Properties

Label 1759.1.b.c.1758.5
Level 17591759
Weight 11
Character 1759.1758
Self dual yes
Analytic conductor 0.8780.878
Analytic rank 00
Dimension 99
Projective image D27D_{27}
CM discriminant -1759
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,1,Mod(1758,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1758");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1759 1759
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1759.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.8778553572210.877855357221
Analytic rank: 00
Dimension: 99
Coefficient field: Q(ζ54)+\Q(\zeta_{54})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x99x7+27x530x3+9x1 x^{9} - 9x^{7} + 27x^{5} - 30x^{3} + 9x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D27D_{27}
Projective field: Galois closure of Q[x]/(x27)\mathbb{Q}[x]/(x^{27} - \cdots)

Embedding invariants

Embedding label 1758.5
Root 0.5736060.573606 of defining polynomial
Character χ\chi == 1759.1758

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.347296q20.879385q40.573606q50.652704q8+1.00000q90.199211q101.37248q11+0.792160q13+0.652704q16+1.94609q17+0.347296q18+0.504421q200.476658q220.116290q230.670976q25+0.275114q26+1.53209q31+0.879385q32+0.675870q340.879385q36+0.374395q40+1.19432q41+1.19432q43+1.20694q440.573606q450.0403870q461.98648q47+1.00000q490.233027q500.696613q52+1.78727q53+0.787265q55+0.532089q620.347296q640.454388q651.71136q681.67098q710.652704q720.374395q80+1.00000q81+0.414782q821.11629q85+0.414782q86+0.895825q881.00000q890.199211q90+0.102263q920.689896q94+0.347296q981.37248q99+O(q100)q+0.347296 q^{2} -0.879385 q^{4} -0.573606 q^{5} -0.652704 q^{8} +1.00000 q^{9} -0.199211 q^{10} -1.37248 q^{11} +0.792160 q^{13} +0.652704 q^{16} +1.94609 q^{17} +0.347296 q^{18} +0.504421 q^{20} -0.476658 q^{22} -0.116290 q^{23} -0.670976 q^{25} +0.275114 q^{26} +1.53209 q^{31} +0.879385 q^{32} +0.675870 q^{34} -0.879385 q^{36} +0.374395 q^{40} +1.19432 q^{41} +1.19432 q^{43} +1.20694 q^{44} -0.573606 q^{45} -0.0403870 q^{46} -1.98648 q^{47} +1.00000 q^{49} -0.233027 q^{50} -0.696613 q^{52} +1.78727 q^{53} +0.787265 q^{55} +0.532089 q^{62} -0.347296 q^{64} -0.454388 q^{65} -1.71136 q^{68} -1.67098 q^{71} -0.652704 q^{72} -0.374395 q^{80} +1.00000 q^{81} +0.414782 q^{82} -1.11629 q^{85} +0.414782 q^{86} +0.895825 q^{88} -1.00000 q^{89} -0.199211 q^{90} +0.102263 q^{92} -0.689896 q^{94} +0.347296 q^{98} -1.37248 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+9q49q8+9q9+9q16+9q259q32+9q36+9q499q559q629q72+9q819q859q89+O(q100) 9 q + 9 q^{4} - 9 q^{8} + 9 q^{9} + 9 q^{16} + 9 q^{25} - 9 q^{32} + 9 q^{36} + 9 q^{49} - 9 q^{55} - 9 q^{62} - 9 q^{72} + 9 q^{81} - 9 q^{85} - 9 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1759Z)×\left(\mathbb{Z}/1759\mathbb{Z}\right)^\times.

