Properties

Label 1759.2.a.b.1.63
Level $1759$
Weight $2$
Character 1759.1
Self dual yes
Analytic conductor $14.046$
Analytic rank $0$
Dimension $86$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,2,Mod(1,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1759 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1759.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.0456857155\)
Analytic rank: \(0\)
Dimension: \(86\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.63
Character \(\chi\) \(=\) 1759.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65306 q^{2} +3.39411 q^{3} +0.732607 q^{4} -0.248020 q^{5} +5.61067 q^{6} +5.21873 q^{7} -2.09508 q^{8} +8.51998 q^{9} -0.409991 q^{10} -5.09191 q^{11} +2.48655 q^{12} +0.389321 q^{13} +8.62687 q^{14} -0.841806 q^{15} -4.92850 q^{16} +3.46293 q^{17} +14.0840 q^{18} -7.69977 q^{19} -0.181701 q^{20} +17.7129 q^{21} -8.41723 q^{22} +3.40101 q^{23} -7.11092 q^{24} -4.93849 q^{25} +0.643572 q^{26} +18.7354 q^{27} +3.82328 q^{28} -4.21520 q^{29} -1.39156 q^{30} +1.42317 q^{31} -3.95696 q^{32} -17.2825 q^{33} +5.72443 q^{34} -1.29435 q^{35} +6.24180 q^{36} -2.30128 q^{37} -12.7282 q^{38} +1.32140 q^{39} +0.519620 q^{40} +4.16525 q^{41} +29.2806 q^{42} -5.78619 q^{43} -3.73037 q^{44} -2.11312 q^{45} +5.62207 q^{46} -3.01265 q^{47} -16.7279 q^{48} +20.2351 q^{49} -8.16361 q^{50} +11.7536 q^{51} +0.285220 q^{52} +7.48420 q^{53} +30.9708 q^{54} +1.26289 q^{55} -10.9336 q^{56} -26.1339 q^{57} -6.96799 q^{58} -11.0147 q^{59} -0.616713 q^{60} +0.822430 q^{61} +2.35259 q^{62} +44.4635 q^{63} +3.31592 q^{64} -0.0965594 q^{65} -28.5690 q^{66} -10.6782 q^{67} +2.53697 q^{68} +11.5434 q^{69} -2.13963 q^{70} +8.75733 q^{71} -17.8500 q^{72} -8.20031 q^{73} -3.80415 q^{74} -16.7618 q^{75} -5.64091 q^{76} -26.5733 q^{77} +2.18435 q^{78} -13.5726 q^{79} +1.22236 q^{80} +38.0302 q^{81} +6.88540 q^{82} -10.0693 q^{83} +12.9766 q^{84} -0.858875 q^{85} -9.56493 q^{86} -14.3069 q^{87} +10.6679 q^{88} +6.56982 q^{89} -3.49312 q^{90} +2.03176 q^{91} +2.49160 q^{92} +4.83041 q^{93} -4.98010 q^{94} +1.90969 q^{95} -13.4303 q^{96} +5.91197 q^{97} +33.4499 q^{98} -43.3830 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 86 q + 10 q^{2} + 11 q^{3} + 94 q^{4} + 30 q^{5} + 13 q^{6} + 30 q^{8} + 135 q^{9} + 9 q^{10} + 22 q^{11} + 26 q^{12} + 16 q^{13} + 52 q^{14} + 9 q^{15} + 102 q^{16} + 72 q^{17} + 21 q^{18} + 10 q^{19}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65306 1.16889 0.584445 0.811433i \(-0.301312\pi\)
0.584445 + 0.811433i \(0.301312\pi\)
\(3\) 3.39411 1.95959 0.979795 0.200004i \(-0.0640954\pi\)
0.979795 + 0.200004i \(0.0640954\pi\)
\(4\) 0.732607 0.366304
\(5\) −0.248020 −0.110918 −0.0554589 0.998461i \(-0.517662\pi\)
−0.0554589 + 0.998461i \(0.517662\pi\)
\(6\) 5.61067 2.29055
\(7\) 5.21873 1.97249 0.986247 0.165276i \(-0.0528515\pi\)
0.986247 + 0.165276i \(0.0528515\pi\)
\(8\) −2.09508 −0.740721
\(9\) 8.51998 2.83999
\(10\) −0.409991 −0.129651
\(11\) −5.09191 −1.53527 −0.767634 0.640889i \(-0.778566\pi\)
−0.767634 + 0.640889i \(0.778566\pi\)
\(12\) 2.48655 0.717805
\(13\) 0.389321 0.107978 0.0539892 0.998542i \(-0.482806\pi\)
0.0539892 + 0.998542i \(0.482806\pi\)
\(14\) 8.62687 2.30563
\(15\) −0.841806 −0.217353
\(16\) −4.92850 −1.23213
\(17\) 3.46293 0.839884 0.419942 0.907551i \(-0.362050\pi\)
0.419942 + 0.907551i \(0.362050\pi\)
\(18\) 14.0840 3.31964
\(19\) −7.69977 −1.76645 −0.883225 0.468950i \(-0.844632\pi\)
−0.883225 + 0.468950i \(0.844632\pi\)
\(20\) −0.181701 −0.0406296
\(21\) 17.7129 3.86528
\(22\) −8.41723 −1.79456
\(23\) 3.40101 0.709159 0.354580 0.935026i \(-0.384624\pi\)
0.354580 + 0.935026i \(0.384624\pi\)
\(24\) −7.11092 −1.45151
\(25\) −4.93849 −0.987697
\(26\) 0.643572 0.126215
\(27\) 18.7354 3.60563
\(28\) 3.82328 0.722532
\(29\) −4.21520 −0.782744 −0.391372 0.920233i \(-0.627999\pi\)
−0.391372 + 0.920233i \(0.627999\pi\)
\(30\) −1.39156 −0.254062
\(31\) 1.42317 0.255609 0.127805 0.991799i \(-0.459207\pi\)
0.127805 + 0.991799i \(0.459207\pi\)
\(32\) −3.95696 −0.699498
\(33\) −17.2825 −3.00850
\(34\) 5.72443 0.981732
\(35\) −1.29435 −0.218785
\(36\) 6.24180 1.04030
\(37\) −2.30128 −0.378328 −0.189164 0.981946i \(-0.560578\pi\)
−0.189164 + 0.981946i \(0.560578\pi\)
\(38\) −12.7282 −2.06478
\(39\) 1.32140 0.211593
\(40\) 0.519620 0.0821591
\(41\) 4.16525 0.650502 0.325251 0.945628i \(-0.394551\pi\)
0.325251 + 0.945628i \(0.394551\pi\)
\(42\) 29.2806 4.51809
\(43\) −5.78619 −0.882386 −0.441193 0.897412i \(-0.645445\pi\)
−0.441193 + 0.897412i \(0.645445\pi\)
\(44\) −3.73037 −0.562374
\(45\) −2.11312 −0.315006
\(46\) 5.62207 0.828929
\(47\) −3.01265 −0.439441 −0.219720 0.975563i \(-0.570514\pi\)
−0.219720 + 0.975563i \(0.570514\pi\)
\(48\) −16.7279 −2.41446
\(49\) 20.2351 2.89074
\(50\) −8.16361 −1.15451
\(51\) 11.7536 1.64583
\(52\) 0.285220 0.0395529
\(53\) 7.48420 1.02803 0.514017 0.857780i \(-0.328157\pi\)
0.514017 + 0.857780i \(0.328157\pi\)
\(54\) 30.9708 4.21459
\(55\) 1.26289 0.170288
\(56\) −10.9336 −1.46107
\(57\) −26.1339 −3.46152
\(58\) −6.96799 −0.914941
\(59\) −11.0147 −1.43399 −0.716993 0.697081i \(-0.754482\pi\)
