Properties

Label 175.8.a.i
Level 175175
Weight 88
Character orbit 175.a
Self dual yes
Analytic conductor 54.66754.667
Analytic rank 00
Dimension 88
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,8,Mod(1,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 175=527 175 = 5^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 54.667379459754.6673794597
Analytic rank: 00
Dimension: 88
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x7706x6+1459x5+140610x4269712x38960496x2+18558112x+98712192 x^{8} - 2x^{7} - 706x^{6} + 1459x^{5} + 140610x^{4} - 269712x^{3} - 8960496x^{2} + 18558112x + 98712192 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2453 2^{4}\cdot 5^{3}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β12)q2+(β27)q3+(β3+β2+4β1+53)q4+(β5β3+2β2+14)q6343q7+(β72β5+463)q8++(2889β7+3525β6++1420540)q99+O(q100) q + ( - \beta_1 - 2) q^{2} + ( - \beta_{2} - 7) q^{3} + (\beta_{3} + \beta_{2} + 4 \beta_1 + 53) q^{4} + (\beta_{5} - \beta_{3} + 2 \beta_{2} + \cdots - 14) q^{6} - 343 q^{7} + ( - \beta_{7} - 2 \beta_{5} + \cdots - 463) q^{8}+ \cdots + ( - 2889 \beta_{7} + 3525 \beta_{6} + \cdots + 1420540) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q18q254q3+432q453q62744q73843q8+12334q9672q1137071q12+9410q13+6174q14+39152q16+34626q171861q181876q19++11403964q99+O(q100) 8 q - 18 q^{2} - 54 q^{3} + 432 q^{4} - 53 q^{6} - 2744 q^{7} - 3843 q^{8} + 12334 q^{9} - 672 q^{11} - 37071 q^{12} + 9410 q^{13} + 6174 q^{14} + 39152 q^{16} + 34626 q^{17} - 1861 q^{18} - 1876 q^{19}+ \cdots + 11403964 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x7706x6+1459x5+140610x4269712x38960496x2+18558112x+98712192 x^{8} - 2x^{7} - 706x^{6} + 1459x^{5} + 140610x^{4} - 269712x^{3} - 8960496x^{2} + 18558112x + 98712192 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (29ν79230ν6+41966ν5+5560783ν430942434ν3++11004010176)/77323680 ( 29 \nu^{7} - 9230 \nu^{6} + 41966 \nu^{5} + 5560783 \nu^{4} - 30942434 \nu^{3} + \cdots + 11004010176 ) / 77323680 Copy content Toggle raw display
β3\beta_{3}== (29ν7+9230ν641966ν55560783ν4+30942434ν3+24690301536)/77323680 ( - 29 \nu^{7} + 9230 \nu^{6} - 41966 \nu^{5} - 5560783 \nu^{4} + 30942434 \nu^{3} + \cdots - 24690301536 ) / 77323680 Copy content Toggle raw display
β4\beta_{4}== (43ν7+8131ν640006ν54456883ν4+33265069ν3++733313856)/1933092 ( - 43 \nu^{7} + 8131 \nu^{6} - 40006 \nu^{5} - 4456883 \nu^{4} + 33265069 \nu^{3} + \cdots + 733313856 ) / 1933092 Copy content Toggle raw display
β5\beta_{5}== (3067ν7+23890ν6+1825502ν513526969ν4224298338ν3+8462630688)/25774560 ( - 3067 \nu^{7} + 23890 \nu^{6} + 1825502 \nu^{5} - 13526969 \nu^{4} - 224298338 \nu^{3} + \cdots - 8462630688 ) / 25774560 Copy content Toggle raw display
β6\beta_{6}== (247ν7212ν6+141974ν5+137359ν416174868ν3++1781878656)/1288728 ( - 247 \nu^{7} - 212 \nu^{6} + 141974 \nu^{5} + 137359 \nu^{4} - 16174868 \nu^{3} + \cdots + 1781878656 ) / 1288728 Copy content Toggle raw display
β7\beta_{7}== (6163ν757010ν63609038ν5+32614721ν4+443428802ν3++30377854752)/25774560 ( 6163 \nu^{7} - 57010 \nu^{6} - 3609038 \nu^{5} + 32614721 \nu^{4} + 443428802 \nu^{3} + \cdots + 30377854752 ) / 25774560 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+177 \beta_{3} + \beta_{2} + 177 Copy content Toggle raw display
ν3\nu^{3}== β7+2β53β2+306β195 \beta_{7} + 2\beta_{5} - 3\beta_{2} + 306\beta _1 - 95 Copy content Toggle raw display
ν4\nu^{4}== β72β6+β5+4β4+428β3+598β267β1+54318 -\beta_{7} - 2\beta_{6} + \beta_{5} + 4\beta_{4} + 428\beta_{3} + 598\beta_{2} - 67\beta _1 + 54318 Copy content Toggle raw display
ν5\nu^{5}== 513β761β6+1128β513β4406β31527β2+113619β157319 513\beta_{7} - 61\beta_{6} + 1128\beta_{5} - 13\beta_{4} - 406\beta_{3} - 1527\beta_{2} + 113619\beta _1 - 57319 Copy content Toggle raw display
