Properties

Label 1759.2.a.b.1.63
Level 17591759
Weight 22
Character 1759.1
Self dual yes
Analytic conductor 14.04614.046
Analytic rank 00
Dimension 8686
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1759,2,Mod(1,1759)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1759, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1759.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1759 1759
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1759.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.045685715514.0456857155
Analytic rank: 00
Dimension: 8686
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.63
Character χ\chi == 1759.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.65306q2+3.39411q3+0.732607q40.248020q5+5.61067q6+5.21873q72.09508q8+8.51998q90.409991q105.09191q11+2.48655q12+0.389321q13+8.62687q140.841806q154.92850q16+3.46293q17+14.0840q187.69977q190.181701q20+17.7129q218.41723q22+3.40101q237.11092q244.93849q25+0.643572q26+18.7354q27+3.82328q284.21520q291.39156q30+1.42317q313.95696q3217.2825q33+5.72443q341.29435q35+6.24180q362.30128q3712.7282q38+1.32140q39+0.519620q40+4.16525q41+29.2806q425.78619q433.73037q442.11312q45+5.62207q463.01265q4716.7279q48+20.2351q498.16361q50+11.7536q51+0.285220q52+7.48420q53+30.9708q54+1.26289q5510.9336q5626.1339q576.96799q5811.0147q590.616713q60+0.822430q61+2.35259q62+44.4635q63+3.31592q640.0965594q6528.5690q6610.6782q67+2.53697q68+11.5434q692.13963q70+8.75733q7117.8500q728.20031q733.80415q7416.7618q755.64091q7626.5733q77+2.18435q7813.5726q79+1.22236q80+38.0302q81+6.88540q8210.0693q83+12.9766q840.858875q859.56493q8614.3069q87+10.6679q88+6.56982q893.49312q90+2.03176q91+2.49160q92+4.83041q934.98010q94+1.90969q9513.4303q96+5.91197q97+33.4499q9843.3830q99+O(q100)q+1.65306 q^{2} +3.39411 q^{3} +0.732607 q^{4} -0.248020 q^{5} +5.61067 q^{6} +5.21873 q^{7} -2.09508 q^{8} +8.51998 q^{9} -0.409991 q^{10} -5.09191 q^{11} +2.48655 q^{12} +0.389321 q^{13} +8.62687 q^{14} -0.841806 q^{15} -4.92850 q^{16} +3.46293 q^{17} +14.0840 q^{18} -7.69977 q^{19} -0.181701 q^{20} +17.7129 q^{21} -8.41723 q^{22} +3.40101 q^{23} -7.11092 q^{24} -4.93849 q^{25} +0.643572 q^{26} +18.7354 q^{27} +3.82328 q^{28} -4.21520 q^{29} -1.39156 q^{30} +1.42317 q^{31} -3.95696 q^{32} -17.2825 q^{33} +5.72443 q^{34} -1.29435 q^{35} +6.24180 q^{36} -2.30128 q^{37} -12.7282 q^{38} +1.32140 q^{39} +0.519620 q^{40} +4.16525 q^{41} +29.2806 q^{42} -5.78619 q^{43} -3.73037 q^{44} -2.11312 q^{45} +5.62207 q^{46} -3.01265 q^{47} -16.7279 q^{48} +20.2351 q^{49} -8.16361 q^{50} +11.7536 q^{51} +0.285220 q^{52} +7.48420 q^{53} +30.9708 q^{54} +1.26289 q^{55} -10.9336 q^{56} -26.1339 q^{57} -6.96799 q^{58} -11.0147 q^{59} -0.616713 q^{60} +0.822430 q^{61} +2.35259 q^{62} +44.4635 q^{63} +3.31592 q^{64} -0.0965594 q^{65} -28.5690 q^{66} -10.6782 q^{67} +2.53697 q^{68} +11.5434 q^{69} -2.13963 q^{70} +8.75733 q^{71} -17.8500 q^{72} -8.20031 q^{73} -3.80415 q^{74} -16.7618 q^{75} -5.64091 q^{76} -26.5733 q^{77} +2.18435 q^{78} -13.5726 q^{79} +1.22236 q^{80} +38.0302 q^{81} +6.88540 q^{82} -10.0693 q^{83} +12.9766 q^{84} -0.858875 q^{85} -9.56493 q^{86} -14.3069 q^{87} +10.6679 q^{88} +6.56982 q^{89} -3.49312 q^{90} +2.03176 q^{91} +2.49160 q^{92} +4.83041 q^{93} -4.98010 q^{94} +1.90969 q^{95} -13.4303 q^{96} +5.91197 q^{97} +33.4499 q^{98} -43.3830 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 86q+10q2+11q3+94q4+30q5+13q6+30q8+135q9+9q10+22q11+26q12+16q13+52q14+9q15+102q16+72q17+21q18+10q19+17q99+O(q100) 86 q + 10 q^{2} + 11 q^{3} + 94 q^{4} + 30 q^{5} + 13 q^{6} + 30 q^{8} + 135 q^{9} + 9 q^{10} + 22 q^{11} + 26 q^{12} + 16 q^{13} + 52 q^{14} + 9 q^{15} + 102 q^{16} + 72 q^{17} + 21 q^{18} + 10 q^{19}+ \cdots - 17 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.65306 1.16889 0.584445 0.811433i 0.301312π-0.301312\pi
0.584445 + 0.811433i 0.301312π0.301312\pi
33 3.39411 1.95959 0.979795 0.200004i 0.0640954π-0.0640954\pi
0.979795 + 0.200004i 0.0640954π0.0640954\pi
44 0.732607 0.366304
55 −0.248020 −0.110918 −0.0554589 0.998461i 0.517662π-0.517662\pi
−0.0554589 + 0.998461i 0.517662π0.517662\pi
66 5.61067 2.29055
77 5.21873 1.97249 0.986247 0.165276i 0.0528515π-0.0528515\pi
0.986247 + 0.165276i 0.0528515π0.0528515\pi
88 −2.09508 −0.740721
99 8.51998 2.83999
1010 −0.409991 −0.129651
1111 −5.09191 −1.53527 −0.767634 0.640889i 0.778566π-0.778566\pi
−0.767634 + 0.640889i 0.778566π0.778566\pi
1212 2.48655 0.717805
1313 0.389321 0.107978 0.0539892 0.998542i 0.482806π-0.482806\pi
0.0539892 + 0.998542i 0.482806π0.482806\pi
1414 8.62687 2.30563
1515 −0.841806 −0.217353
1616 −4.92850 −1.23213
1717 3.46293 0.839884 0.419942 0.907551i 0.362050π-0.362050\pi
0.419942 + 0.907551i 0.362050π0.362050\pi
1818 14.0840 3.31964
1919 −7.69977 −1.76645 −0.883225 0.468950i 0.844632π-0.844632\pi
−0.883225 + 0.468950i 0.844632π0.844632\pi
2020 −0.181701 −0.0406296
2121 17.7129 3.86528
2222 −8.41723 −1.79456
2323 3.40101 0.709159 0.354580 0.935026i 0.384624π-0.384624\pi
0.354580 + 0.935026i 0.384624π0.384624\pi
2424 −7.11092 −1.45151
2525 −4.93849 −0.987697
2626 0.643572 0.126215
2727 18.7354 3.60563
2828 3.82328 0.722532
2929 −4.21520 −0.782744 −0.391372 0.920233i 0.627999π-0.627999\pi
−0.391372 + 0.920233i 0.627999π0.627999\pi
3030 −1.39156 −0.254062
3131 1.42317 0.255609 0.127805 0.991799i 0.459207π-0.459207\pi