−0.716993 + 0.697081i \(0.754482\pi\)
\(60\) −0.616713 −0.0796173
\(61\) 0.822430 0.105301 0.0526507 0.998613i \(-0.483233\pi\)
0.0526507 + 0.998613i \(0.483233\pi\)
\(62\) 2.35259 0.298779
\(63\) 44.4635 5.60187
\(64\) 3.31592 0.414490
\(65\) −0.0965594 −0.0119767
\(66\) −28.5690 −3.51660
\(67\) −10.6782 −1.30455 −0.652275 0.757982i \(-0.726185\pi\)
−0.652275 + 0.757982i \(0.726185\pi\)
\(68\) 2.53697 0.307653
\(69\) 11.5434 1.38966
\(70\) −2.13963 −0.255735
\(71\) 8.75733 1.03930 0.519652 0.854378i \(-0.326062\pi\)
0.519652 + 0.854378i \(0.326062\pi\)
\(72\) −17.8500 −2.10364
\(73\) −8.20031 −0.959773 −0.479887 0.877331i \(-0.659322\pi\)
−0.479887 + 0.877331i \(0.659322\pi\)
\(74\) −3.80415 −0.442224
\(75\) −16.7618 −1.93548
\(76\) −5.64091 −0.647057
\(77\) −26.5733 −3.02831
\(78\) 2.18435 0.247329
\(79\) −13.5726 −1.52703 −0.763516 0.645789i \(-0.776529\pi\)
−0.763516 + 0.645789i \(0.776529\pi\)
\(80\) 1.22236 0.136665
\(81\) 38.0302 4.22557
\(82\) 6.88540 0.760366
\(83\) −10.0693 −1.10525 −0.552623 0.833431i \(-0.686373\pi\)
−0.552623 + 0.833431i \(0.686373\pi\)
\(84\) 12.9766 1.41587
\(85\) −0.858875 −0.0931580
\(86\) −9.56493 −1.03141
\(87\) −14.3069 −1.53386
\(88\) 10.6679 1.13721
\(89\) 6.56982 0.696400 0.348200 0.937420i \(-0.386793\pi\)
0.348200 + 0.937420i \(0.386793\pi\)
\(90\) −3.49312 −0.368207
\(91\) 2.03176 0.212987
\(92\) 2.49160 0.259768
\(93\) 4.83041 0.500890
\(94\) −4.98010 −0.513658
\(95\) 1.90969 0.195931
\(96\) −13.4303 −1.37073
\(97\) 5.91197 0.600270 0.300135 0.953897i \(-0.402968\pi\)
0.300135 + 0.953897i \(0.402968\pi\)
\(98\) 33.4499 3.37895
\(99\) −43.3830 −4.36015
\(100\) −3.61797 −0.361797
\(101\) 8.10465 0.806443 0.403222 0.915102i \(-0.367890\pi\)
0.403222 + 0.915102i \(0.367890\pi\)
\(102\) 19.4294 1.92379
\(103\) 13.0124 1.28215 0.641076 0.767478i \(-0.278488\pi\)
0.641076 + 0.767478i \(0.278488\pi\)
\(104\) −0.815658 −0.0799819
\(105\) −4.39316 −0.428728
\(106\) 12.3718 1.20166
\(107\) −7.16473 −0.692641 −0.346321 0.938116i \(-0.612569\pi\)
−0.346321 + 0.938116i \(0.612569\pi\)
\(108\) 13.7257 1.32076
\(109\) 7.06538 0.676740 0.338370 0.941013i \(-0.390124\pi\)
0.338370 + 0.941013i \(0.390124\pi\)
\(110\) 2.08764 0.199048
\(111\) −7.81079 −0.741368
\(112\) −25.7205 −2.43036
\(113\) 16.4406 1.54660 0.773301 0.634039i \(-0.218604\pi\)
0.773301 + 0.634039i \(0.218604\pi\)
\(114\) −43.2009 −4.04613
\(115\) −0.843517 −0.0786584
\(116\) −3.08809 −0.286722
\(117\) 3.31701 0.306658
\(118\) −18.2079 −1.67617
\(119\) 18.0721 1.65667
\(120\) 1.76365 0.160998
\(121\) 14.9275 1.35705
\(122\) 1.35953 0.123086
\(123\) 14.1373 1.27472
\(124\) 1.04263 0.0936307
\(125\) 2.46494 0.220471
\(126\) 73.5008 6.54797
\(127\) −4.14007 −0.367372 −0.183686 0.982985i \(-0.558803\pi\)
−0.183686 + 0.982985i \(0.558803\pi\)
\(128\) 13.3953 1.18399
\(129\) −19.6390 −1.72912
\(130\) −0.159618 −0.0139995
\(131\) 8.02893 0.701491 0.350745 0.936471i \(-0.385928\pi\)
0.350745 + 0.936471i \(0.385928\pi\)
\(132\) −12.6613 −1.10202
\(133\) −40.1830 −3.48431
\(134\) −17.6517 −1.52488
\(135\) −4.64675 −0.399929
\(136\) −7.25510 −0.622120
\(137\) −5.14949 −0.439951 −0.219976 0.975505i \(-0.570598\pi\)
−0.219976 + 0.975505i \(0.570598\pi\)
\(138\) 19.0819 1.62436
\(139\) −6.11477 −0.518648 −0.259324 0.965790i \(-0.583500\pi\)
−0.259324 + 0.965790i \(0.583500\pi\)
\(140\) −0.948248 −0.0801416
\(141\) −10.2253 −0.861124
\(142\) 14.4764 1.21483
\(143\) −1.98239 −0.165776
\(144\) −41.9907 −3.49923
\(145\) 1.04545 0.0868202
\(146\) −13.5556 −1.12187
\(147\) 68.6803 5.66466
\(148\) −1.68593 −0.138583
\(149\) 16.5652 1.35707 0.678536 0.734567i \(-0.262615\pi\)
0.678536 + 0.734567i \(0.262615\pi\)
\(150\) −27.7082 −2.26237
\(151\) 0.151371 0.0123184 0.00615920 0.999981i \(-0.498039\pi\)
0.00615920 + 0.999981i \(0.498039\pi\)
\(152\) 16.1316 1.30845
\(153\) 29.5041 2.38527
\(154\) −43.9272 −3.53976
\(155\) −0.352975 −0.0283516
\(156\) 0.968067 0.0775074
\(157\) 13.4004 1.06947 0.534736 0.845019i \(-0.320411\pi\)
0.534736 + 0.845019i \(0.320411\pi\)
\(158\) −22.4363 −1.78493
\(159\) 25.4022 2.01453
\(160\) 0.981403 0.0775867
\(161\) 17.7489 1.39881
\(162\) 62.8661 4.93923
\(163\) 2.55654 0.200243 0.100122 0.994975i \(-0.468077\pi\)
0.100122 + 0.994975i \(0.468077\pi\)
\(164\) 3.05149 0.238281
\(165\) 4.28640 0.333696
\(166\) −16.6451 −1.29191
\(167\) −11.7546 −0.909601 −0.454801 0.890593i \(-0.650289\pi\)
−0.454801 + 0.890593i \(0.650289\pi\)
\(168\) −37.1100 −2.86310
\(169\) −12.8484 −0.988341
\(170\) −1.41977 −0.108891
\(171\) −65.6019 −5.01671
\(172\) −4.23901 −0.323221
\(173\) −0.888137 −0.0675238 −0.0337619 0.999430i \(-0.510749\pi\)
−0.0337619 + 0.999430i \(0.510749\pi\)
\(174\) −23.6501 −1.79291
\(175\) −25.7726 −1.94823
\(176\) 25.0955 1.89164
\(177\) −37.3849 −2.81002
\(178\) 10.8603 0.814015
\(179\) 10.2434 0.765627 0.382813 0.923826i \(-0.374955\pi\)
0.382813 + 0.923826i \(0.374955\pi\)
\(180\) −1.54809 −0.115388
\(181\) −2.31415 −0.172009 −0.0860047 0.996295i \(-0.527410\pi\)
−0.0860047 + 0.996295i \(0.527410\pi\)
\(182\) 3.35863 0.248958
\(183\) 2.79142 0.206348
\(184\) −7.12537 −0.525289