nn 66
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 −0.879385 −0.879385
55 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −0.652704 −0.652704
99 1.00000 1.00000
1010 −0.199211 −0.199211
1111 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
1212 0 0
1313 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
1414 0 0
1515 0 0
1616 0.652704 0.652704
1717 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
1818 0.347296 0.347296
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0.504421 0.504421
2121 0 0
2222 −0.476658 −0.476658
2323 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
2424 0 0
2525 −0.670976 −0.670976
2626 0.275114 0.275114
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
3232 0.879385 0.879385
3333 0 0
3434 0.675870 0.675870
3535 0 0
3636 −0.879385 −0.879385
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0.374395 0.374395
4141 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
4242 0 0
4343 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
4444 1.20694 1.20694
4545 −0.573606 −0.573606
4646 −0.0403870 −0.0403870
4747 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
4848 0 0
4949 1.00000 1.00000
5050 −0.233027 −0.233027
5151 0 0
5252 −0.696613 −0.696613
5353 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
5454 0 0
5555 0.787265 0.787265
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0.532089 0.532089
6363 0 0
6464 −0.347296 −0.347296
6565 −0.454388 −0.454388
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 −1.71136 −1.71136
6969 0 0
7070 0 0
7171 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
7272 −0.652704 −0.652704
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −0.374395 −0.374395
8181 1.00000 1.00000
8282 0.414782 0.414782
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 −1.11629 −1.11629
8686 0.414782 0.414782
8787 0 0
8888 0.895825 0.895825
8989 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 −0.199211 −0.199211
9191 0 0
9292 0.102263 0.102263
9393 0 0
9494 −0.689896 −0.689896
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.347296 0.347296
9999 −1.37248 −1.37248
100100 0.590046 0.590046
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 −0.517045 −0.517045
105105 0 0
106106 0.620711 0.620711
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
110110 0.273414 0.273414
111111 0 0
112112 0 0
113113 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
114114 0 0
115115 0.0667045 0.0667045
116116 0 0
117117 0.792160 0.792160
118118 0 0
119119 0 0
120120 0 0
121121 0.883710 0.883710
122122 0 0
123123 0 0
124124 −1.34730 −1.34730
125125 0.958482 0.958482
126126 0 0
127127 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
128128 −1.00000 −1.00000
129129 0 0
130130 −0.157807 −0.157807
131131 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −1.27022 −1.27022
137137 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 −0.580324 −0.580324
143143 −1.08723 −1.08723
144144 0.652704 0.652704
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 1.94609 1.94609
154154 0 0
155155 −0.878816 −0.878816
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 −0.504421 −0.504421
161161 0 0
162162 0.347296 0.347296
163163 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
164164 −1.05026 −1.05026
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 −0.372483 −0.372483
170170 −0.387683 −0.387683
171171 0 0
172172 −1.05026 −1.05026
173173 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
174174 0 0
175175 0 0
176176 −0.895825 −0.895825
177177 0 0
178178 −0.347296 −0.347296
179179 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
180180 0.504421 0.504421
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0.0759027 0.0759027
185185 0 0
186186 0 0
187187 −2.67098 −2.67098
188188 1.74688 1.74688
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 −0.879385 −0.879385
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −0.476658 −0.476658
199199 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
200200 0.437948 0.437948
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −0.685068 −0.685068
206206 0 0
207207 −0.116290 −0.116290
208208 0.517045 0.517045
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 −1.57169 −1.57169
213213 0 0
214214 0 0
215215 −0.685068 −0.685068
216216 0 0
217217 0 0
218218 −0.689896 −0.689896
219219 0 0
220220 −0.692309 −0.692309
221221 1.54161 1.54161
222222 0 0
223223 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
224224 0 0
225225 −0.670976 −0.670976
226226 −0.652704 −0.652704
227227 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0.0231662 0.0231662
231231 0 0
232232 0 0