0.127805 + 0.991799i 0.459207π0.459207\pi
3232 −3.95696 −0.699498
3333 −17.2825 −3.00850
3434 5.72443 0.981732
3535 −1.29435 −0.218785
3636 6.24180 1.04030
3737 −2.30128 −0.378328 −0.189164 0.981946i 0.560578π-0.560578\pi
−0.189164 + 0.981946i 0.560578π0.560578\pi
3838 −12.7282 −2.06478
3939 1.32140 0.211593
4040 0.519620 0.0821591
4141 4.16525 0.650502 0.325251 0.945628i 0.394551π-0.394551\pi
0.325251 + 0.945628i 0.394551π0.394551\pi
4242 29.2806 4.51809
4343 −5.78619 −0.882386 −0.441193 0.897412i 0.645445π-0.645445\pi
−0.441193 + 0.897412i 0.645445π0.645445\pi
4444 −3.73037 −0.562374
4545 −2.11312 −0.315006
4646 5.62207 0.828929
4747 −3.01265 −0.439441 −0.219720 0.975563i 0.570514π-0.570514\pi
−0.219720 + 0.975563i 0.570514π0.570514\pi
4848 −16.7279 −2.41446
4949 20.2351 2.89074
5050 −8.16361 −1.15451
5151 11.7536 1.64583
5252 0.285220 0.0395529
5353 7.48420 1.02803 0.514017 0.857780i 0.328157π-0.328157\pi
0.514017 + 0.857780i 0.328157π0.328157\pi
5454 30.9708 4.21459
5555 1.26289 0.170288
5656 −10.9336 −1.46107
5757 −26.1339 −3.46152
5858 −6.96799 −0.914941
5959 −11.0147 −1.43399 −0.716993 0.697081i 0.754482π-0.754482\pi
−0.716993 + 0.697081i 0.754482π0.754482\pi
6060 −0.616713 −0.0796173
6161 0.822430 0.105301 0.0526507 0.998613i 0.483233π-0.483233\pi
0.0526507 + 0.998613i 0.483233π0.483233\pi
6262 2.35259 0.298779
6363 44.4635 5.60187
6464 3.31592 0.414490
6565 −0.0965594 −0.0119767
6666 −28.5690 −3.51660
6767 −10.6782 −1.30455 −0.652275 0.757982i 0.726185π-0.726185\pi
−0.652275 + 0.757982i 0.726185π0.726185\pi
6868 2.53697 0.307653
6969 11.5434 1.38966
7070 −2.13963 −0.255735
7171 8.75733 1.03930 0.519652 0.854378i 0.326062π-0.326062\pi
0.519652 + 0.854378i 0.326062π0.326062\pi
7272 −17.8500 −2.10364
7373 −8.20031 −0.959773 −0.479887 0.877331i 0.659322π-0.659322\pi
−0.479887 + 0.877331i 0.659322π0.659322\pi
7474 −3.80415 −0.442224
7575 −16.7618 −1.93548
7676 −5.64091 −0.647057
7777 −26.5733 −3.02831
7878 2.18435 0.247329
7979 −13.5726 −1.52703 −0.763516 0.645789i 0.776529π-0.776529\pi
−0.763516 + 0.645789i 0.776529π0.776529\pi
8080 1.22236 0.136665
8181 38.0302 4.22557
8282 6.88540 0.760366
8383 −10.0693 −1.10525 −0.552623 0.833431i 0.686373π-0.686373\pi
−0.552623 + 0.833431i 0.686373π0.686373\pi
8484 12.9766 1.41587
8585 −0.858875 −0.0931580
8686 −9.56493 −1.03141
8787 −14.3069 −1.53386
8888 10.6679 1.13721
8989 6.56982 0.696400 0.348200 0.937420i 0.386793π-0.386793\pi
0.348200 + 0.937420i 0.386793π0.386793\pi
9090 −3.49312 −0.368207
9191 2.03176 0.212987
9292 2.49160 0.259768
9393 4.83041 0.500890
9494 −4.98010 −0.513658
9595 1.90969 0.195931
9696 −13.4303 −1.37073
9797 5.91197 0.600270 0.300135 0.953897i 0.402968π-0.402968\pi
0.300135 + 0.953897i 0.402968π0.402968\pi
9898 33.4499 3.37895
9999 −43.3830 −4.36015
100100 −3.61797 −0.361797
101101 8.10465 0.806443 0.403222 0.915102i 0.367890π-0.367890\pi
0.403222 + 0.915102i 0.367890π0.367890\pi
102102 19.4294 1.92379
103103 13.0124 1.28215 0.641076 0.767478i 0.278488π-0.278488\pi
0.641076 + 0.767478i 0.278488π0.278488\pi
104104 −0.815658 −0.0799819
105105 −4.39316 −0.428728
106106 12.3718 1.20166
107107 −7.16473 −0.692641 −0.346321 0.938116i 0.612569π-0.612569\pi
−0.346321 + 0.938116i 0.612569π0.612569\pi
108108 13.7257 1.32076
109109 7.06538 0.676740 0.338370 0.941013i 0.390124π-0.390124\pi
0.338370 + 0.941013i 0.390124π0.390124\pi
110110 2.08764 0.199048
111111 −7.81079 −0.741368
112112 −25.7205 −2.43036
113113 16.4406 1.54660 0.773301 0.634039i 0.218604π-0.218604\pi
0.773301 + 0.634039i 0.218604π0.218604\pi
114114 −43.2009 −4.04613
115115 −0.843517 −0.0786584
116116 −3.08809 −0.286722
117117 3.31701 0.306658
118118 −18.2079 −1.67617
119119 18.0721 1.65667
120120 1.76365 0.160998
121121 14.9275 1.35705
122122 1.35953 0.123086
123123 14.1373 1.27472
124124 1.04263 0.0936307
125125 2.46494 0.220471
126126 73.5008 6.54797
127127 −4.14007 −0.367372 −0.183686 0.982985i 0.558803π-0.558803\pi
−0.183686 + 0.982985i 0.558803π0.558803\pi
128128 13.3953 1.18399
129129 −19.6390 −1.72912
130130 −0.159618 −0.0139995
131131 8.02893 0.701491 0.350745 0.936471i 0.385928π-0.385928\pi
0.350745 + 0.936471i 0.385928π0.385928\pi
132132 −12.6613 −1.10202
133133 −40.1830 −3.48431
134134 −17.6517 −1.52488
135135 −4.64675 −0.399929
136136 −7.25510 −0.622120
137137 −5.14949 −0.439951 −0.219976 0.975505i 0.570598π-0.570598\pi
−0.219976 + 0.975505i 0.570598π0.570598\pi
138138 19.0819 1.62436
139139 −6.11477 −0.518648 −0.259324 0.965790i 0.583500π-0.583500\pi
−0.259324 + 0.965790i 0.583500π0.583500\pi
140140 −0.948248 −0.0801416
141141 −10.2253 −0.861124
142142 14.4764 1.21483
143143 −1.98239 −0.165776
144144 −41.9907 −3.49923
145145 1.04545 0.0868202
146146 −13.5556 −1.12187
147147 68.6803 5.66466
148148 −1.68593 −0.138583
149149 16.5652 1.35707 0.678536 0.734567i 0.262615π-0.262615\pi
0.678536 + 0.734567i 0.262615π0.262615\pi
150150 −27.7082 −2.26237
151151 0.151371 0.0123184 0.00615920 0.999981i 0.498039π-0.498039\pi
0.00615920 + 0.999981i 0.498039π0.498039\pi
152152 16.1316 1.30845
153153 29.5041 2.38527
154154 −43.9272 −3.53976
155155 −0.352975 −0.0283516
156156 0.968067 0.0775074
157157 13.4004 1.06947 0.534736 0.845019i 0.320411π-0.320411\pi
0.534736 + 0.845019i 0.320411π0.320411\pi
158158 −22.4363 −1.78493
159159 25.4022 2.01453
160160 0.981403 0.0775867
161161 17.7489 1.39881
162162 62.8661 4.93923