\(185\) 0.570762 0.0419633
\(186\) 7.98495 0.585485
\(187\) −17.6329 −1.28945
\(188\) −2.20709 −0.160969
\(189\) 97.7751 7.11210
\(190\) 3.15684 0.229021
\(191\) −8.39367 −0.607345 −0.303672 0.952776i \(-0.598213\pi\)
−0.303672 + 0.952776i \(0.598213\pi\)
\(192\) 11.2546 0.812230
\(193\) 10.3645 0.746056 0.373028 0.927820i \(-0.378319\pi\)
0.373028 + 0.927820i \(0.378319\pi\)
\(194\) 9.77284 0.701649
\(195\) −0.327733 −0.0234695
\(196\) 14.8244 1.05889
\(197\) 2.26266 0.161208 0.0806040 0.996746i \(-0.474315\pi\)
0.0806040 + 0.996746i \(0.474315\pi\)
\(198\) −71.7146 −5.09654
\(199\) −9.73185 −0.689873 −0.344936 0.938626i \(-0.612100\pi\)
−0.344936 + 0.938626i \(0.612100\pi\)
\(200\) 10.3465 0.731608
\(201\) −36.2430 −2.55639
\(202\) 13.3975 0.942643
\(203\) −21.9980 −1.54396
\(204\) 8.61075 0.602873
\(205\) −1.03306 −0.0721523
\(206\) 21.5103 1.49869
\(207\) 28.9765 2.01401
\(208\) −1.91877 −0.133043
\(209\) 39.2065 2.71197
\(210\) −7.26215 −0.501136
\(211\) −5.21241 −0.358837 −0.179419 0.983773i \(-0.557422\pi\)
−0.179419 + 0.983773i \(0.557422\pi\)
\(212\) 5.48298 0.376573
\(213\) 29.7233 2.03661
\(214\) −11.8437 −0.809621
\(215\) 1.43509 0.0978723
\(216\) −39.2521 −2.67077
\(217\) 7.42716 0.504188
\(218\) 11.6795 0.791035
\(219\) −27.8327 −1.88076
\(220\) 0.925204 0.0623773
\(221\) 1.34819 0.0906893
\(222\) −12.9117 −0.866577
\(223\) −29.1870 −1.95451 −0.977253 0.212079i \(-0.931977\pi\)
−0.977253 + 0.212079i \(0.931977\pi\)
\(224\) −20.6503 −1.37976
\(225\) −42.0758 −2.80505
\(226\) 27.1773 1.80781
\(227\) 5.07623 0.336921 0.168461 0.985708i \(-0.446120\pi\)
0.168461 + 0.985708i \(0.446120\pi\)
\(228\) −19.1459 −1.26797
\(229\) −14.2475 −0.941502 −0.470751 0.882266i \(-0.656017\pi\)
−0.470751 + 0.882266i \(0.656017\pi\)
\(230\) −1.39438 −0.0919430
\(231\) −90.1927 −5.93424
\(232\) 8.83117 0.579795
\(233\) 14.5402 0.952560 0.476280 0.879294i \(-0.341985\pi\)
0.476280 + 0.879294i \(0.341985\pi\)
\(234\) 5.48322 0.358449
\(235\) 0.747197 0.0487418
\(236\) −8.06941 −0.525274
\(237\) −46.0668 −2.99236
\(238\) 29.8743 1.93646
\(239\) −2.76005 −0.178533 −0.0892664 0.996008i \(-0.528452\pi\)
−0.0892664 + 0.996008i \(0.528452\pi\)
\(240\) 4.14884 0.267807
\(241\) −28.5876 −1.84149 −0.920743 0.390169i \(-0.872417\pi\)
−0.920743 + 0.390169i \(0.872417\pi\)
\(242\) 24.6761 1.58624
\(243\) 72.8722 4.67476
\(244\) 0.602519 0.0385723
\(245\) −5.01871 −0.320634
\(246\) 23.3698 1.49001
\(247\) −2.99769 −0.190738
\(248\) −2.98166 −0.189335
\(249\) −34.1762 −2.16583
\(250\) 4.07469 0.257706
\(251\) 9.79772 0.618427 0.309213 0.950993i \(-0.399934\pi\)
0.309213 + 0.950993i \(0.399934\pi\)
\(252\) 32.5743 2.05199
\(253\) −17.3176 −1.08875
\(254\) −6.84379 −0.429418
\(255\) −2.91512 −0.182552
\(256\) 15.5114 0.969465
\(257\) −4.78846 −0.298696 −0.149348 0.988785i \(-0.547717\pi\)
−0.149348 + 0.988785i \(0.547717\pi\)
\(258\) −32.4644 −2.02115
\(259\) −12.0098 −0.746250
\(260\) −0.0707401 −0.00438711
\(261\) −35.9135 −2.22299
\(262\) 13.2723 0.819966
\(263\) 5.34367 0.329505 0.164752 0.986335i \(-0.447318\pi\)
0.164752 + 0.986335i \(0.447318\pi\)
\(264\) 36.2081 2.22846
\(265\) −1.85623 −0.114027
\(266\) −66.4250 −4.07278
\(267\) 22.2987 1.36466
\(268\) −7.82293 −0.477862
\(269\) 2.93720 0.179084 0.0895421 0.995983i \(-0.471460\pi\)
0.0895421 + 0.995983i \(0.471460\pi\)
\(270\) −7.68136 −0.467473
\(271\) 15.3690 0.933601 0.466801 0.884363i \(-0.345407\pi\)
0.466801 + 0.884363i \(0.345407\pi\)
\(272\) −17.0671 −1.03484
\(273\) 6.89603 0.417367
\(274\) −8.51242 −0.514254
\(275\) 25.1463 1.51638
\(276\) 8.45678 0.509038
\(277\) −19.7095 −1.18423 −0.592113 0.805855i \(-0.701706\pi\)
−0.592113 + 0.805855i \(0.701706\pi\)
\(278\) −10.1081 −0.606243
\(279\) 12.1254 0.725929
\(280\) 2.71176 0.162058
\(281\) 0.697310 0.0415981 0.0207990 0.999784i \(-0.493379\pi\)
0.0207990 + 0.999784i \(0.493379\pi\)
\(282\) −16.9030 −1.00656
\(283\) 10.9282 0.649616 0.324808 0.945780i \(-0.394700\pi\)
0.324808 + 0.945780i \(0.394700\pi\)
\(284\) 6.41568 0.380701
\(285\) 6.48171 0.383944
\(286\) −3.27701 −0.193774
\(287\) 21.7373 1.28311
\(288\) −33.7132 −1.98657
\(289\) −5.00811 −0.294595
\(290\) 1.72820 0.101483
\(291\) 20.0659 1.17628
\(292\) −6.00760 −0.351568
\(293\) −29.3063 −1.71209 −0.856046 0.516900i \(-0.827086\pi\)
−0.856046 + 0.516900i \(0.827086\pi\)
\(294\) 113.533 6.62136
\(295\) 2.73185 0.159054
\(296\) 4.82135 0.280235
\(297\) −95.3991 −5.53561
\(298\) 27.3832 1.58627
\(299\) 1.32409 0.0765739
\(300\) −12.2798 −0.708974
\(301\) −30.1966 −1.74050
\(302\) 0.250225 0.0143989
\(303\) 27.5081 1.58030
\(304\) 37.9483 2.17649
\(305\) −0.203979 −0.0116798
\(306\) 48.7721 2.78811
\(307\) −12.5836 −0.718186 −0.359093 0.933302i \(-0.616914\pi\)
−0.359093 + 0.933302i \(0.616914\pi\)
\(308\) −19.4678 −1.10928
\(309\) 44.1656 2.51249
\(310\) −0.583489 −0.0331399
\(311\) 7.91347 0.448731 0.224366 0.974505i \(-0.427969\pi\)
0.224366 + 0.974505i \(0.427969\pi\)
\(312\) −2.76843 −0.156732
\(313\) 12.8422 0.725884 0.362942 0.931812i \(-0.381772\pi\)
0.362942 + 0.931812i \(0.381772\pi\)
\(314\) 22.1517 1.25010
\(315\) −11.0278 −0.621347
