Properties

Label 175.6.b.c
Level 175175
Weight 66
Character orbit 175.b
Analytic conductor 28.06728.067
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [175,6,Mod(99,175)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(175, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("175.99"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 175.b (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 28.067168467328.0671684673
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,57)\Q(i, \sqrt{57})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+29x2+196 x^{4} + 29x^{2} + 196 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(5β2+β1)q2+(6β2+6β1)q3+(9β3+2)q4+(30β384)q6+49β2q7+(β211β1)q8+(36β3261)q9++(27468β35364)q99+O(q100) q + (5 \beta_{2} + \beta_1) q^{2} + (6 \beta_{2} + 6 \beta_1) q^{3} + ( - 9 \beta_{3} + 2) q^{4} + ( - 30 \beta_{3} - 84) q^{6} + 49 \beta_{2} q^{7} + ( - \beta_{2} - 11 \beta_1) q^{8} + ( - 36 \beta_{3} - 261) q^{9}+ \cdots + (27468 \beta_{3} - 5364) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q10q4396q61116q9+792q11882q14+226q16+6532q19588q21+3708q24+4032q2613392q2940q3111868q34+21258q36+40992q39++33480q99+O(q100) 4 q - 10 q^{4} - 396 q^{6} - 1116 q^{9} + 792 q^{11} - 882 q^{14} + 226 q^{16} + 6532 q^{19} - 588 q^{21} + 3708 q^{24} + 4032 q^{26} - 13392 q^{29} - 40 q^{31} - 11868 q^{34} + 21258 q^{36} + 40992 q^{39}+ \cdots + 33480 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+29x2+196 x^{4} + 29x^{2} + 196 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+15ν)/14 ( \nu^{3} + 15\nu ) / 14 Copy content Toggle raw display
β3\beta_{3}== ν2+15 \nu^{2} + 15 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β315 \beta_{3} - 15 Copy content Toggle raw display
ν3\nu^{3}== 14β215β1 14\beta_{2} - 15\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/175Z)×\left(\mathbb{Z}/175\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
99.1
3.27492i
4.27492i
4.27492i
3.27492i
8.27492i 25.6495i −36.4743 0 −212.248 49.0000i 37.0241i −414.897 0
99.2 0.725083i 19.6495i 31.4743 0 14.2475 49.0000i 46.0241i −143.103 0
99.3 0.725083i 19.6495i 31.4743 0 14.2475 49.0000i 46.0241i −143.103 0
99.4 8.27492i 25.6495i −36.4743 0 −212.248 49.0000i 37.0241i −414.897 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.6.b.c 4
5.b even 2 1 inner 175.6.b.c 4
5.c odd 4 1 7.6.a.b 2
5.c odd 4 1 175.6.a.c 2
15.e even 4 1 63.6.a.f 2
20.e even 4 1 112.6.a.h 2
35.f even 4 1 49.6.a.f 2
35.k even 12 2 49.6.c.d 4
35.l odd 12 2 49.6.c.e 4
40.i odd 4 1 448.6.a.w 2
40.k even 4 1 448.6.a.u 2
55.e even 4 1 847.6.a.c 2
60.l odd 4 1 1008.6.a.bq 2
105.k odd 4 1 441.6.a.l 2
140.j odd 4 1 784.6.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.6.a.b 2 5.c odd 4 1
49.6.a.f 2 35.f even 4 1
49.6.c.d 4 35.k even 12 2
49.6.c.e 4 35.l odd 12 2
63.6.a.f 2 15.e even 4 1
112.6.a.h 2 20.e even 4 1
175.6.a.c 2 5.c odd 4 1
175.6.b.c 4 1.a even 1 1 trivial
175.6.b.c 4 5.b even 2 1 inner
441.6.a.l 2 105.k odd 4 1
448.6.a.u 2 40.k even 4 1
448.6.a.w 2 40.i odd 4 1
784.6.a.v 2 140.j odd 4 1
847.6.a.c 2 55.e even 4 1
1008.6.a.bq 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T24+69T22+36 T_{2}^{4} + 69T_{2}^{2} + 36 acting on S6new(175,[χ])S_{6}^{\mathrm{new}}(175, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+69T2+36 T^{4} + 69T^{2} + 36 Copy content Toggle raw display
33 T4+1044T2+254016 T^{4} + 1044 T^{2} + 254016 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+2401)2 (T^{2} + 2401)^{2} Copy content Toggle raw display
1111 (T2396T179904)2 (T^{2} - 396 T - 179904)^{2} Copy content Toggle raw display
1313 T4++38262489664 T^{4} + \cdots + 38262489664 Copy content Toggle raw display
1717 T4++529535646864 T^{4} + \cdots + 529535646864 Copy content Toggle raw display
1919 (T23266T+2662072)2 (T^{2} - 3266 T + 2662072)^{2} Copy content Toggle raw display
2323 T4++12302247591936 T^{4} + \cdots + 12302247591936 Copy content Toggle raw display
2929 (T2+6696T+10304172)2 (T^{2} + 6696 T + 10304172)^{2} Copy content Toggle raw display
3131 (T2+20T4155200)2 (T^{2} + 20 T - 4155200)^{2} Copy content Toggle raw display
3737 T4++30848648872336 T^{4} + \cdots + 30848648872336 Copy content Toggle raw display
4141 (T2+6048T7848036)2 (T^{2} + 6048 T - 7848036)^{2} Copy content Toggle raw display
4343 T4++10 ⁣ ⁣04 T^{4} + \cdots + 10\!\cdots\!04 Copy content Toggle raw display
4747 T4++27 ⁣ ⁣24 T^{4} + \cdots + 27\!\cdots\!24 Copy content Toggle raw display
5353 T4++474989071531536 T^{4} + \cdots + 474989071531536 Copy content Toggle raw display
5959 (T243938T+422751336)2 (T^{2} - 43938 T + 422751336)^{2} Copy content Toggle raw display
6161 (T2+64754T+719128816)2 (T^{2} + 64754 T + 719128816)^{2} Copy content Toggle raw display
6767 T4++99 ⁣ ⁣76 T^{4} + \cdots + 99\!\cdots\!76 Copy content Toggle raw display
7171 (T297416T+2121099264)2 (T^{2} - 97416 T + 2121099264)^{2} Copy content Toggle raw display
7373 T4++10 ⁣ ⁣44 T^{4} + \cdots + 10\!\cdots\!44 Copy content Toggle raw display
7979 (T2+51256T2508546944)2 (T^{2} + 51256 T - 2508546944)^{2} Copy content Toggle raw display
8383 T4++63 ⁣ ⁣56 T^{4} + \cdots + 63\!\cdots\!56 Copy content Toggle raw display
8989 (T2+84276T5252421468)2 (T^{2} + 84276 T - 5252421468)^{2} Copy content Toggle raw display
9797 T4++10 ⁣ ⁣36 T^{4} + \cdots + 10\!\cdots\!36 Copy content Toggle raw display
show more
show less