163163 2.55654 0.200243 0.100122 0.994975i 0.468077π-0.468077\pi
0.100122 + 0.994975i 0.468077π0.468077\pi
164164 3.05149 0.238281
165165 4.28640 0.333696
166166 −16.6451 −1.29191
167167 −11.7546 −0.909601 −0.454801 0.890593i 0.650289π-0.650289\pi
−0.454801 + 0.890593i 0.650289π0.650289\pi
168168 −37.1100 −2.86310
169169 −12.8484 −0.988341
170170 −1.41977 −0.108891
171171 −65.6019 −5.01671
172172 −4.23901 −0.323221
173173 −0.888137 −0.0675238 −0.0337619 0.999430i 0.510749π-0.510749\pi
−0.0337619 + 0.999430i 0.510749π0.510749\pi
174174 −23.6501 −1.79291
175175 −25.7726 −1.94823
176176 25.0955 1.89164
177177 −37.3849 −2.81002
178178 10.8603 0.814015
179179 10.2434 0.765627 0.382813 0.923826i 0.374955π-0.374955\pi
0.382813 + 0.923826i 0.374955π0.374955\pi
180180 −1.54809 −0.115388
181181 −2.31415 −0.172009 −0.0860047 0.996295i 0.527410π-0.527410\pi
−0.0860047 + 0.996295i 0.527410π0.527410\pi
182182 3.35863 0.248958
183183 2.79142 0.206348
184184 −7.12537 −0.525289
185185 0.570762 0.0419633
186186 7.98495 0.585485
187187 −17.6329 −1.28945
188188 −2.20709 −0.160969
189189 97.7751 7.11210
190190 3.15684 0.229021
191191 −8.39367 −0.607345 −0.303672 0.952776i 0.598213π-0.598213\pi
−0.303672 + 0.952776i 0.598213π0.598213\pi
192192 11.2546 0.812230
193193 10.3645 0.746056 0.373028 0.927820i 0.378319π-0.378319\pi
0.373028 + 0.927820i 0.378319π0.378319\pi
194194 9.77284 0.701649
195195 −0.327733 −0.0234695
196196 14.8244 1.05889
197197 2.26266 0.161208 0.0806040 0.996746i 0.474315π-0.474315\pi
0.0806040 + 0.996746i 0.474315π0.474315\pi
198198 −71.7146 −5.09654
199199 −9.73185 −0.689873 −0.344936 0.938626i 0.612100π-0.612100\pi
−0.344936 + 0.938626i 0.612100π0.612100\pi
200200 10.3465 0.731608
201201 −36.2430 −2.55639
202202 13.3975 0.942643
203203 −21.9980 −1.54396
204204 8.61075 0.602873
205205 −1.03306 −0.0721523
206206 21.5103 1.49869
207207 28.9765 2.01401
208208 −1.91877 −0.133043
209209 39.2065 2.71197
210210 −7.26215 −0.501136
211211 −5.21241 −0.358837 −0.179419 0.983773i 0.557422π-0.557422\pi
−0.179419 + 0.983773i 0.557422π0.557422\pi
212212 5.48298 0.376573
213213 29.7233 2.03661
214214 −11.8437 −0.809621
215215 1.43509 0.0978723
216216 −39.2521 −2.67077
217217 7.42716 0.504188
218218 11.6795 0.791035
219219 −27.8327 −1.88076
220220 0.925204 0.0623773
221221 1.34819 0.0906893
222222 −12.9117 −0.866577
223223 −29.1870 −1.95451 −0.977253 0.212079i 0.931977π-0.931977\pi
−0.977253 + 0.212079i 0.931977π0.931977\pi
224224 −20.6503 −1.37976
225225 −42.0758 −2.80505
226226 27.1773 1.80781
227227 5.07623 0.336921 0.168461 0.985708i 0.446120π-0.446120\pi
0.168461 + 0.985708i 0.446120π0.446120\pi
228228 −19.1459 −1.26797
229229 −14.2475 −0.941502 −0.470751 0.882266i 0.656017π-0.656017\pi
−0.470751 + 0.882266i 0.656017π0.656017\pi
230230 −1.39438 −0.0919430
231231 −90.1927 −5.93424
232232 8.83117 0.579795
233233 14.5402 0.952560 0.476280 0.879294i 0.341985π-0.341985\pi
0.476280 + 0.879294i 0.341985π0.341985\pi
234234 5.48322 0.358449
235235 0.747197 0.0487418
236236 −8.06941 −0.525274
237237 −46.0668 −2.99236
238238 29.8743 1.93646
239239 −2.76005 −0.178533 −0.0892664 0.996008i 0.528452π-0.528452\pi
−0.0892664 + 0.996008i 0.528452π0.528452\pi
240240 4.14884 0.267807
241241 −28.5876 −1.84149 −0.920743 0.390169i 0.872417π-0.872417\pi
−0.920743 + 0.390169i 0.872417π0.872417\pi
242242 24.6761 1.58624
243243 72.8722 4.67476
244244 0.602519 0.0385723
245245 −5.01871 −0.320634
246246 23.3698 1.49001
247247 −2.99769 −0.190738
248248 −2.98166 −0.189335
249249 −34.1762 −2.16583
250250 4.07469 0.257706
251251 9.79772 0.618427 0.309213 0.950993i 0.399934π-0.399934\pi
0.309213 + 0.950993i 0.399934π0.399934\pi
252252 32.5743 2.05199
253253 −17.3176 −1.08875
254254 −6.84379 −0.429418
255255 −2.91512 −0.182552
256256 15.5114 0.969465
257257 −4.78846 −0.298696 −0.149348 0.988785i 0.547717π-0.547717\pi
−0.149348 + 0.988785i 0.547717π0.547717\pi
258258 −32.4644 −2.02115
259259 −12.0098 −0.746250
260260 −0.0707401 −0.00438711
261261 −35.9135 −2.22299
262262 13.2723 0.819966
263263 5.34367 0.329505 0.164752 0.986335i 0.447318π-0.447318\pi
0.164752 + 0.986335i 0.447318π0.447318\pi
264264 36.2081 2.22846
265265 −1.85623 −0.114027
266266 −66.4250 −4.07278
267267 22.2987 1.36466
268268 −7.82293 −0.477862
269269 2.93720 0.179084 0.0895421 0.995983i 0.471460π-0.471460\pi
0.0895421 + 0.995983i 0.471460π0.471460\pi
270270 −7.68136 −0.467473
271271 15.3690 0.933601 0.466801 0.884363i 0.345407π-0.345407\pi
0.466801 + 0.884363i 0.345407π0.345407\pi
272272 −17.0671 −1.03484
273273 6.89603 0.417367
274274 −8.51242 −0.514254
275275 25.1463 1.51638
276276 8.45678 0.509038
277277 −19.7095 −1.18423 −0.592113 0.805855i 0.701706π-0.701706\pi
−0.592113 + 0.805855i 0.701706π0.701706\pi
278278 −10.1081 −0.606243
279279 12.1254 0.725929
280280 2.71176 0.162058
281281 0.697310 0.0415981 0.0207990 0.999784i 0.493379π-0.493379\pi
0.0207990 + 0.999784i 0.493379π0.493379\pi
282282 −16.9030 −1.00656
283283 10.9282 0.649616 0.324808 0.945780i 0.394700π-0.394700\pi
0.324808 + 0.945780i 0.394700π0.394700\pi
284284 6.41568 0.380701
285285 6.48171 0.383944
286286 −3.27701 −0.193774
287287 21.7373 1.28311
288288 −33.7132 −1.98657
289289 −5.00811 −0.294595
290290 1.72820 0.101483
291291 20.0659 1.17628
292292 −6.00760 −0.351568
293293 −29.3063 −1.71209 −0.856046 0.516900i 0.827086π-0.827086\pi