\(316\) −9.94336 −0.559358
\(317\) 27.2960 1.53310 0.766549 0.642186i \(-0.221972\pi\)
0.766549 + 0.642186i \(0.221972\pi\)
\(318\) 41.9914 2.35476
\(319\) 21.4634 1.20172
\(320\) −0.822412 −0.0459743
\(321\) −24.3179 −1.35729
\(322\) 29.3401 1.63506
\(323\) −26.6638 −1.48361
\(324\) 27.8612 1.54784
\(325\) −1.92266 −0.106650
\(326\) 4.22611 0.234062
\(327\) 23.9807 1.32613
\(328\) −8.72651 −0.481841
\(329\) −15.7222 −0.866794
\(330\) 7.08567 0.390053
\(331\) 14.5444 0.799433 0.399716 0.916639i \(-0.369109\pi\)
0.399716 + 0.916639i \(0.369109\pi\)
\(332\) −7.37682 −0.404856
\(333\) −19.6069 −1.07445
\(334\) −19.4311 −1.06322
\(335\) 2.64841 0.144698
\(336\) −87.2983 −4.76251
\(337\) −27.4734 −1.49657 −0.748285 0.663378i \(-0.769122\pi\)
−0.748285 + 0.663378i \(0.769122\pi\)
\(338\) −21.2392 −1.15526
\(339\) 55.8012 3.03071
\(340\) −0.629218 −0.0341241
\(341\) −7.24666 −0.392429
\(342\) −108.444 −5.86398
\(343\) 69.0707 3.72947
\(344\) 12.1225 0.653602
\(345\) −2.86299 −0.154138
\(346\) −1.46814 −0.0789279
\(347\) 7.39807 0.397149 0.198575 0.980086i \(-0.436369\pi\)
0.198575 + 0.980086i \(0.436369\pi\)
\(348\) −10.4813 −0.561858
\(349\) 4.96950 0.266011 0.133006 0.991115i \(-0.457537\pi\)
0.133006 + 0.991115i \(0.457537\pi\)
\(350\) −42.6037 −2.27726
\(351\) 7.29410 0.389331
\(352\) 20.1484 1.07392
\(353\) −9.80863 −0.522061 −0.261030 0.965331i \(-0.584062\pi\)
−0.261030 + 0.965331i \(0.584062\pi\)
\(354\) −61.7995 −3.28461
\(355\) −2.17199 −0.115277
\(356\) 4.81310 0.255094
\(357\) 61.3387 3.24639
\(358\) 16.9329 0.894934
\(359\) −27.4048 −1.44637 −0.723184 0.690655i \(-0.757322\pi\)
−0.723184 + 0.690655i \(0.757322\pi\)
\(360\) 4.42715 0.233331
\(361\) 40.2865 2.12034
\(362\) −3.82543 −0.201060
\(363\) 50.6656 2.65926
\(364\) 1.48849 0.0780178
\(365\) 2.03384 0.106456
\(366\) 4.61438 0.241198
\(367\) −2.86167 −0.149378 −0.0746890 0.997207i \(-0.523796\pi\)
−0.0746890 + 0.997207i \(0.523796\pi\)
\(368\) −16.7619 −0.873773
\(369\) 35.4878 1.84742
\(370\) 0.943504 0.0490504
\(371\) 39.0580 2.02779
\(372\) 3.53879 0.183478
\(373\) −5.46183 −0.282803 −0.141401 0.989952i \(-0.545161\pi\)
−0.141401 + 0.989952i \(0.545161\pi\)
\(374\) −29.1483 −1.50722
\(375\) 8.36628 0.432033
\(376\) 6.31174 0.325503
\(377\) −1.64107 −0.0845194
\(378\) 161.628 8.31326
\(379\) −4.72712 −0.242816 −0.121408 0.992603i \(-0.538741\pi\)
−0.121408 + 0.992603i \(0.538741\pi\)
\(380\) 1.39906 0.0717701
\(381\) −14.0519 −0.719899
\(382\) −13.8752 −0.709919
\(383\) 5.83789 0.298302 0.149151 0.988814i \(-0.452346\pi\)
0.149151 + 0.988814i \(0.452346\pi\)
\(384\) 45.4652 2.32014
\(385\) 6.59070 0.335893
\(386\) 17.1332 0.872058
\(387\) −49.2983 −2.50597
\(388\) 4.33115 0.219881
\(389\) −18.8576 −0.956116 −0.478058 0.878328i \(-0.658659\pi\)
−0.478058 + 0.878328i \(0.658659\pi\)
\(390\) −0.541762 −0.0274332
\(391\) 11.7775 0.595612
\(392\) −42.3942 −2.14123
\(393\) 27.2511 1.37463
\(394\) 3.74032 0.188434
\(395\) 3.36626 0.169375
\(396\) −31.7827 −1.59714
\(397\) −3.81702 −0.191571 −0.0957853 0.995402i \(-0.530536\pi\)
−0.0957853 + 0.995402i \(0.530536\pi\)
\(398\) −16.0873 −0.806385
\(399\) −136.386 −6.82782
\(400\) 24.3393 1.21697
\(401\) −19.0411 −0.950865 −0.475432 0.879752i \(-0.657708\pi\)
−0.475432 + 0.879752i \(0.657708\pi\)
\(402\) −59.9119 −2.98813
\(403\) 0.554072 0.0276003
\(404\) 5.93753 0.295403
\(405\) −9.43222 −0.468691
\(406\) −36.3640 −1.80472
\(407\) 11.7179 0.580835
\(408\) −24.6246 −1.21910
\(409\) 35.6584 1.76319 0.881597 0.472003i \(-0.156469\pi\)
0.881597 + 0.472003i \(0.156469\pi\)
\(410\) −1.70772 −0.0843380
\(411\) −17.4780 −0.862124
\(412\) 9.53299 0.469657
\(413\) −57.4825 −2.82853
\(414\) 47.9000 2.35415
\(415\) 2.49738 0.122591
\(416\) −1.54053 −0.0755306
\(417\) −20.7542 −1.01634
\(418\) 64.8107 3.17000
\(419\) 29.4082 1.43668 0.718341 0.695691i \(-0.244902\pi\)
0.718341 + 0.695691i \(0.244902\pi\)
\(420\) −3.21846 −0.157045
\(421\) 10.3743 0.505613 0.252807 0.967517i \(-0.418646\pi\)
0.252807 + 0.967517i \(0.418646\pi\)
\(422\) −8.61643 −0.419441
\(423\) −25.6678 −1.24801
\(424\) −15.6800 −0.761487
\(425\) −17.1016 −0.829551
\(426\) 49.1345 2.38057
\(427\) 4.29204 0.207707
\(428\) −5.24894 −0.253717
\(429\) −6.72845 −0.324852
\(430\) 2.37229 0.114402
\(431\) 11.8838 0.572423 0.286212 0.958166i \(-0.407604\pi\)
0.286212 + 0.958166i \(0.407604\pi\)
\(432\) −92.3376 −4.44259
\(433\) 6.97315 0.335108 0.167554 0.985863i \(-0.446413\pi\)
0.167554 + 0.985863i \(0.446413\pi\)
\(434\) 12.2775 0.589341
\(435\) 3.54838 0.170132
\(436\) 5.17615 0.247893
\(437\) −26.1870 −1.25269
\(438\) −46.0092 −2.19840
\(439\) −2.40033 −0.114561 −0.0572806 0.998358i \(-0.518243\pi\)
−0.0572806 + 0.998358i \(0.518243\pi\)
\(440\) −2.64586 −0.126136
\(441\) 172.403 8.20967
\(442\) 2.22864 0.106006
\(443\) 13.3945 0.636390 0.318195 0.948025i \(-0.396923\pi\)
0.318195 + 0.948025i \(0.396923\pi\)
\(444\) −5.72224 −0.271566
\(445\) −1.62944 −0.0772431
\(446\) −48.2478 −2.28460
\(447\) 56.2240 2.65930
\(448\) 17.3049 0.817579
\(449\) 34.3897 1.62295 0.811475 0.584388i \(-0.198665\pi\)
0.811475 + 0.584388i \(0.198665\pi\)
