Properties

Label 176.3.n.c.129.2
Level $176$
Weight $3$
Character 176.129
Analytic conductor $4.796$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,3,Mod(17,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.17");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 176.n (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79565265274\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 129.2
Root \(3.08941 - 2.24459i\) of defining polynomial
Character \(\chi\) \(=\) 176.129
Dual form 176.3.n.c.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37103 + 4.21961i) q^{3} +(-5.30779 - 3.85634i) q^{5} +(-10.9532 - 3.55892i) q^{7} +(-8.64421 + 6.28038i) q^{9} +(-9.32350 + 5.83715i) q^{11} +(2.97320 + 4.09226i) q^{13} +(8.99507 - 27.6840i) q^{15} +(-5.03681 + 6.93258i) q^{17} +(10.3045 - 3.34815i) q^{19} -51.0977i q^{21} -11.7519 q^{23} +(5.57590 + 17.1609i) q^{25} +(-6.04753 - 4.39379i) q^{27} +(19.2505 + 6.25487i) q^{29} +(-29.4488 + 21.3958i) q^{31} +(-37.4133 - 31.3386i) q^{33} +(44.4130 + 61.1293i) q^{35} +(-11.4023 + 35.0927i) q^{37} +(-13.1914 + 18.1564i) q^{39} +(-40.3205 + 13.1009i) q^{41} -72.4430i q^{43} +70.1009 q^{45} +(3.37433 + 10.3851i) q^{47} +(67.6654 + 49.1618i) q^{49} +(-36.1584 - 11.7486i) q^{51} +(-58.4943 + 42.4986i) q^{53} +(71.9972 + 4.97215i) q^{55} +(28.2557 + 38.8907i) q^{57} +(-1.38239 + 4.25455i) q^{59} +(63.8606 - 87.8965i) q^{61} +(117.033 - 38.0264i) q^{63} -33.1866i q^{65} +37.6104 q^{67} +(-16.1123 - 49.5886i) q^{69} +(-43.3875 - 31.5228i) q^{71} +(-23.7259 - 7.70902i) q^{73} +(-64.7673 + 47.0562i) q^{75} +(122.896 - 30.7541i) q^{77} +(41.8941 + 57.6623i) q^{79} +(-19.4674 + 59.9146i) q^{81} +(-6.78240 + 9.33518i) q^{83} +(53.4687 - 17.3730i) q^{85} +89.8052i q^{87} -75.6980 q^{89} +(-18.0021 - 55.4048i) q^{91} +(-130.657 - 94.9280i) q^{93} +(-67.6059 - 21.9665i) q^{95} +(-2.41589 + 1.75525i) q^{97} +(43.9347 - 109.013i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 5 q^{3} - q^{5} - 15 q^{7} - q^{9} - 17 q^{11} - 15 q^{13} + 63 q^{15} - 75 q^{17} + 30 q^{19} - 100 q^{23} + 51 q^{25} - 100 q^{27} + 125 q^{29} - 73 q^{31} - 20 q^{33} + 155 q^{35} - 75 q^{37}+ \cdots + 419 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.37103 + 4.21961i 0.457011 + 1.40654i 0.868758 + 0.495238i \(0.164919\pi\)
−0.411746 + 0.911298i \(0.635081\pi\)
\(4\) 0 0
\(5\) −5.30779 3.85634i −1.06156 0.771267i −0.0871824 0.996192i \(-0.527786\pi\)
−0.974376 + 0.224925i \(0.927786\pi\)
\(6\) 0 0
\(7\) −10.9532 3.55892i −1.56475 0.508417i −0.606676 0.794950i \(-0.707497\pi\)
−0.958070 + 0.286533i \(0.907497\pi\)