−0.856046 + 0.516900i 0.827086π0.827086\pi
294294 113.533 6.62136
295295 2.73185 0.159054
296296 4.82135 0.280235
297297 −95.3991 −5.53561
298298 27.3832 1.58627
299299 1.32409 0.0765739
300300 −12.2798 −0.708974
301301 −30.1966 −1.74050
302302 0.250225 0.0143989
303303 27.5081 1.58030
304304 37.9483 2.17649
305305 −0.203979 −0.0116798
306306 48.7721 2.78811
307307 −12.5836 −0.718186 −0.359093 0.933302i 0.616914π-0.616914\pi
−0.359093 + 0.933302i 0.616914π0.616914\pi
308308 −19.4678 −1.10928
309309 44.1656 2.51249
310310 −0.583489 −0.0331399
311311 7.91347 0.448731 0.224366 0.974505i 0.427969π-0.427969\pi
0.224366 + 0.974505i 0.427969π0.427969\pi
312312 −2.76843 −0.156732
313313 12.8422 0.725884 0.362942 0.931812i 0.381772π-0.381772\pi
0.362942 + 0.931812i 0.381772π0.381772\pi
314314 22.1517 1.25010
315315 −11.0278 −0.621347
316316 −9.94336 −0.559358
317317 27.2960 1.53310 0.766549 0.642186i 0.221972π-0.221972\pi
0.766549 + 0.642186i 0.221972π0.221972\pi
318318 41.9914 2.35476
319319 21.4634 1.20172
320320 −0.822412 −0.0459743
321321 −24.3179 −1.35729
322322 29.3401 1.63506
323323 −26.6638 −1.48361
324324 27.8612 1.54784
325325 −1.92266 −0.106650
326326 4.22611 0.234062
327327 23.9807 1.32613
328328 −8.72651 −0.481841
329329 −15.7222 −0.866794
330330 7.08567 0.390053
331331 14.5444 0.799433 0.399716 0.916639i 0.369109π-0.369109\pi
0.399716 + 0.916639i 0.369109π0.369109\pi
332332 −7.37682 −0.404856
333333 −19.6069 −1.07445
334334 −19.4311 −1.06322
335335 2.64841 0.144698
336336 −87.2983 −4.76251
337337 −27.4734 −1.49657 −0.748285 0.663378i 0.769122π-0.769122\pi
−0.748285 + 0.663378i 0.769122π0.769122\pi
338338 −21.2392 −1.15526
339339 55.8012 3.03071
340340 −0.629218 −0.0341241
341341 −7.24666 −0.392429
342342 −108.444 −5.86398
343343 69.0707 3.72947
344344 12.1225 0.653602
345345 −2.86299 −0.154138
346346 −1.46814 −0.0789279
347347 7.39807 0.397149 0.198575 0.980086i 0.436369π-0.436369\pi
0.198575 + 0.980086i 0.436369π0.436369\pi
348348 −10.4813 −0.561858
349349 4.96950 0.266011 0.133006 0.991115i 0.457537π-0.457537\pi
0.133006 + 0.991115i 0.457537π0.457537\pi
350350 −42.6037 −2.27726
351351 7.29410 0.389331
352352 20.1484 1.07392
353353 −9.80863 −0.522061 −0.261030 0.965331i 0.584062π-0.584062\pi
−0.261030 + 0.965331i 0.584062π0.584062\pi
354354 −61.7995 −3.28461
355355 −2.17199 −0.115277
356356 4.81310 0.255094
357357 61.3387 3.24639
358358 16.9329 0.894934
359359 −27.4048 −1.44637 −0.723184 0.690655i 0.757322π-0.757322\pi
−0.723184 + 0.690655i 0.757322π0.757322\pi
360360 4.42715 0.233331
361361 40.2865 2.12034
362362 −3.82543 −0.201060
363363 50.6656 2.65926
364364 1.48849 0.0780178
365365 2.03384 0.106456
366366 4.61438 0.241198
367367 −2.86167 −0.149378 −0.0746890 0.997207i 0.523796π-0.523796\pi
−0.0746890 + 0.997207i 0.523796π0.523796\pi
368368 −16.7619 −0.873773
369369 35.4878 1.84742
370370 0.943504 0.0490504
371371 39.0580 2.02779
372372 3.53879 0.183478
373373 −5.46183 −0.282803 −0.141401 0.989952i 0.545161π-0.545161\pi
−0.141401 + 0.989952i 0.545161π0.545161\pi
374374 −29.1483 −1.50722
375375 8.36628 0.432033
376376 6.31174 0.325503
377377 −1.64107 −0.0845194
378378 161.628 8.31326
379379 −4.72712 −0.242816 −0.121408 0.992603i 0.538741π-0.538741\pi
−0.121408 + 0.992603i 0.538741π0.538741\pi
380380 1.39906 0.0717701
381381 −14.0519 −0.719899
382382 −13.8752 −0.709919
383383 5.83789 0.298302 0.149151 0.988814i 0.452346π-0.452346\pi
0.149151 + 0.988814i 0.452346π0.452346\pi
384384 45.4652 2.32014
385385 6.59070 0.335893
386386 17.1332 0.872058
387387 −49.2983 −2.50597
388388 4.33115 0.219881
389389 −18.8576 −0.956116 −0.478058 0.878328i 0.658659π-0.658659\pi
−0.478058 + 0.878328i 0.658659π0.658659\pi
390390 −0.541762 −0.0274332
391391 11.7775 0.595612
392392 −42.3942 −2.14123
393393 27.2511 1.37463
394394 3.74032 0.188434
395395 3.36626 0.169375
396396 −31.7827 −1.59714
397397 −3.81702 −0.191571 −0.0957853 0.995402i 0.530536π-0.530536\pi
−0.0957853 + 0.995402i 0.530536π0.530536\pi
398398 −16.0873 −0.806385
399399 −136.386 −6.82782
400400 24.3393 1.21697
401401 −19.0411 −0.950865 −0.475432 0.879752i 0.657708π-0.657708\pi
−0.475432 + 0.879752i 0.657708π0.657708\pi
402402 −59.9119 −2.98813
403403 0.554072 0.0276003
404404 5.93753 0.295403
405405 −9.43222 −0.468691
406406 −36.3640 −1.80472
407407 11.7179 0.580835
408408 −24.6246 −1.21910
409409 35.6584 1.76319 0.881597 0.472003i 0.156469π-0.156469\pi
0.881597 + 0.472003i 0.156469π0.156469\pi
410410 −1.70772 −0.0843380
411411 −17.4780 −0.862124
412412 9.53299 0.469657
413413 −57.4825 −2.82853
414414 47.9000 2.35415
415415 2.49738 0.122591
416416 −1.54053 −0.0755306
417417 −20.7542 −1.01634
418418 64.8107 3.17000
419419 29.4082 1.43668 0.718341 0.695691i 0.244902π-0.244902\pi
0.718341 + 0.695691i 0.244902π0.244902\pi
420420 −3.21846 −0.157045
421421 10.3743 0.505613 0.252807 0.967517i 0.418646π-0.418646\pi
0.252807 + 0.967517i 0.418646π0.418646\pi
422422 −8.61643 −0.419441
423423 −25.6678 −1.24801
424424 −15.6800 −0.761487
425425 −17.1016 −0.829551
426426 49.1345 2.38057
427427 4.29204 0.207707
428428 −5.24894 −0.253717
429429 −6.72845 −0.324852
430430 2.37229 0.114402
431431 11.8838 0.572423 0.286212 0.958166i 0.407604π-0.407604\pi
0.286212 + 0.958166i 0.407604π0.407604\pi
432432 −92.3376 −4.44259
433433 6.97315 0.335108 0.167554 0.985863i 0.446413π-0.446413\pi