233233 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
234234 0.275114 0.275114
235235 1.13946 1.13946
236236 0 0
237237 0 0
238238 0 0
239239 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
240240 0 0
241241 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
242242 0.306909 0.306909
243243 0 0
244244 0 0
245245 −0.573606 −0.573606
246246 0 0
247247 0 0
248248 −1.00000 −1.00000
249249 0 0
250250 0.332877 0.332877
251251 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
252252 0 0
253253 0.159606 0.159606
254254 0.675870 0.675870
255255 0 0
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0.399582 0.399582
261261 0 0
262262 0.620711 0.620711
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 −1.02519 −1.02519
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
272272 1.27022 1.27022
273273 0 0
274274 0.620711 0.620711
275275 0.920903 0.920903
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 1.53209 1.53209
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 1.46943 1.46943
285285 0 0
286286 −0.377590 −0.377590
287287 0 0
288288 0.879385 0.879385
289289 2.78727 2.78727
290290 0 0
291291 0 0
292292 0 0
293293 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 −0.652704 −0.652704
299299 −0.0921200 −0.0921200
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0.675870 0.675870
307307 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
308308 0 0
309309 0 0
310310 −0.305210 −0.305210
311311 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
312312 0 0
313313 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0.199211 0.199211
321321 0 0
322322 0 0
323323 0 0
324324 −0.879385 −0.879385
325325 −0.531520 −0.531520
326326 −0.689896 −0.689896
327327 0 0
328328 −0.779535 −0.779535
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
338338 −0.129362 −0.129362
339339 0 0
340340 0.981649 0.981649
341341 −2.10277 −2.10277
342342 0 0
343343 0 0
344344 −0.779535 −0.779535
345345 0 0
346346 −0.476658 −0.476658
347347 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 −1.20694 −1.20694
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0.958482 0.958482
356356 0.879385 0.879385
357357 0 0
358358 −0.347296 −0.347296
359359 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
360360 0.374395 0.374395
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −0.0759027 −0.0759027
369369 1.19432 1.19432
370370 0 0
371371 0 0
372372 0 0
373373 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
374374 −0.927620 −0.927620
375375 0 0
376376 1.29658 1.29658
377377 0 0
378378 0 0
379379 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 1.19432 1.19432
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 −0.226310 −0.226310
392392 −0.652704 −0.652704
393393 0 0
394394 0 0
395395 0 0
396396 1.20694 1.20694
397397 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
398398 0.414782 0.414782
399399 0 0
400400 −0.437948 −0.437948
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 1.21366 1.21366
404404 0 0
405405 −0.573606 −0.573606
406406 0 0
407407 0 0
408408 0 0
409409 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
410410 −0.237922 −0.237922
411411 0 0
412412 0 0
413413 0 0
414414 −0.0403870 −0.0403870
415415 0 0
416416 0.696613 0.696613
417417 0 0
418418 0 0
419419 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
420420 0 0
421421 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
422422 0 0
423423 −1.98648 −1.98648
424424 −1.16655 −1.16655
425425 −1.30578 −1.30578
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 −0.237922 −0.237922
431431 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
432432 0 0
433433 1.53209 1.53209 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
434434 0 0
435435 0 0
436436 1.74688 1.74688
437437 0 0
438438 0 0
439439 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
440440 −0.513851 −0.513851
441441 1.00000 1.00000
442442 0.535397 0.535397
443443 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
444444 0 0
445445 0.573606 0.573606
446446 0.120615 0.120615
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 −0.233027 −0.233027
451451 −1.63918 −1.63918
452452 1.65270 1.65270
453453 0 0
454454 0.532089 0.532089
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 −0.0586590 −0.0586590
461461 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −0.0403870 −0.0403870
467467 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
468468 −0.696613 −0.696613
469469 0 0
470470 0.395729 0.395729
471471 0 0
472472 0 0
473473 −1.63918 −1.63918
474474 0 0
475475 0 0
476476 0 0
477477 1.78727 1.78727
478478 0.675870 0.675870
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0.120615 0.120615