\(450\) −69.5538 −3.27880
\(451\) −21.2091 −0.998695
\(452\) 12.0445 0.566526
\(453\) 0.513770 0.0241390
\(454\) 8.39131 0.393824
\(455\) −0.503917 −0.0236240
\(456\) 54.7525 2.56402
\(457\) 35.5425 1.66261 0.831304 0.555818i \(-0.187595\pi\)
0.831304 + 0.555818i \(0.187595\pi\)
\(458\) −23.5520 −1.10051
\(459\) 64.8795 3.02832
\(460\) −0.617967 −0.0288128
\(461\) 36.7383 1.71107 0.855536 0.517743i \(-0.173227\pi\)
0.855536 + 0.517743i \(0.173227\pi\)
\(462\) −149.094 −6.93648
\(463\) −16.0358 −0.745246 −0.372623 0.927983i \(-0.621541\pi\)
−0.372623 + 0.927983i \(0.621541\pi\)
\(464\) 20.7746 0.964439
\(465\) −1.19804 −0.0555576
\(466\) 24.0358 1.11344
\(467\) 14.2901 0.661265 0.330633 0.943760i \(-0.392738\pi\)
0.330633 + 0.943760i \(0.392738\pi\)
\(468\) 2.43007 0.112330
\(469\) −55.7267 −2.57322
\(470\) 1.23516 0.0569738
\(471\) 45.4826 2.09573
\(472\) 23.0765 1.06218
\(473\) 29.4628 1.35470
\(474\) −76.1511 −3.49774
\(475\) 38.0252 1.74472
\(476\) 13.2398 0.606843
\(477\) 63.7652 2.91961
\(478\) −4.56253 −0.208685
\(479\) −28.7148 −1.31201 −0.656007 0.754755i \(-0.727756\pi\)
−0.656007 + 0.754755i \(0.727756\pi\)
\(480\) 3.33099 0.152038
\(481\) −0.895937 −0.0408512
\(482\) −47.2570 −2.15250
\(483\) 60.2419 2.74110
\(484\) 10.9360 0.497091
\(485\) −1.46628 −0.0665806
\(486\) 120.462 5.46428
\(487\) 42.6361 1.93203 0.966014 0.258491i \(-0.0832253\pi\)
0.966014 + 0.258491i \(0.0832253\pi\)
\(488\) −1.72305 −0.0779990
\(489\) 8.67716 0.392395
\(490\) −8.29623 −0.374786
\(491\) −2.12331 −0.0958235 −0.0479118 0.998852i \(-0.515257\pi\)
−0.0479118 + 0.998852i \(0.515257\pi\)
\(492\) 10.3571 0.466934
\(493\) −14.5970 −0.657414
\(494\) −4.95536 −0.222952
\(495\) 10.7598 0.483618
\(496\) −7.01411 −0.314943
\(497\) 45.7021 2.05002
\(498\) −56.4953 −2.53162
\(499\) 16.8343 0.753605 0.376803 0.926294i \(-0.377023\pi\)
0.376803 + 0.926294i \(0.377023\pi\)
\(500\) 1.80583 0.0807593
\(501\) −39.8965 −1.78245
\(502\) 16.1962 0.722873
\(503\) 24.3694 1.08658 0.543290 0.839545i \(-0.317178\pi\)
0.543290 + 0.839545i \(0.317178\pi\)
\(504\) −93.1544 −4.14943
\(505\) −2.01011 −0.0894488
\(506\) −28.6271 −1.27263
\(507\) −43.6090 −1.93674
\(508\) −3.03305 −0.134570
\(509\) −34.0372 −1.50867 −0.754336 0.656488i \(-0.772041\pi\)
−0.754336 + 0.656488i \(0.772041\pi\)
\(510\) −4.81886 −0.213383
\(511\) −42.7952 −1.89315
\(512\) −1.14931 −0.0507928
\(513\) −144.259 −6.36917
\(514\) −7.91560 −0.349142
\(515\) −3.22733 −0.142213
\(516\) −14.3877 −0.633381
\(517\) 15.3402 0.674659
\(518\) −19.8528 −0.872284
\(519\) −3.01443 −0.132319
\(520\) 0.202299 0.00887141
\(521\) −3.05217 −0.133718 −0.0668590 0.997762i \(-0.521298\pi\)
−0.0668590 + 0.997762i \(0.521298\pi\)
\(522\) −59.3671 −2.59843
\(523\) −44.1264 −1.92951 −0.964757 0.263143i \(-0.915241\pi\)
−0.964757 + 0.263143i \(0.915241\pi\)
\(524\) 5.88205 0.256959
\(525\) −87.4751 −3.81773
\(526\) 8.83340 0.385155
\(527\) 4.92835 0.214682
\(528\) 85.1768 3.70684
\(529\) −11.4331 −0.497093
\(530\) −3.06846 −0.133285
\(531\) −93.8446 −4.07251
\(532\) −29.4384 −1.27632
\(533\) 1.62162 0.0702402
\(534\) 36.8611 1.59514
\(535\) 1.77699 0.0768262
\(536\) 22.3717 0.966309
\(537\) 34.7672 1.50031
\(538\) 4.85537 0.209330
\(539\) −103.035 −4.43805
\(540\) −3.40425 −0.146495
\(541\) 12.7563 0.548435 0.274218 0.961668i \(-0.411581\pi\)
0.274218 + 0.961668i \(0.411581\pi\)
\(542\) 25.4059 1.09128
\(543\) −7.85448 −0.337068
\(544\) −13.7027 −0.587497
\(545\) −1.75235 −0.0750625
\(546\) 11.3996 0.487856
\(547\) 24.9606 1.06724 0.533620 0.845725i \(-0.320831\pi\)
0.533620 + 0.845725i \(0.320831\pi\)
\(548\) −3.77256 −0.161156
\(549\) 7.00709 0.299055
\(550\) 41.5684 1.77248
\(551\) 32.4561 1.38268
\(552\) −24.1843 −1.02935
\(553\) −70.8315 −3.01206
\(554\) −32.5809 −1.38423
\(555\) 1.93723 0.0822308
\(556\) −4.47973 −0.189983
\(557\) −13.7776 −0.583776 −0.291888 0.956453i \(-0.594283\pi\)
−0.291888 + 0.956453i \(0.594283\pi\)
\(558\) 20.0440 0.848531
\(559\) −2.25269 −0.0952786
\(560\) 6.37919 0.269570
\(561\) −59.8481 −2.52679
\(562\) 1.15270 0.0486235
\(563\) 24.1004 1.01571 0.507855 0.861442i \(-0.330438\pi\)
0.507855 + 0.861442i \(0.330438\pi\)
\(564\) −7.49111 −0.315433
\(565\) −4.07759 −0.171546
\(566\) 18.0650 0.759330
\(567\) 198.469 8.33492
\(568\) −18.3473 −0.769835
\(569\) −29.7332 −1.24648 −0.623241 0.782030i \(-0.714184\pi\)
−0.623241 + 0.782030i \(0.714184\pi\)
\(570\) 10.7147 0.448788
\(571\) −3.01461 −0.126158 −0.0630788 0.998009i \(-0.520092\pi\)
−0.0630788 + 0.998009i \(0.520092\pi\)
\(572\) −1.45231 −0.0607242
\(573\) −28.4891 −1.19015
\(574\) 35.9331 1.49982
\(575\) −16.7958 −0.700435
\(576\) 28.2516 1.17715
\(577\) −16.4062 −0.682998 −0.341499 0.939882i \(-0.610935\pi\)
−0.341499 + 0.939882i \(0.610935\pi\)
\(578\) −8.27871 −0.344349
\(579\) 35.1784 1.46196
\(580\) 0.765907 0.0318026
\(581\) −52.5488 −2.18009
\(582\) 33.1701 1.37495
\(583\) −38.1088 −1.57831
\(584\) 17.1803 0.710924
\(585\) −0.822684 −0.0340138
\(586\) −48.4451 −2.00125
\(587\) 20.2534 0.835945 0.417973 0.908460i \(-0.362741\pi\)
0.417973 + 0.908460i \(0.362741\pi\)
\(588\) 50.3157 2.07498