0.167554 + 0.985863i 0.446413π0.446413\pi
434434 12.2775 0.589341
435435 3.54838 0.170132
436436 5.17615 0.247893
437437 −26.1870 −1.25269
438438 −46.0092 −2.19840
439439 −2.40033 −0.114561 −0.0572806 0.998358i 0.518243π-0.518243\pi
−0.0572806 + 0.998358i 0.518243π0.518243\pi
440440 −2.64586 −0.126136
441441 172.403 8.20967
442442 2.22864 0.106006
443443 13.3945 0.636390 0.318195 0.948025i 0.396923π-0.396923\pi
0.318195 + 0.948025i 0.396923π0.396923\pi
444444 −5.72224 −0.271566
445445 −1.62944 −0.0772431
446446 −48.2478 −2.28460
447447 56.2240 2.65930
448448 17.3049 0.817579
449449 34.3897 1.62295 0.811475 0.584388i 0.198665π-0.198665\pi
0.811475 + 0.584388i 0.198665π0.198665\pi
450450 −69.5538 −3.27880
451451 −21.2091 −0.998695
452452 12.0445 0.566526
453453 0.513770 0.0241390
454454 8.39131 0.393824
455455 −0.503917 −0.0236240
456456 54.7525 2.56402
457457 35.5425 1.66261 0.831304 0.555818i 0.187595π-0.187595\pi
0.831304 + 0.555818i 0.187595π0.187595\pi
458458 −23.5520 −1.10051
459459 64.8795 3.02832
460460 −0.617967 −0.0288128
461461 36.7383 1.71107 0.855536 0.517743i 0.173227π-0.173227\pi
0.855536 + 0.517743i 0.173227π0.173227\pi
462462 −149.094 −6.93648
463463 −16.0358 −0.745246 −0.372623 0.927983i 0.621541π-0.621541\pi
−0.372623 + 0.927983i 0.621541π0.621541\pi
464464 20.7746 0.964439
465465 −1.19804 −0.0555576
466466 24.0358 1.11344
467467 14.2901 0.661265 0.330633 0.943760i 0.392738π-0.392738\pi
0.330633 + 0.943760i 0.392738π0.392738\pi
468468 2.43007 0.112330
469469 −55.7267 −2.57322
470470 1.23516 0.0569738
471471 45.4826 2.09573
472472 23.0765 1.06218
473473 29.4628 1.35470
474474 −76.1511 −3.49774
475475 38.0252 1.74472
476476 13.2398 0.606843
477477 63.7652 2.91961
478478 −4.56253 −0.208685
479479 −28.7148 −1.31201 −0.656007 0.754755i 0.727756π-0.727756\pi
−0.656007 + 0.754755i 0.727756π0.727756\pi
480480 3.33099 0.152038
481481 −0.895937 −0.0408512
482482 −47.2570 −2.15250
483483 60.2419 2.74110
484484 10.9360 0.497091
485485 −1.46628 −0.0665806
486486 120.462 5.46428
487487 42.6361 1.93203 0.966014 0.258491i 0.0832253π-0.0832253\pi
0.966014 + 0.258491i 0.0832253π0.0832253\pi
488488 −1.72305 −0.0779990
489489 8.67716 0.392395
490490 −8.29623 −0.374786
491491 −2.12331 −0.0958235 −0.0479118 0.998852i 0.515257π-0.515257\pi
−0.0479118 + 0.998852i 0.515257π0.515257\pi
492492 10.3571 0.466934
493493 −14.5970 −0.657414
494494 −4.95536 −0.222952
495495 10.7598 0.483618
496496 −7.01411 −0.314943
497497 45.7021 2.05002
498498 −56.4953 −2.53162
499499 16.8343 0.753605 0.376803 0.926294i 0.377023π-0.377023\pi
0.376803 + 0.926294i 0.377023π0.377023\pi
500500 1.80583 0.0807593
501501 −39.8965 −1.78245
502502 16.1962 0.722873
503503 24.3694 1.08658 0.543290 0.839545i 0.317178π-0.317178\pi
0.543290 + 0.839545i 0.317178π0.317178\pi
504504 −93.1544 −4.14943
505505 −2.01011 −0.0894488
506506 −28.6271 −1.27263
507507 −43.6090 −1.93674
508508 −3.03305 −0.134570
509509 −34.0372 −1.50867 −0.754336 0.656488i 0.772041π-0.772041\pi
−0.754336 + 0.656488i 0.772041π0.772041\pi
510510 −4.81886 −0.213383
511511 −42.7952 −1.89315
512512 −1.14931 −0.0507928
513513 −144.259 −6.36917
514514 −7.91560 −0.349142
515515 −3.22733 −0.142213
516516 −14.3877 −0.633381
517517 15.3402 0.674659
518518 −19.8528 −0.872284
519519 −3.01443 −0.132319
520520 0.202299 0.00887141
521521 −3.05217 −0.133718 −0.0668590 0.997762i 0.521298π-0.521298\pi
−0.0668590 + 0.997762i 0.521298π0.521298\pi
522522 −59.3671 −2.59843
523523 −44.1264 −1.92951 −0.964757 0.263143i 0.915241π-0.915241\pi
−0.964757 + 0.263143i 0.915241π0.915241\pi
524524 5.88205 0.256959
525525 −87.4751 −3.81773
526526 8.83340 0.385155
527527 4.92835 0.214682
528528 85.1768 3.70684
529529 −11.4331 −0.497093
530530 −3.06846 −0.133285
531531 −93.8446 −4.07251
532532 −29.4384 −1.27632
533533 1.62162 0.0702402
534534 36.8611 1.59514
535535 1.77699 0.0768262
536536 22.3717 0.966309
537537 34.7672 1.50031
538538 4.85537 0.209330
539539 −103.035 −4.43805
540540 −3.40425 −0.146495
541541 12.7563 0.548435 0.274218 0.961668i 0.411581π-0.411581\pi
0.274218 + 0.961668i 0.411581π0.411581\pi
542542 25.4059 1.09128
543543 −7.85448 −0.337068
544544 −13.7027 −0.587497
545545 −1.75235 −0.0750625
546546 11.3996 0.487856
547547 24.9606 1.06724 0.533620 0.845725i 0.320831π-0.320831\pi
0.533620 + 0.845725i 0.320831π0.320831\pi
548548 −3.77256 −0.161156
549549 7.00709 0.299055
550550 41.5684 1.77248
551551 32.4561 1.38268
552552 −24.1843 −1.02935
553553 −70.8315 −3.01206
554554 −32.5809 −1.38423
555555 1.93723 0.0822308
556556 −4.47973 −0.189983
557557 −13.7776 −0.583776 −0.291888 0.956453i 0.594283π-0.594283\pi
−0.291888 + 0.956453i 0.594283π0.594283\pi
558558 20.0440 0.848531
559559 −2.25269 −0.0952786
560560 6.37919 0.269570
561561 −59.8481 −2.52679
562562 1.15270 0.0486235
563563 24.1004 1.01571 0.507855 0.861442i 0.330438π-0.330438\pi
0.507855 + 0.861442i 0.330438π0.330438\pi
564564 −7.49111 −0.315433
565565 −4.07759 −0.171546
566566 18.0650 0.759330
567567 198.469 8.33492
568568 −18.3473 −0.769835
569569 −29.7332 −1.24648 −0.623241 0.782030i 0.714184π-0.714184\pi
−0.623241 + 0.782030i 0.714184π0.714184\pi
570570 10.7147 0.448788
571571 −3.01461 −0.126158 −0.0630788 0.998009i 0.520092π-0.520092\pi
−0.0630788 + 0.998009i 0.520092π0.520092\pi
572572 −1.45231 −0.0607242
573573 −28.4891 −1.19015
574574 35.9331 1.49982
575575 −16.7958 −0.700435
