 4 0 1 ) 2
(T^2 + 2401)^2
11 11 1 1
( T 2 − 396 T − 179904 ) 2 (T^{2} - 396 T - 179904)^{2} ( T 2 − 3 9 6 T − 1 7 9 9 0 4 ) 2
(T^2 - 396*T - 179904)^2
13 13 1 3
T 4 + ⋯ + 38262489664 T^{4} + \cdots + 38262489664 T 4 + ⋯ + 3 8 2 6 2 4 8 9 6 6 4
T^4 + 513716*T^2 + 38262489664
17 17 1 7
T 4 + ⋯ + 529535646864 T^{4} + \cdots + 529535646864 T 4 + ⋯ + 5 2 9 5 3 5 6 4 6 8 6 4
T^4 + 1784616*T^2 + 529535646864
19 19 1 9
( T 2 − 3266 T + 2662072 ) 2 (T^{2} - 3266 T + 2662072)^{2} ( T 2 − 3 2 6 6 T + 2 6 6 2 0 7 2 ) 2
(T^2 - 3266*T + 2662072)^2
23 23 2 3
T 4 + ⋯ + 12302247591936 T^{4} + \cdots + 12302247591936 T 4 + ⋯ + 1 2 3 0 2 2 4 7 5 9 1 9 3 6
T^4 + 11374656*T^2 + 12302247591936
29 29 2 9
( T 2 + 6696 T + 10304172 ) 2 (T^{2} + 6696 T + 10304172)^{2} ( T 2 + 6 6 9 6 T + 1 0 3 0 4 1 7 2 ) 2
(T^2 + 6696*T + 10304172)^2
31 31 3 1
( T 2 + 20 T − 4155200 ) 2 (T^{2} + 20 T - 4155200)^{2} ( T 2 + 2 0 T − 4 1 5 5 2 0 0 ) 2
(T^2 + 20*T - 4155200)^2
37 37 3 7
T 4 + ⋯ + 30848648872336 T^{4} + \cdots + 30848648872336 T 4 + ⋯ + 3 0 8 4 8 6 4 8 8 7 2 3 3 6
T^4 + 27729512*T^2 + 30848648872336
41 41 4 1
( T 2 + 6048 T − 7848036 ) 2 (T^{2} + 6048 T - 7848036)^{2} ( T 2 + 6 0 4 8 T − 7 8 4 8 0 3 6 ) 2
(T^2 + 6048*T - 7848036)^2
43 43 4 3
T 4 + ⋯ + 10 ⋯ 04 T^{4} + \cdots + 10\!\cdots\!04 T 4 + ⋯ + 1 0 ⋯ 0 4
T^4 + 657921104*T^2 + 105235588377723904
47 47 4 7
T 4 + ⋯ + 27 ⋯ 24 T^{4} + \cdots + 27\!\cdots\!24 T 4 + ⋯ + 2 7 ⋯ 2 4
T^4 + 468798864*T^2 + 27540873500442624
53 53 5 3
T 4 + ⋯ + 474989071531536 T^{4} + \cdots + 474989071531536 T 4 + ⋯ + 4 7 4 9 8 9 0 7 1 5 3 1 5 3 6
T^4 + 46054536*T^2 + 474989071531536
59 59 5 9
( T 2 − 43938 T + 422751336 ) 2 (T^{2} - 43938 T + 422751336)^{2} ( T 2 − 4 3 9 3 8 T + 4 2 2 7 5 1 3 3 6 ) 2
(T^2 - 43938*T + 422751336)^2
61 61 6 1
( T 2 + 64754 T + 719128816 ) 2 (T^{2} + 64754 T + 719128816)^{2} ( T 2 + 6 4 7 5 4 T + 7 1 9 1 2 8 8 1 6 ) 2
(T^2 + 64754*T + 719128816)^2
67 67 6 7
T 4 + ⋯ + 99 ⋯ 76 T^{4} + \cdots + 99\!\cdots\!76 T 4 + ⋯ + 9 9 ⋯ 7 6
T^4 + 414828704*T^2 + 9941879894968576
71 71 7 1
( T 2 − 97416 T + 2121099264 ) 2 (T^{2} - 97416 T + 2121099264)^{2} ( T 2 − 9 7 4 1 6 T + 2 1 2 1 0 9 9 2 6 4 ) 2
(T^2 - 97416*T + 2121099264)^2
73 73 7 3
T 4 + ⋯ + 10 ⋯ 44 T^{4} + \cdots + 10\!\cdots\!44 T 4 + ⋯ + 1 0 ⋯ 4 4
T^4 + 939613928*T^2 + 100819466053139344
79 79 7 9
( T 2 + 51256 T − 2508546944 ) 2 (T^{2} + 51256 T - 2508546944)^{2} ( T 2 + 5 1 2 5 6 T − 2 5 0 8 5 4 6 9 4 4 ) 2
(T^2 + 51256*T - 2508546944)^2
83 83 8 3
T 4 + ⋯ + 63 ⋯ 56 T^{4} + \cdots + 63\!\cdots\!56 T 4 + ⋯ + 6 3 ⋯ 5 6
T^4 + 13979722932*T^2 + 6387171874606656
89 89 8 9
( T 2 + 84276 T − 5252421468 ) 2 (T^{2} + 84276 T - 5252421468)^{2} ( T 2 + 8 4 2 7 6 T − 5 2 5 2 4 2 1 4 6 8 ) 2
(T^2 + 84276*T - 5252421468)^2
97 97 9 7
T 4 + ⋯ + 10 ⋯ 36 T^{4} + \cdots + 10\!\cdots\!36 T 4 + ⋯ + 1 0 ⋯ 3 6
T^4 + 2432904488*T^2 + 1001262710357896336
show more
show less