\(589\) −10.9581 −0.451521
\(590\) 4.51591 0.185917
\(591\) 7.67972 0.315902
\(592\) 11.3419 0.466147
\(593\) 33.3880 1.37108 0.685539 0.728035i \(-0.259566\pi\)
0.685539 + 0.728035i \(0.259566\pi\)
\(594\) −157.700 −6.47052
\(595\) −4.48224 −0.183754
\(596\) 12.1358 0.497100
\(597\) −33.0310 −1.35187
\(598\) 2.18879 0.0895064
\(599\) −0.653102 −0.0266850 −0.0133425 0.999911i \(-0.504247\pi\)
−0.0133425 + 0.999911i \(0.504247\pi\)
\(600\) 35.1172 1.43365
\(601\) 35.7275 1.45735 0.728677 0.684857i \(-0.240135\pi\)
0.728677 + 0.684857i \(0.240135\pi\)
\(602\) −49.9168 −2.03446
\(603\) −90.9782 −3.70492
\(604\) 0.110896 0.00451228
\(605\) −3.70232 −0.150521
\(606\) 45.4725 1.84719
\(607\) −30.2534 −1.22795 −0.613973 0.789327i \(-0.710430\pi\)
−0.613973 + 0.789327i \(0.710430\pi\)
\(608\) 30.4677 1.23563
\(609\) −74.6637 −3.02553
\(610\) −0.337189 −0.0136524
\(611\) −1.17289 −0.0474501
\(612\) 21.6149 0.873732
\(613\) −18.2433 −0.736838 −0.368419 0.929660i \(-0.620101\pi\)
−0.368419 + 0.929660i \(0.620101\pi\)
\(614\) −20.8015 −0.839480
\(615\) −3.50633 −0.141389
\(616\) 55.6731 2.24313
\(617\) −37.2194 −1.49840 −0.749198 0.662346i \(-0.769561\pi\)
−0.749198 + 0.662346i \(0.769561\pi\)
\(618\) 73.0083 2.93683
\(619\) −46.2028 −1.85705 −0.928523 0.371274i \(-0.878921\pi\)
−0.928523 + 0.371274i \(0.878921\pi\)
\(620\) −0.258592 −0.0103853
\(621\) 63.7194 2.55697
\(622\) 13.0814 0.524518
\(623\) 34.2861 1.37365
\(624\) −6.51252 −0.260709
\(625\) 24.0811 0.963243
\(626\) 21.2289 0.848478
\(627\) 133.071 5.31436
\(628\) 9.81727 0.391752
\(629\) −7.96917 −0.317752
\(630\) −18.2296 −0.726286
\(631\) 20.1051 0.800373 0.400187 0.916434i \(-0.368945\pi\)
0.400187 + 0.916434i \(0.368945\pi\)
\(632\) 28.4356 1.13111
\(633\) −17.6915 −0.703174
\(634\) 45.1220 1.79202
\(635\) 1.02682 0.0407481
\(636\) 18.6098 0.737928
\(637\) 7.87798 0.312137
\(638\) 35.4803 1.40468
\(639\) 74.6123 2.95162
\(640\) −3.32230 −0.131326
\(641\) 39.9385 1.57748 0.788738 0.614729i \(-0.210735\pi\)
0.788738 + 0.614729i \(0.210735\pi\)
\(642\) −40.1989 −1.58653
\(643\) −11.2149 −0.442272 −0.221136 0.975243i \(-0.570977\pi\)
−0.221136 + 0.975243i \(0.570977\pi\)
\(644\) 13.0030 0.512390
\(645\) 4.87085 0.191790
\(646\) −44.0768 −1.73418
\(647\) −22.4270 −0.881696 −0.440848 0.897582i \(-0.645322\pi\)
−0.440848 + 0.897582i \(0.645322\pi\)
\(648\) −79.6761 −3.12997
\(649\) 56.0856 2.20155
\(650\) −3.17827 −0.124662
\(651\) 25.2086 0.988002
\(652\) 1.87294 0.0733498
\(653\) 23.0516 0.902079 0.451039 0.892504i \(-0.351053\pi\)
0.451039 + 0.892504i \(0.351053\pi\)
\(654\) 39.6415 1.55010
\(655\) −1.99133 −0.0778078
\(656\) −20.5284 −0.801500
\(657\) −69.8665 −2.72575
\(658\) −25.9898 −1.01319
\(659\) −28.0890 −1.09419 −0.547097 0.837069i \(-0.684267\pi\)
−0.547097 + 0.837069i \(0.684267\pi\)
\(660\) 3.14025 0.122234
\(661\) 22.6080 0.879349 0.439675 0.898157i \(-0.355094\pi\)
0.439675 + 0.898157i \(0.355094\pi\)
\(662\) 24.0428 0.934449
\(663\) 4.57592 0.177714
\(664\) 21.0959 0.818679
\(665\) 9.96618 0.386472
\(666\) −32.4113 −1.25591
\(667\) −14.3359 −0.555090
\(668\) −8.61153 −0.333190
\(669\) −99.0638 −3.83003
\(670\) 4.37797 0.169136
\(671\) −4.18774 −0.161666
\(672\) −70.0893 −2.70376
\(673\) 13.6455 0.525997 0.262998 0.964796i \(-0.415289\pi\)
0.262998 + 0.964796i \(0.415289\pi\)
\(674\) −45.4151 −1.74932
\(675\) −92.5247 −3.56128
\(676\) −9.41285 −0.362033
\(677\) −2.09832 −0.0806450 −0.0403225 0.999187i \(-0.512839\pi\)
−0.0403225 + 0.999187i \(0.512839\pi\)
\(678\) 92.2428 3.54256
\(679\) 30.8530 1.18403
\(680\) 1.79941 0.0690041
\(681\) 17.2293 0.660228
\(682\) −11.9792 −0.458706
\(683\) 36.7274 1.40533 0.702667 0.711519i \(-0.251992\pi\)
0.702667 + 0.711519i \(0.251992\pi\)
\(684\) −48.0605 −1.83764
\(685\) 1.27718 0.0487984
\(686\) 114.178 4.35933
\(687\) −48.3576 −1.84496
\(688\) 28.5173 1.08721
\(689\) 2.91376 0.111005
\(690\) −4.73269 −0.180171
\(691\) −19.4020 −0.738087 −0.369044 0.929412i \(-0.620315\pi\)
−0.369044 + 0.929412i \(0.620315\pi\)
\(692\) −0.650655 −0.0247342
\(693\) −226.404 −8.60038
\(694\) 12.2295 0.464224
\(695\) 1.51658 0.0575273
\(696\) 29.9740 1.13616
\(697\) 14.4240 0.546347
\(698\) 8.21488 0.310938
\(699\) 49.3510 1.86663
\(700\) −18.8812 −0.713643
\(701\) 10.5531 0.398586 0.199293 0.979940i \(-0.436136\pi\)
0.199293 + 0.979940i \(0.436136\pi\)
\(702\) 12.0576 0.455085
\(703\) 17.7193 0.668297
\(704\) −16.8843 −0.636353
\(705\) 2.53607 0.0955139
\(706\) −16.2143 −0.610232
\(707\) 42.2960 1.59070
\(708\) −27.3885 −1.02932
\(709\) 28.3172 1.06347 0.531737 0.846910i \(-0.321540\pi\)
0.531737 + 0.846910i \(0.321540\pi\)
\(710\) −3.59043 −0.134746
\(711\) −115.638 −4.33676
\(712\) −13.7643 −0.515838
\(713\) 4.84022 0.181268
\(714\) 101.397 3.79467
\(715\) 0.491671 0.0183875
\(716\) 7.50438 0.280452
\(717\) −9.36791 −0.349851
\(718\) −45.3017 −1.69064
\(719\) −24.7641 −0.923544 −0.461772 0.886999i \(-0.652786\pi\)
−0.461772 + 0.886999i \(0.652786\pi\)
\(720\) 10.4145 0.388127
\(721\) 67.9083 2.52904
\(722\) 66.5960 2.47845
\(723\) −97.0293 −3.60856
\(724\) −1.69536 −0.0630077
\(725\) 20.8167 0.773114