576576 28.2516 1.17715
577577 −16.4062 −0.682998 −0.341499 0.939882i 0.610935π-0.610935\pi
−0.341499 + 0.939882i 0.610935π0.610935\pi
578578 −8.27871 −0.344349
579579 35.1784 1.46196
580580 0.765907 0.0318026
581581 −52.5488 −2.18009
582582 33.1701 1.37495
583583 −38.1088 −1.57831
584584 17.1803 0.710924
585585 −0.822684 −0.0340138
586586 −48.4451 −2.00125
587587 20.2534 0.835945 0.417973 0.908460i 0.362741π-0.362741\pi
0.417973 + 0.908460i 0.362741π0.362741\pi
588588 50.3157 2.07498
589589 −10.9581 −0.451521
590590 4.51591 0.185917
591591 7.67972 0.315902
592592 11.3419 0.466147
593593 33.3880 1.37108 0.685539 0.728035i 0.259566π-0.259566\pi
0.685539 + 0.728035i 0.259566π0.259566\pi
594594 −157.700 −6.47052
595595 −4.48224 −0.183754
596596 12.1358 0.497100
597597 −33.0310 −1.35187
598598 2.18879 0.0895064
599599 −0.653102 −0.0266850 −0.0133425 0.999911i 0.504247π-0.504247\pi
−0.0133425 + 0.999911i 0.504247π0.504247\pi
600600 35.1172 1.43365
601601 35.7275 1.45735 0.728677 0.684857i 0.240135π-0.240135\pi
0.728677 + 0.684857i 0.240135π0.240135\pi
602602 −49.9168 −2.03446
603603 −90.9782 −3.70492
604604 0.110896 0.00451228
605605 −3.70232 −0.150521
606606 45.4725 1.84719
607607 −30.2534 −1.22795 −0.613973 0.789327i 0.710430π-0.710430\pi
−0.613973 + 0.789327i 0.710430π0.710430\pi
608608 30.4677 1.23563
609609 −74.6637 −3.02553
610610 −0.337189 −0.0136524
611611 −1.17289 −0.0474501
612612 21.6149 0.873732
613613 −18.2433 −0.736838 −0.368419 0.929660i 0.620101π-0.620101\pi
−0.368419 + 0.929660i 0.620101π0.620101\pi
614614 −20.8015 −0.839480
615615 −3.50633 −0.141389
616616 55.6731 2.24313
617617 −37.2194 −1.49840 −0.749198 0.662346i 0.769561π-0.769561\pi
−0.749198 + 0.662346i 0.769561π0.769561\pi
618618 73.0083 2.93683
619619 −46.2028 −1.85705 −0.928523 0.371274i 0.878921π-0.878921\pi
−0.928523 + 0.371274i 0.878921π0.878921\pi
620620 −0.258592 −0.0103853
621621 63.7194 2.55697
622622 13.0814 0.524518
623623 34.2861 1.37365
624624 −6.51252 −0.260709
625625 24.0811 0.963243
626626 21.2289 0.848478
627627 133.071 5.31436
628628 9.81727 0.391752
629629 −7.96917 −0.317752
630630 −18.2296 −0.726286
631631 20.1051 0.800373 0.400187 0.916434i 0.368945π-0.368945\pi
0.400187 + 0.916434i 0.368945π0.368945\pi
632632 28.4356 1.13111
633633 −17.6915 −0.703174
634634 45.1220 1.79202
635635 1.02682 0.0407481
636636 18.6098 0.737928
637637 7.87798 0.312137
638638 35.4803 1.40468
639639 74.6123 2.95162
640640 −3.32230 −0.131326
641641 39.9385 1.57748 0.788738 0.614729i 0.210735π-0.210735\pi
0.788738 + 0.614729i 0.210735π0.210735\pi
642642 −40.1989 −1.58653
643643 −11.2149 −0.442272 −0.221136 0.975243i 0.570977π-0.570977\pi
−0.221136 + 0.975243i 0.570977π0.570977\pi
644644 13.0030 0.512390
645645 4.87085 0.191790
646646 −44.0768 −1.73418
647647 −22.4270 −0.881696 −0.440848 0.897582i 0.645322π-0.645322\pi
−0.440848 + 0.897582i 0.645322π0.645322\pi
648648 −79.6761 −3.12997
649649 56.0856 2.20155
650650 −3.17827 −0.124662
651651 25.2086 0.988002
652652 1.87294 0.0733498
653653 23.0516 0.902079 0.451039 0.892504i 0.351053π-0.351053\pi
0.451039 + 0.892504i 0.351053π0.351053\pi
654654 39.6415 1.55010
655655 −1.99133 −0.0778078
656656 −20.5284 −0.801500
657657 −69.8665 −2.72575
658658 −25.9898 −1.01319
659659 −28.0890 −1.09419 −0.547097 0.837069i 0.684267π-0.684267\pi
−0.547097 + 0.837069i 0.684267π0.684267\pi
660660 3.14025 0.122234
661661 22.6080 0.879349 0.439675 0.898157i 0.355094π-0.355094\pi
0.439675 + 0.898157i 0.355094π0.355094\pi
662662 24.0428 0.934449
663663 4.57592 0.177714
664664 21.0959 0.818679
665665 9.96618 0.386472
666666 −32.4113 −1.25591
667667 −14.3359 −0.555090
668668 −8.61153 −0.333190
669669 −99.0638 −3.83003
670670 4.37797 0.169136
671671 −4.18774 −0.161666
672672 −70.0893 −2.70376
673673 13.6455 0.525997 0.262998 0.964796i 0.415289π-0.415289\pi
0.262998 + 0.964796i 0.415289π0.415289\pi
674674 −45.4151 −1.74932
675675 −92.5247 −3.56128
676676 −9.41285 −0.362033
677677 −2.09832 −0.0806450 −0.0403225 0.999187i 0.512839π-0.512839\pi
−0.0403225 + 0.999187i 0.512839π0.512839\pi
678678 92.2428 3.54256
679679 30.8530 1.18403
680680 1.79941 0.0690041
681681 17.2293 0.660228
682682 −11.9792 −0.458706
683683 36.7274 1.40533 0.702667 0.711519i 0.251992π-0.251992\pi
0.702667 + 0.711519i 0.251992π0.251992\pi
684684 −48.0605 −1.83764
685685 1.27718 0.0487984
686686 114.178 4.35933
687687 −48.3576 −1.84496
688688 28.5173 1.08721
689689 2.91376 0.111005
690690 −4.73269 −0.180171
691691 −19.4020 −0.738087 −0.369044 0.929412i 0.620315π-0.620315\pi
−0.369044 + 0.929412i 0.620315π0.620315\pi
692692 −0.650655 −0.0247342
693693 −226.404 −8.60038
694694 12.2295 0.464224
695695 1.51658 0.0575273
696696 29.9740 1.13616
697697 14.4240 0.546347
698698 8.21488 0.310938
699699 49.3510 1.86663
700700 −18.8812 −0.713643
701701 10.5531 0.398586 0.199293 0.979940i 0.436136π-0.436136\pi
0.199293 + 0.979940i 0.436136π0.436136\pi
702702 12.0576 0.455085
703703 17.7193 0.668297
704704 −16.8843 −0.636353
705705 2.53607 0.0955139
706706 −16.2143 −0.610232
707707 42.2960 1.59070
708708 −27.3885 −1.02932
709709 28.3172 1.06347 0.531737 0.846910i 0.321540π-0.321540\pi
0.531737 + 0.846910i 0.321540π0.321540\pi
710710 −3.59043 −0.134746
711711 −115.638 −4.33676
712712 −13.7643 −0.515838
713713 4.84022 0.181268
714714 101.397 3.79467
715715 0.491671 0.0183875