483483 0 0
484484 −0.777122 −0.777122
485485 0 0
486486 0 0
487487 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
488488 0 0
489489 0 0
490490 −0.199211 −0.199211
491491 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
492492 0 0
493493 0 0
494494 0 0
495495 0.787265 0.787265
496496 1.00000 1.00000
497497 0 0
498498 0 0
499499 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
500500 −0.842875 −0.842875
501501 0 0
502502 −0.689896 −0.689896
503503 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
504504 0 0
505505 0 0
506506 0.0554304 0.0554304
507507 0 0
508508 −1.71136 −1.71136
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 2.72641 2.72641
518518 0 0
519519 0 0
520520 0.296581 0.296581
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 −1.57169 −1.57169
525525 0 0
526526 0 0
527527 2.98158 2.98158
528528 0 0
529529 −0.986477 −0.986477
530530 −0.356044 −0.356044
531531 0 0
532532 0 0
533533 0.946090 0.946090
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.37248 −1.37248
540540 0 0
541541 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
542542 0.275114 0.275114
543543 0 0
544544 1.71136 1.71136
545545 1.13946 1.13946
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 −1.57169 −1.57169
549549 0 0
550550 0.319826 0.319826
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
558558 0.532089 0.532089
559559 0.946090 0.946090
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 1.07803 1.07803
566566 0 0
567567 0 0
568568 1.09065 1.09065
569569 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
570570 0 0
571571 0.347296 0.347296 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
572572 0.956090 0.956090
573573 0 0
574574 0 0
575575 0.0780275 0.0780275
576576 −0.347296 −0.347296
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.968007 0.968007
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −2.45299 −2.45299
584584 0 0
585585 −0.454388 −0.454388
586586 −0.580324 −0.580324
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 1.65270 1.65270
597597 0 0
598598 −0.0319929 −0.0319929
599599 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.506902 −0.506902
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 −1.57361 −1.57361
612612 −1.71136 −1.71136
613613 0 0 1.00000 00
−1.00000 π\pi
614614 −0.0403870 −0.0403870
615615 0 0
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0.772818 0.772818
621621 0 0
622622 0.120615 0.120615
623623 0 0
624624 0 0
625625 0.121184 0.121184
626626 −0.652704 −0.652704
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
632632 0 0
633633 0 0
634634 0 0
635635 −1.11629 −1.11629
636636 0 0
637637 0.792160 0.792160
638638 0 0
639639 −1.67098 −1.67098
640640 0.573606 0.573606
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
648648 −0.652704 −0.652704
649649 0 0
650650 −0.184595 −0.184595
651651 0 0
652652 1.74688 1.74688
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 −1.02519 −1.02519
656656 0.779535 0.779535
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 −0.347296 −0.347296
675675 0 0
676676 0.327556 0.327556
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0.728606 0.728606
681681 0 0
682682 −0.730283 −0.730283
683683 1.19432 1.19432 0.597159 0.802123i 0.296296π-0.296296\pi
0.597159 + 0.802123i 0.296296π0.296296\pi
684684 0 0
685685 −1.02519 −1.02519
686686 0 0
687687 0 0
688688 0.779535 0.779535
689689 1.41580 1.41580
690690 0 0
691691 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
692692 1.20694 1.20694
693693 0 0
694694 0.532089 0.532089
695695 0 0
696696 0 0
697697 2.32425 2.32425
698698 −0.347296 −0.347296
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0.476658 0.476658
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0.332877 0.332877
711711 0 0
712712 0.652704 0.652704
713713 −0.178166 −0.178166
714714 0 0
715715 0.623640 0.623640
716716 0.879385 0.879385
717717 0 0
718718 −0.199211 −0.199211
719719 0 0 1.00000 00
−1.00000 π\pi
720720 −0.374395 −0.374395
721721 0 0
722722 0.347296 0.347296
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 2.32425 2.32425
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 −0.102263 −0.102263
737737 0 0
738738 0.414782 0.414782
739739 −0.573606 −0.573606 −0.286803 0.957990i 0.592593π-0.592593\pi
−0.286803 + 0.957990i 0.592593π0.592593\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 1.07803 1.07803
746746 0.120615 0.120615
747747 0 0
748748 2.34882 2.34882
749749 0 0
750750 0 0
751751 −1.37248 −1.37248 −0.686242 0.727374i 0.740741π-0.740741\pi
−0.686242 + 0.727374i 0.740741π0.740741\pi
752752 −1.29658 −1.29658