\(726\) 83.7533 3.10838
\(727\) 5.73960 0.212870 0.106435 0.994320i \(-0.466056\pi\)
0.106435 + 0.994320i \(0.466056\pi\)
\(728\) −4.25670 −0.157764
\(729\) 133.246 4.93503
\(730\) 3.36205 0.124435
\(731\) −20.0372 −0.741102
\(732\) 2.04501 0.0755859
\(733\) 19.2172 0.709802 0.354901 0.934904i \(-0.384515\pi\)
0.354901 + 0.934904i \(0.384515\pi\)
\(734\) −4.73051 −0.174606
\(735\) −17.0341 −0.628311
\(736\) −13.4576 −0.496055
\(737\) 54.3724 2.00283
\(738\) 58.6635 2.15943
\(739\) 18.5922 0.683924 0.341962 0.939714i \(-0.388909\pi\)
0.341962 + 0.939714i \(0.388909\pi\)
\(740\) 0.418145 0.0153713
\(741\) −10.1745 −0.373769
\(742\) 64.5652 2.37026
\(743\) 27.4092 1.00554 0.502772 0.864419i \(-0.332313\pi\)
0.502772 + 0.864419i \(0.332313\pi\)
\(744\) −10.1201 −0.371020
\(745\) −4.10849 −0.150523
\(746\) −9.02873 −0.330565
\(747\) −85.7900 −3.13889
\(748\) −12.9180 −0.472329
\(749\) −37.3908 −1.36623
\(750\) 13.8300 0.504999
\(751\) 12.7262 0.464387 0.232193 0.972670i \(-0.425410\pi\)
0.232193 + 0.972670i \(0.425410\pi\)
\(752\) 14.8479 0.541446
\(753\) 33.2545 1.21186
\(754\) −2.71279 −0.0987939
\(755\) −0.0375430 −0.00136633
\(756\) 71.6308 2.60519
\(757\) −5.99274 −0.217810 −0.108905 0.994052i \(-0.534734\pi\)
−0.108905 + 0.994052i \(0.534734\pi\)
\(758\) −7.81421 −0.283825
\(759\) −58.7779 −2.13350
\(760\) −4.00096 −0.145130
\(761\) −24.5812 −0.891067 −0.445534 0.895265i \(-0.646986\pi\)
−0.445534 + 0.895265i \(0.646986\pi\)
\(762\) −23.2286 −0.841483
\(763\) 36.8723 1.33487
\(764\) −6.14927 −0.222473
\(765\) −7.31760 −0.264568
\(766\) 9.65039 0.348683
\(767\) −4.28824 −0.154839
\(768\) 52.6475 1.89975
\(769\) 16.0952 0.580408 0.290204 0.956965i \(-0.406277\pi\)
0.290204 + 0.956965i \(0.406277\pi\)
\(770\) 10.8948 0.392622
\(771\) −16.2525 −0.585321
\(772\) 7.59314 0.273283
\(773\) −38.1304 −1.37146 −0.685728 0.727858i \(-0.740516\pi\)
−0.685728 + 0.727858i \(0.740516\pi\)
\(774\) −81.4930 −2.92921
\(775\) −7.02832 −0.252465
\(776\) −12.3860 −0.444633
\(777\) −40.7624 −1.46234
\(778\) −31.1727 −1.11759
\(779\) −32.0715 −1.14908
\(780\) −0.240100 −0.00859695
\(781\) −44.5915 −1.59561
\(782\) 19.4688 0.696204
\(783\) −78.9737 −2.82229
\(784\) −99.7289 −3.56175
\(785\) −3.32357 −0.118623
\(786\) 45.0477 1.60680
\(787\) 15.5846 0.555531 0.277766 0.960649i \(-0.410406\pi\)
0.277766 + 0.960649i \(0.410406\pi\)
\(788\) 1.65764 0.0590511
\(789\) 18.1370 0.645694
\(790\) 5.56463 0.197981
\(791\) 85.7991 3.05066
\(792\) 90.8906 3.22966
\(793\) 0.320190 0.0113703
\(794\) −6.30976 −0.223925
\(795\) −6.30024 −0.223447
\(796\) −7.12963 −0.252703
\(797\) 47.1325 1.66952 0.834759 0.550616i \(-0.185607\pi\)
0.834759 + 0.550616i \(0.185607\pi\)
\(798\) −225.454 −7.98097
\(799\) −10.4326 −0.369079
\(800\) 19.5414 0.690892
\(801\) 55.9748 1.97777
\(802\) −31.4760 −1.11146
\(803\) 41.7552 1.47351
\(804\) −26.5519 −0.936413
\(805\) −4.40209 −0.155153
\(806\) 0.915914 0.0322617
\(807\) 9.96918 0.350932
\(808\) −16.9799 −0.597349
\(809\) 6.04880 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(810\) −15.5920 −0.547848
\(811\) −52.3118 −1.83692 −0.918458 0.395519i \(-0.870565\pi\)
−0.918458 + 0.395519i \(0.870565\pi\)
\(812\) −16.1159 −0.565558
\(813\) 52.1641 1.82948
\(814\) 19.3704 0.678932
\(815\) −0.634071 −0.0222105
\(816\) −57.9275 −2.02787
\(817\) 44.5524 1.55869
\(818\) 58.9455 2.06098
\(819\) 17.3106 0.604881
\(820\) −0.756830 −0.0264296
\(821\) −6.17498 −0.215508 −0.107754 0.994178i \(-0.534366\pi\)
−0.107754 + 0.994178i \(0.534366\pi\)
\(822\) −28.8921 −1.00773
\(823\) −43.5482 −1.51799 −0.758997 0.651094i \(-0.774310\pi\)
−0.758997 + 0.651094i \(0.774310\pi\)
\(824\) −27.2620 −0.949717
\(825\) 85.3493 2.97148
\(826\) −95.0220 −3.30624
\(827\) 27.4102 0.953147 0.476574 0.879135i \(-0.341879\pi\)
0.476574 + 0.879135i \(0.341879\pi\)
\(828\) 21.2284 0.737739
\(829\) −52.5074 −1.82366 −0.911829 0.410569i \(-0.865330\pi\)
−0.911829 + 0.410569i \(0.865330\pi\)
\(830\) 4.12831 0.143296
\(831\) −66.8961 −2.32060
\(832\) 1.29096 0.0447559
\(833\) 70.0729 2.42788
\(834\) −34.3080 −1.18799
\(835\) 2.91538 0.100891
\(836\) 28.7230 0.993405
\(837\) 26.6638 0.921634
\(838\) 48.6135 1.67932
\(839\) 33.7729 1.16597 0.582985 0.812483i \(-0.301885\pi\)
0.582985 + 0.812483i \(0.301885\pi\)
\(840\) 9.20400 0.317568
\(841\) −11.2320 −0.387312
\(842\) 17.1494 0.591006
\(843\) 2.36675 0.0815151
\(844\) −3.81865 −0.131443
\(845\) 3.18666 0.109625
\(846\) −42.4303 −1.45879
\(847\) 77.9027 2.67677
\(848\) −36.8859 −1.26667
\(849\) 37.0916 1.27298
\(850\) −28.2700 −0.969654
\(851\) −7.82667 −0.268295
\(852\) 21.7755 0.746018
\(853\) 2.43672 0.0834318 0.0417159 0.999130i \(-0.486718\pi\)
0.0417159 + 0.999130i \(0.486718\pi\)
\(854\) 7.09500 0.242786
\(855\) 16.2706 0.556442
\(856\) 15.0107 0.513054
\(857\) −17.0904 −0.583797 −0.291899 0.956449i \(-0.594287\pi\)
−0.291899 + 0.956449i \(0.594287\pi\)
\(858\) −11.1225 −0.379717
\(859\) −11.1590 −0.380741 −0.190371 0.981712i \(-0.560969\pi\)
−0.190371 + 0.981712i \(0.560969\pi\)
\(860\) 1.05136 0.0358510
\(861\) 73.7788 2.51437
\(862\) 19.6447 0.669100