716716 7.50438 0.280452
717717 −9.36791 −0.349851
718718 −45.3017 −1.69064
719719 −24.7641 −0.923544 −0.461772 0.886999i 0.652786π-0.652786\pi
−0.461772 + 0.886999i 0.652786π0.652786\pi
720720 10.4145 0.388127
721721 67.9083 2.52904
722722 66.5960 2.47845
723723 −97.0293 −3.60856
724724 −1.69536 −0.0630077
725725 20.8167 0.773114
726726 83.7533 3.10838
727727 5.73960 0.212870 0.106435 0.994320i 0.466056π-0.466056\pi
0.106435 + 0.994320i 0.466056π0.466056\pi
728728 −4.25670 −0.157764
729729 133.246 4.93503
730730 3.36205 0.124435
731731 −20.0372 −0.741102
732732 2.04501 0.0755859
733733 19.2172 0.709802 0.354901 0.934904i 0.384515π-0.384515\pi
0.354901 + 0.934904i 0.384515π0.384515\pi
734734 −4.73051 −0.174606
735735 −17.0341 −0.628311
736736 −13.4576 −0.496055
737737 54.3724 2.00283
738738 58.6635 2.15943
739739 18.5922 0.683924 0.341962 0.939714i 0.388909π-0.388909\pi
0.341962 + 0.939714i 0.388909π0.388909\pi
740740 0.418145 0.0153713
741741 −10.1745 −0.373769
742742 64.5652 2.37026
743743 27.4092 1.00554 0.502772 0.864419i 0.332313π-0.332313\pi
0.502772 + 0.864419i 0.332313π0.332313\pi
744744 −10.1201 −0.371020
745745 −4.10849 −0.150523
746746 −9.02873 −0.330565
747747 −85.7900 −3.13889
748748 −12.9180 −0.472329
749749 −37.3908 −1.36623
750750 13.8300 0.504999
751751 12.7262 0.464387 0.232193 0.972670i 0.425410π-0.425410\pi
0.232193 + 0.972670i 0.425410π0.425410\pi
752752 14.8479 0.541446
753753 33.2545 1.21186
754754 −2.71279 −0.0987939
755755 −0.0375430 −0.00136633
756756 71.6308 2.60519
757757 −5.99274 −0.217810 −0.108905 0.994052i 0.534734π-0.534734\pi
−0.108905 + 0.994052i 0.534734π0.534734\pi
758758 −7.81421 −0.283825
759759 −58.7779 −2.13350
760760 −4.00096 −0.145130
761761 −24.5812 −0.891067 −0.445534 0.895265i 0.646986π-0.646986\pi
−0.445534 + 0.895265i 0.646986π0.646986\pi
762762 −23.2286 −0.841483
763763 36.8723 1.33487
764764 −6.14927 −0.222473
765765 −7.31760 −0.264568
766766 9.65039 0.348683
767767 −4.28824 −0.154839
768768 52.6475 1.89975
769769 16.0952 0.580408 0.290204 0.956965i 0.406277π-0.406277\pi
0.290204 + 0.956965i 0.406277π0.406277\pi
770770 10.8948 0.392622
771771 −16.2525 −0.585321
772772 7.59314 0.273283
773773 −38.1304 −1.37146 −0.685728 0.727858i 0.740516π-0.740516\pi
−0.685728 + 0.727858i 0.740516π0.740516\pi
774774 −81.4930 −2.92921
775775 −7.02832 −0.252465
776776 −12.3860 −0.444633
777777 −40.7624 −1.46234
778778 −31.1727 −1.11759
779779 −32.0715 −1.14908
780780 −0.240100 −0.00859695
781781 −44.5915 −1.59561
782782 19.4688 0.696204
783783 −78.9737 −2.82229
784784 −99.7289 −3.56175
785785 −3.32357 −0.118623
786786 45.0477 1.60680
787787 15.5846 0.555531 0.277766 0.960649i 0.410406π-0.410406\pi
0.277766 + 0.960649i 0.410406π0.410406\pi
788788 1.65764 0.0590511
789789 18.1370 0.645694
790790 5.56463 0.197981
791791 85.7991 3.05066
792792 90.8906 3.22966
793793 0.320190 0.0113703
794794 −6.30976 −0.223925
795795 −6.30024 −0.223447
796796 −7.12963 −0.252703
797797 47.1325 1.66952 0.834759 0.550616i 0.185607π-0.185607\pi
0.834759 + 0.550616i 0.185607π0.185607\pi
798798 −225.454 −7.98097
799799 −10.4326 −0.369079
800800 19.5414 0.690892
801801 55.9748 1.97777
802802 −31.4760 −1.11146
803803 41.7552 1.47351
804804 −26.5519 −0.936413
805805 −4.40209 −0.155153
806806 0.915914 0.0322617
807807 9.96918 0.350932
808808 −16.9799 −0.597349
809809 6.04880 0.212664 0.106332 0.994331i 0.466089π-0.466089\pi
0.106332 + 0.994331i 0.466089π0.466089\pi
810810 −15.5920 −0.547848
811811 −52.3118 −1.83692 −0.918458 0.395519i 0.870565π-0.870565\pi
−0.918458 + 0.395519i 0.870565π0.870565\pi
812812 −16.1159 −0.565558
813813 52.1641 1.82948
814814 19.3704 0.678932
815815 −0.634071 −0.0222105
816816 −57.9275 −2.02787
817817 44.5524 1.55869
818818 58.9455 2.06098
819819 17.3106 0.604881
820820 −0.756830 −0.0264296
821821 −6.17498 −0.215508 −0.107754 0.994178i 0.534366π-0.534366\pi
−0.107754 + 0.994178i 0.534366π0.534366\pi
822822 −28.8921 −1.00773
823823 −43.5482 −1.51799 −0.758997 0.651094i 0.774310π-0.774310\pi
−0.758997 + 0.651094i 0.774310π0.774310\pi
824824 −27.2620 −0.949717
825825 85.3493 2.97148
826826 −95.0220 −3.30624
827827 27.4102 0.953147 0.476574 0.879135i 0.341879π-0.341879\pi
0.476574 + 0.879135i 0.341879π0.341879\pi
828828 21.2284 0.737739
829829 −52.5074 −1.82366 −0.911829 0.410569i 0.865330π-0.865330\pi
−0.911829 + 0.410569i 0.865330π0.865330\pi
830830 4.12831 0.143296
831831 −66.8961 −2.32060
832832 1.29096 0.0447559
833833 70.0729 2.42788
834834 −34.3080 −1.18799
835835 2.91538 0.100891
836836 28.7230 0.993405
837837 26.6638 0.921634
838838 48.6135 1.67932
839839 33.7729 1.16597 0.582985 0.812483i 0.301885π-0.301885\pi
0.582985 + 0.812483i 0.301885π0.301885\pi
840840 9.20400 0.317568
841841 −11.2320 −0.387312
842842 17.1494 0.591006
843843 2.36675 0.0815151
844844 −3.81865 −0.131443
845845 3.18666 0.109625
846846 −42.4303 −1.45879
847847 77.9027 2.67677
848848 −36.8859 −1.26667
849849 37.0916 1.27298
850850 −28.2700 −0.969654
851851 −7.82667 −0.268295
852852 21.7755 0.746018
853853 2.43672 0.0834318 0.0417159 0.999130i 0.486718π-0.486718\pi
0.0417159 + 0.999130i 0.486718π0.486718\pi
854854 7.09500 0.242786
855855 16.2706 0.556442
856856 15.0107 0.513054
857857 −17.0904 −0.583797 −0.291899 0.956449i 0.594287π-0.594287\pi
−0.291899 + 0.956449i 0.594287π0.594287\pi
858858 −11.1225 −0.379717