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.0403870 −0.0403870
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 −1.11629 −1.11629
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
774774 0.414782 0.414782
775775 −1.02799 −1.02799
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 2.29339 2.29339
782782 −0.0785967 −0.0785967
783783 0 0
784784 0.652704 0.652704
785785 0 0
786786 0 0
787787 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0.895825 0.895825
793793 0 0
794794 −0.689896 −0.689896
795795 0 0
796796 −1.05026 −1.05026
797797 −0.116290 −0.116290 −0.0581448 0.998308i 0.518519π-0.518519\pi
−0.0581448 + 0.998308i 0.518519π0.518519\pi
798798 0 0
799799 −3.86586 −3.86586
800800 −0.590046 −0.590046
801801 −1.00000 −1.00000
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0.421499 0.421499
807807 0 0
808808 0 0
809809 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
810810 −0.199211 −0.199211
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 1.13946 1.13946
816816 0 0
817817 0 0
818818 0.620711 0.620711
819819 0 0
820820 0.602439 0.602439
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0.102263 0.102263
829829 −1.67098 −1.67098 −0.835488 0.549509i 0.814815π-0.814815\pi
−0.835488 + 0.549509i 0.814815π0.814815\pi
830830 0 0
831831 0 0
832832 −0.275114 −0.275114
833833 1.94609 1.94609
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 −0.0403870 −0.0403870
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0.675870 0.675870
843843 0 0
844844 0 0
845845 0.213659 0.213659
846846 −0.689896 −0.689896
847847 0 0
848848 1.16655 1.16655
849849 0 0
850850 −0.453492 −0.453492
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0.602439 0.602439
861861 0 0
862862 0.275114 0.275114
863863 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
864864 0 0
865865 0.787265 0.787265
866866 0.532089 0.532089
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 1.29658 1.29658
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 −0.580324 −0.580324
879879 0 0
880880 0.513851 0.513851
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0.347296 0.347296
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −1.35567 −1.35567
885885 0 0
886886 −0.652704 −0.652704
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0.199211 0.199211
891891 −1.37248 −1.37248
892892 −0.305407 −0.305407
893893 0 0
894894 0 0
895895 0.573606 0.573606
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0.590046 0.590046
901901 3.47818 3.47818
902902 −0.569281 −0.569281
903903 0 0
904904 1.22668 1.22668
905905 0 0
906906 0 0
907907 1.78727 1.78727 0.893633 0.448799i 0.148148π-0.148148\pi
0.893633 + 0.448799i 0.148148π0.148148\pi
908908 −1.34730 −1.34730
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 −0.0435383 −0.0435383
921921 0 0
922922 −0.580324 −0.580324
923923 −1.32368 −1.32368
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.792160 0.792160 0.396080 0.918216i 0.370370π-0.370370\pi
0.396080 + 0.918216i 0.370370π0.370370\pi
930930 0 0
931931 0 0
932932 0.102263 0.102263
933933 0 0
934934 −0.199211 −0.199211
935935 1.53209 1.53209
936936 −0.517045 −0.517045
937937 −1.98648 −1.98648 −0.993238 0.116093i 0.962963π-0.962963\pi
−0.993238 + 0.116093i 0.962963π0.962963\pi
938938 0 0
939939 0 0
940940 −1.00202 −1.00202
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 −0.138887 −0.138887
944944 0 0
945945 0 0
946946 −0.569281 −0.569281
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0.620711 0.620711
955955 0 0
956956 −1.71136 −1.71136
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.34730 1.34730
962962 0 0
963963 0 0
964964 −0.305407 −0.305407
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −0.576801 −0.576801
969969 0 0
970970 0 0
971971 1.94609 1.94609 0.973045 0.230616i 0.0740741π-0.0740741\pi
0.973045 + 0.230616i 0.0740741π0.0740741\pi
972972 0 0
973973 0 0
974974 −0.199211 −0.199211
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 1.37248 1.37248
980980 0.504421 0.504421
981981 −1.98648 −1.98648
982982 0.275114 0.275114
983983 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −0.138887 −0.138887
990990 0.273414 0.273414
991991 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
992992 1.34730 1.34730
993993 0 0
994994 0 0
995995 −0.685068 −0.685068
996996 0 0
997997 −1.87939 −1.87939 −0.939693 0.342020i 0.888889π-0.888889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
998998 0.675870 0.675870
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.1.b.c.1758.5 9
1759.1758 odd 2 CM 1759.1.b.c.1758.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.1.b.c.1758.5 9 1.1 even 1 trivial
1759.1.b.c.1758.5 9 1759.1758 odd 2 CM