ν6\nu^{6}== 901β71608β6+652β5+2328β4+177952β3+275581β2++20220017 - 901 \beta_{7} - 1608 \beta_{6} + 652 \beta_{5} + 2328 \beta_{4} + 177952 \beta_{3} + 275581 \beta_{2} + \cdots + 20220017 Copy content Toggle raw display
ν7\nu^{7}== 229601β740012β6+517393β57246β4304168β3+34285736 229601 \beta_{7} - 40012 \beta_{6} + 517393 \beta_{5} - 7246 \beta_{4} - 304168 \beta_{3} + \cdots - 34285736 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
20.2756
13.9780
8.63295
5.57628
−2.61316
−11.2353
−11.8923
−20.7221
−22.2756 −63.0794 368.203 0 1405.13 −343.000 −5350.66 1792.01 0
1.2 −15.9780 17.4271 127.297 0 −278.451 −343.000 11.2405 −1883.29 0
1.3 −10.6329 82.7707 −14.9404 0 −880.097 −343.000 1519.88 4663.99 0
1.4 −7.57628 −78.3569 −70.6000 0 593.654 −343.000 1504.65 3952.80 0
1.5 0.613157 4.22092 −127.624 0 2.58809 −343.000 −156.738 −2169.18 0
1.6 9.23526 79.3182 −42.7100 0 732.524 −343.000 −1576.55 4104.37 0
1.7 9.89229 −19.7743 −30.1426 0 −195.613 −343.000 −1564.39 −1795.98 0
1.8 18.7221 −76.5263 222.518 0 −1432.74 −343.000 1769.57 3669.28 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 175.8.a.i 8
5.b even 2 1 175.8.a.j yes 8
5.c odd 4 2 175.8.b.h 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
175.8.a.i 8 1.a even 1 1 trivial
175.8.a.j yes 8 5.b even 2 1
175.8.b.h 16 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+18T27566T269315T25+85340T24+1226184T23++30070080 T_{2}^{8} + 18 T_{2}^{7} - 566 T_{2}^{6} - 9315 T_{2}^{5} + 85340 T_{2}^{4} + 1226184 T_{2}^{3} + \cdots + 30070080 acting on S8new(Γ0(175))S_{8}^{\mathrm{new}}(\Gamma_0(175)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+18T7++30070080 T^{8} + 18 T^{7} + \cdots + 30070080 Copy content Toggle raw display
33 T8++3612097105344 T^{8} + \cdots + 3612097105344 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T+343)8 (T + 343)^{8} Copy content Toggle raw display
1111 T8+42 ⁣ ⁣31 T^{8} + \cdots - 42\!\cdots\!31 Copy content Toggle raw display
1313 T8++54 ⁣ ⁣00 T^{8} + \cdots + 54\!\cdots\!00 Copy content Toggle raw display
1717 T8++38 ⁣ ⁣68 T^{8} + \cdots + 38\!\cdots\!68 Copy content Toggle raw display
1919 T8++14 ⁣ ⁣00 T^{8} + \cdots + 14\!\cdots\!00 Copy content Toggle raw display
2323 T8+14 ⁣ ⁣56 T^{8} + \cdots - 14\!\cdots\!56 Copy content Toggle raw display
2929 T8+31 ⁣ ⁣00 T^{8} + \cdots - 31\!\cdots\!00 Copy content Toggle raw display
3131 T8+16 ⁣ ⁣00 T^{8} + \cdots - 16\!\cdots\!00 Copy content Toggle raw display
3737 T8+44 ⁣ ⁣84 T^{8} + \cdots - 44\!\cdots\!84 Copy content Toggle raw display
4141 T8++33 ⁣ ⁣44 T^{8} + \cdots + 33\!\cdots\!44 Copy content Toggle raw display
4343 T8+35 ⁣ ⁣00 T^{8} + \cdots - 35\!\cdots\!00 Copy content Toggle raw display
4747 T8+26 ⁣ ⁣44 T^{8} + \cdots - 26\!\cdots\!44 Copy content Toggle raw display
5353 T8+17 ⁣ ⁣08 T^{8} + \cdots - 17\!\cdots\!08 Copy content Toggle raw display
5959 T8+31 ⁣ ⁣00 T^{8} + \cdots - 31\!\cdots\!00 Copy content Toggle raw display
6161 T8++40 ⁣ ⁣36 T^{8} + \cdots + 40\!\cdots\!36 Copy content Toggle raw display
6767 T8++89 ⁣ ⁣13 T^{8} + \cdots + 89\!\cdots\!13 Copy content Toggle raw display
7171 T8+86 ⁣ ⁣20 T^{8} + \cdots - 86\!\cdots\!20 Copy content Toggle raw display
7373 T8++17 ⁣ ⁣64 T^{8} + \cdots + 17\!\cdots\!64 Copy content Toggle raw display
7979 T8+26 ⁣ ⁣00 T^{8} + \cdots - 26\!\cdots\!00 Copy content Toggle raw display
8383 T8+10 ⁣ ⁣52 T^{8} + \cdots - 10\!\cdots\!52 Copy content Toggle raw display
8989 T8+31 ⁣ ⁣00 T^{8} + \cdots - 31\!\cdots\!00 Copy content Toggle raw display
9797 T8+56 ⁣ ⁣32 T^{8} + \cdots - 56\!\cdots\!32 Copy content Toggle raw display
show more
show less