859859 −11.1590 −0.380741 −0.190371 0.981712i 0.560969π-0.560969\pi
−0.190371 + 0.981712i 0.560969π0.560969\pi
860860 1.05136 0.0358510
861861 73.7788 2.51437
862862 19.6447 0.669100
863863 38.0440 1.29503 0.647517 0.762051i 0.275808π-0.275808\pi
0.647517 + 0.762051i 0.275808π0.275808\pi
864864 −74.1353 −2.52213
865865 0.220275 0.00748959
866866 11.5270 0.391704
867867 −16.9981 −0.577285
868868 5.44119 0.184686
869869 69.1102 2.34440
870870 5.86569 0.198866
871871 −4.15726 −0.140863
872872 −14.8025 −0.501276
873873 50.3699 1.70476
874874 −43.2887 −1.46426
875875 12.8639 0.434878
876876 −20.3905 −0.688930
877877 11.1319 0.375898 0.187949 0.982179i 0.439816π-0.439816\pi
0.187949 + 0.982179i 0.439816π0.439816\pi
878878 −3.96788 −0.133910
879879 −99.4688 −3.35500
880880 −6.22417 −0.209817
881881 −29.1896 −0.983424 −0.491712 0.870758i 0.663629π-0.663629\pi
−0.491712 + 0.870758i 0.663629π0.663629\pi
882882 284.993 9.59620
883883 −2.66828 −0.0897948 −0.0448974 0.998992i 0.514296π-0.514296\pi
−0.0448974 + 0.998992i 0.514296π0.514296\pi
884884 0.987696 0.0332198
885885 9.27220 0.311681
886886 22.1418 0.743870
887887 46.8168 1.57195 0.785977 0.618255i 0.212160π-0.212160\pi
0.785977 + 0.618255i 0.212160π0.212160\pi
888888 16.3642 0.549147
889889 −21.6059 −0.724640
890890 −2.69357 −0.0902887
891891 −193.646 −6.48739
892892 −21.3826 −0.715942
893893 23.1968 0.776250
894894 92.9416 3.10843
895895 −2.54056 −0.0849216
896896 69.9066 2.33541
897897 4.49409 0.150053
898898 56.8482 1.89705
899899 −5.99897 −0.200077
900900 −30.8251 −1.02750
901901 25.9173 0.863429
902902 −35.0598 −1.16736
903903 −102.491 −3.41067
904904 −34.4443 −1.14560
905905 0.573954 0.0190789
906906 0.849293 0.0282159
907907 50.4344 1.67465 0.837323 0.546709i 0.184120π-0.184120\pi
0.837323 + 0.546709i 0.184120π0.184120\pi
908908 3.71888 0.123416
909909 69.0515 2.29029
910910 −0.833006 −0.0276139
911911 13.8276 0.458130 0.229065 0.973411i 0.426433π-0.426433\pi
0.229065 + 0.973411i 0.426433π0.426433\pi
912912 128.801 4.26502
913913 51.2718 1.69685
914914 58.7539 1.94341
915915 −0.692327 −0.0228876
916916 −10.4378 −0.344876
917917 41.9008 1.38369
918918 107.250 3.53977
919919 −7.78823 −0.256910 −0.128455 0.991715i 0.541002π-0.541002\pi
−0.128455 + 0.991715i 0.541002π0.541002\pi
920920 1.76723 0.0582639
921921 −42.7102 −1.40735
922922 60.7306 2.00006
923923 3.40942 0.112222
924924 −66.0758 −2.17373
925925 11.3648 0.373673
926926 −26.5081 −0.871110
927927 110.866 3.64130
928928 16.6794 0.547527
929929 −6.09855 −0.200087 −0.100044 0.994983i 0.531898π-0.531898\pi
−0.100044 + 0.994983i 0.531898π0.531898\pi
930930 −1.98042 −0.0649407
931931 −155.806 −5.10634
932932 10.6523 0.348926
933933 26.8592 0.879330
934934 23.6223 0.772946
935935 4.37331 0.143023
936936 −6.94939 −0.227148
937937 5.26357 0.171953 0.0859767 0.996297i 0.472599π-0.472599\pi
0.0859767 + 0.996297i 0.472599π0.472599\pi
938938 −92.1196 −3.00781
939939 43.5878 1.42243
940940 0.547402 0.0178543
941941 39.7008 1.29421 0.647104 0.762402i 0.275980π-0.275980\pi
0.647104 + 0.762402i 0.275980π0.275980\pi
942942 75.1855 2.44967
943943 14.1660 0.461310
944944 54.2857 1.76685
945945 −24.2502 −0.788858
946946 48.7037 1.58349
947947 38.0367 1.23603 0.618013 0.786168i 0.287938π-0.287938\pi
0.618013 + 0.786168i 0.287938π0.287938\pi
948948 −33.7489 −1.09611
949949 −3.19256 −0.103635
950950 62.8580 2.03938
951951 92.6458 3.00424
952952 −37.8624 −1.22713
953953 −24.5430 −0.795027 −0.397513 0.917596i 0.630127π-0.630127\pi
−0.397513 + 0.917596i 0.630127π0.630127\pi
954954 105.408 3.41270
955955 2.08180 0.0673653
956956 −2.02203 −0.0653972
957957 72.8492 2.35488
958958 −47.4674 −1.53360
959959 −26.8738 −0.867801
960960 −2.79136 −0.0900907
961961 −28.9746 −0.934664
962962 −1.48104 −0.0477506
963963 −61.0434 −1.96710
964964 −20.9435 −0.674543
965965 −2.57061 −0.0827509
966966 99.5834 3.20404
967967 −24.9644 −0.802800 −0.401400 0.915903i 0.631476π-0.631476\pi
−0.401400 + 0.915903i 0.631476π0.631476\pi
968968 −31.2743 −1.00519
969969 −90.4998 −2.90727
970970 −2.42386 −0.0778253
971971 −19.3300 −0.620330 −0.310165 0.950683i 0.600384π-0.600384\pi
−0.310165 + 0.950683i 0.600384π0.600384\pi
972972 53.3867 1.71238
973973 −31.9114 −1.02303
974974 70.4801 2.25833
975975 −6.52572 −0.208990
976976 −4.05335 −0.129745
977977 12.6311 0.404105 0.202052 0.979375i 0.435239π-0.435239\pi
0.202052 + 0.979375i 0.435239π0.435239\pi
978978 14.3439 0.458666
979979 −33.4529 −1.06916
980980 −3.67675 −0.117449
981981 60.1969 1.92194
982982 −3.50996 −0.112007
983983 −53.3946 −1.70302 −0.851512 0.524335i 0.824314π-0.824314\pi
−0.851512 + 0.524335i 0.824314π0.824314\pi
984984 −29.6187 −0.944211
985985 −0.561185 −0.0178808
986986 −24.1297 −0.768445
987987 −53.3630 −1.69856
988988 −2.19613 −0.0698681
989989 −19.6789 −0.625753
990990 17.7866 0.565296
991991 47.5165 1.50941 0.754705 0.656064i 0.227780π-0.227780\pi
0.754705 + 0.656064i 0.227780π0.227780\pi
992992 −5.63143 −0.178798
993993 49.3653 1.56656
994994 75.5484 2.39625
995995 2.41369 0.0765191
996996 −25.0377 −0.793351
997997 35.2936 1.11776 0.558880 0.829248i 0.311231π-0.311231\pi
0.558880 + 0.829248i 0.311231π0.311231\pi
998998 27.8281 0.880882
999999 −43.1154 −1.36411
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1759.2.a.b.1.63 86
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1759.2.a.b.1.63 86 1.1 even 1 trivial