\(863\) 38.0440 1.29503 0.647517 0.762051i \(-0.275808\pi\)
0.647517 + 0.762051i \(0.275808\pi\)
\(864\) −74.1353 −2.52213
\(865\) 0.220275 0.00748959
\(866\) 11.5270 0.391704
\(867\) −16.9981 −0.577285
\(868\) 5.44119 0.184686
\(869\) 69.1102 2.34440
\(870\) 5.86569 0.198866
\(871\) −4.15726 −0.140863
\(872\) −14.8025 −0.501276
\(873\) 50.3699 1.70476
\(874\) −43.2887 −1.46426
\(875\) 12.8639 0.434878
\(876\) −20.3905 −0.688930
\(877\) 11.1319 0.375898 0.187949 0.982179i \(-0.439816\pi\)
0.187949 + 0.982179i \(0.439816\pi\)
\(878\) −3.96788 −0.133910
\(879\) −99.4688 −3.35500
\(880\) −6.22417 −0.209817
\(881\) −29.1896 −0.983424 −0.491712 0.870758i \(-0.663629\pi\)
−0.491712 + 0.870758i \(0.663629\pi\)
\(882\) 284.993 9.59620
\(883\) −2.66828 −0.0897948 −0.0448974 0.998992i \(-0.514296\pi\)
−0.0448974 + 0.998992i \(0.514296\pi\)
\(884\) 0.987696 0.0332198
\(885\) 9.27220 0.311681
\(886\) 22.1418 0.743870
\(887\) 46.8168 1.57195 0.785977 0.618255i \(-0.212160\pi\)
0.785977 + 0.618255i \(0.212160\pi\)
\(888\) 16.3642 0.549147
\(889\) −21.6059 −0.724640
\(890\) −2.69357 −0.0902887
\(891\) −193.646 −6.48739
\(892\) −21.3826 −0.715942
\(893\) 23.1968 0.776250
\(894\) 92.9416 3.10843
\(895\) −2.54056 −0.0849216
\(896\) 69.9066 2.33541
\(897\) 4.49409 0.150053
\(898\) 56.8482 1.89705
\(899\) −5.99897 −0.200077
\(900\) −30.8251 −1.02750
\(901\) 25.9173 0.863429
\(902\) −35.0598 −1.16736
\(903\) −102.491 −3.41067
\(904\) −34.4443 −1.14560
\(905\) 0.573954 0.0190789
\(906\) 0.849293 0.0282159
\(907\) 50.4344 1.67465 0.837323 0.546709i \(-0.184120\pi\)
0.837323 + 0.546709i \(0.184120\pi\)
\(908\) 3.71888 0.123416
\(909\) 69.0515 2.29029
\(910\) −0.833006 −0.0276139
\(911\) 13.8276 0.458130 0.229065 0.973411i \(-0.426433\pi\)
0.229065 + 0.973411i \(0.426433\pi\)
\(912\) 128.801 4.26502
\(913\) 51.2718 1.69685
\(914\) 58.7539 1.94341
\(915\) −0.692327 −0.0228876
\(916\) −10.4378 −0.344876
\(917\) 41.9008 1.38369
\(918\) 107.250 3.53977
\(919\) −7.78823 −0.256910 −0.128455 0.991715i \(-0.541002\pi\)
−0.128455 + 0.991715i \(0.541002\pi\)
\(920\) 1.76723 0.0582639
\(921\) −42.7102 −1.40735
\(922\) 60.7306 2.00006
\(923\) 3.40942 0.112222
\(924\) −66.0758 −2.17373
\(925\) 11.3648 0.373673
\(926\) −26.5081 −0.871110
\(927\) 110.866 3.64130
\(928\) 16.6794 0.547527
\(929\) −6.09855 −0.200087 −0.100044 0.994983i \(-0.531898\pi\)
−0.100044 + 0.994983i \(0.531898\pi\)
\(930\) −1.98042 −0.0649407
\(931\) −155.806 −5.10634
\(932\) 10.6523 0.348926
\(933\) 26.8592 0.879330
\(934\) 23.6223 0.772946
\(935\) 4.37331 0.143023
\(936\) −6.94939 −0.227148
\(937\) 5.26357 0.171953 0.0859767 0.996297i \(-0.472599\pi\)
0.0859767 + 0.996297i \(0.472599\pi\)
\(938\) −92.1196 −3.00781
\(939\) 43.5878 1.42243
\(940\) 0.547402 0.0178543
\(941\) 39.7008 1.29421 0.647104 0.762402i \(-0.275980\pi\)
0.647104 + 0.762402i \(0.275980\pi\)
\(942\) 75.1855 2.44967
\(943\) 14.1660 0.461310
\(944\) 54.2857 1.76685
\(945\) −24.2502 −0.788858
\(946\) 48.7037 1.58349
\(947\) 38.0367 1.23603 0.618013 0.786168i \(-0.287938\pi\)
0.618013 + 0.786168i \(0.287938\pi\)
\(948\) −33.7489 −1.09611
\(949\) −3.19256 −0.103635
\(950\) 62.8580 2.03938
\(951\) 92.6458 3.00424
\(952\) −37.8624 −1.22713
\(953\) −24.5430 −0.795027 −0.397513 0.917596i \(-0.630127\pi\)
−0.397513 + 0.917596i \(0.630127\pi\)
\(954\) 105.408 3.41270
\(955\) 2.08180 0.0673653
\(956\) −2.02203 −0.0653972
\(957\) 72.8492 2.35488
\(958\) −47.4674 −1.53360
\(959\) −26.8738 −0.867801
\(960\) −2.79136 −0.0900907
\(961\) −28.9746 −0.934664
\(962\) −1.48104 −0.0477506
\(963\) −61.0434 −1.96710
\(964\) −20.9435 −0.674543
\(965\) −2.57061 −0.0827509
\(966\) 99.5834 3.20404
\(967\) −24.9644 −0.802800 −0.401400 0.915903i \(-0.631476\pi\)
−0.401400 + 0.915903i \(0.631476\pi\)
\(968\) −31.2743 −1.00519
\(969\) −90.4998 −2.90727
\(970\) −2.42386 −0.0778253
\(971\) −19.3300 −0.620330 −0.310165 0.950683i \(-0.600384\pi\)
−0.310165 + 0.950683i \(0.600384\pi\)
\(972\) 53.3867 1.71238
\(973\) −31.9114 −1.02303
\(974\) 70.4801 2.25833
\(975\) −6.52572 −0.208990
\(976\) −4.05335 −0.129745
\(977\) 12.6311 0.404105 0.202052 0.979375i \(-0.435239\pi\)
0.202052 + 0.979375i \(0.435239\pi\)
\(978\) 14.3439 0.458666
\(979\) −33.4529 −1.06916
\(980\) −3.67675 −0.117449
\(981\) 60.1969 1.92194
\(982\) −3.50996 −0.112007
\(983\) −53.3946 −1.70302 −0.851512 0.524335i \(-0.824314\pi\)
−0.851512 + 0.524335i \(0.824314\pi\)
\(984\) −29.6187 −0.944211
\(985\) −0.561185 −0.0178808
\(986\) −24.1297 −0.768445
\(987\) −53.3630 −1.69856
\(988\) −2.19613 −0.0698681
\(989\) −19.6789 −0.625753
\(990\) 17.7866 0.565296
\(991\) 47.5165 1.50941 0.754705 0.656064i \(-0.227780\pi\)
0.754705 + 0.656064i \(0.227780\pi\)
\(992\) −5.63143 −0.178798
\(993\) 49.3653 1.56656
\(994\) 75.5484 2.39625
\(995\) 2.41369 0.0765191
\(996\) −25.0377 −0.793351
\(997\) 35.2936 1.11776 0.558880 0.829248i \(-0.311231\pi\)
0.558880 + 0.829248i \(0.311231\pi\)
\(998\) 27.8281 0.880882
\(999\) −43.1154 −1.36411
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.2.a.b.1.63 86
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.2.a.b.1.63 86 1.1 even 1 trivial