\(8\) 0 0
\(9\) −8.64421 + 6.28038i −0.960467 + 0.697820i
\(10\) 0 0
\(11\) −9.32350 + 5.83715i −0.847591 + 0.530650i
\(12\) 0 0
\(13\) 2.97320 + 4.09226i 0.228708 + 0.314789i 0.907913 0.419159i \(-0.137675\pi\)
−0.679205 + 0.733949i \(0.737675\pi\)
\(14\) 0 0
\(15\) 8.99507 27.6840i 0.599671 1.84560i
\(16\) 0 0
\(17\) −5.03681 + 6.93258i −0.296283 + 0.407799i −0.931042 0.364911i \(-0.881099\pi\)
0.634759 + 0.772710i \(0.281099\pi\)
\(18\) 0 0
\(19\) 10.3045 3.34815i 0.542344 0.176218i −0.0250177 0.999687i \(-0.507964\pi\)
0.567362 + 0.823469i \(0.307964\pi\)
\(20\) 0 0
\(21\) 51.0977i 2.43322i
\(22\) 0 0
\(23\) −11.7519 −0.510954 −0.255477 0.966815i \(-0.582232\pi\)
−0.255477 + 0.966815i \(0.582232\pi\)
\(24\) 0 0
\(25\) 5.57590 + 17.1609i 0.223036 + 0.686434i
\(26\) 0 0
\(27\) −6.04753 4.39379i −0.223983 0.162733i
\(28\) 0 0
\(29\) 19.2505 + 6.25487i 0.663810 + 0.215685i 0.621494 0.783419i \(-0.286526\pi\)
0.0423166 + 0.999104i \(0.486526\pi\)
\(30\) 0 0
\(31\) −29.4488 + 21.3958i −0.949961 + 0.690187i −0.950798 0.309813i \(-0.899734\pi\)
0.000836644 1.00000i \(0.499734\pi\)
\(32\) 0 0
\(33\) −37.4133 31.3386i −1.13374 0.949654i
\(34\) 0 0
\(35\) 44.4130 + 61.1293i 1.26894 + 1.74655i
\(36\) 0 0
\(37\) −11.4023 + 35.0927i −0.308170 + 0.948450i 0.670305 + 0.742086i \(0.266163\pi\)
−0.978475 + 0.206365i \(0.933837\pi\)
\(38\) 0 0
\(39\) −13.1914 + 18.1564i −0.338241 + 0.465548i
\(40\) 0 0
\(41\) −40.3205 + 13.1009i −0.983426 + 0.319534i −0.756224 0.654313i \(-0.772958\pi\)
−0.227202 + 0.973848i \(0.572958\pi\)
\(42\) 0 0
\(43\) 72.4430i 1.68472i −0.538915 0.842360i \(-0.681165\pi\)
0.538915 0.842360i \(-0.318835\pi\)
\(44\) 0 0
\(45\) 70.1009 1.55780
\(46\) 0 0
\(47\) 3.37433 + 10.3851i 0.0717943 + 0.220960i 0.980515 0.196445i \(-0.0629396\pi\)
−0.908721 + 0.417405i \(0.862940\pi\)
\(48\) 0 0
\(49\) 67.6654 + 49.1618i 1.38093 + 1.00330i
\(50\) 0 0
\(51\) −36.1584 11.7486i −0.708989 0.230364i
\(52\) 0 0
\(53\) −58.4943 + 42.4986i −1.10367 + 0.801860i −0.981654 0.190668i \(-0.938934\pi\)
−0.122011 + 0.992529i \(0.538934\pi\)
\(54\) 0 0
\(55\) 71.9972 + 4.97215i 1.30904 + 0.0904028i
\(56\) 0 0
\(57\) 28.2557 + 38.8907i 0.495714 + 0.682292i
\(58\) 0 0
\(59\) −1.38239 + 4.25455i −0.0234303 + 0.0721110i −0.962088 0.272739i \(-0.912070\pi\)
0.938658 + 0.344850i \(0.112070\pi\)
\(60\) 0 0
\(61\) 63.8606 87.8965i 1.04689 1.44093i 0.155424 0.987848i \(-0.450326\pi\)
0.891470 0.453079i \(-0.149674\pi\)
\(62\) 0 0
\(63\) 117.033 38.0264i 1.85767 0.603594i
\(64\) 0 0
\(65\) 33.1866i 0.510562i
\(66\) 0 0
\(67\) 37.6104 0.561349 0.280674 0.959803i \(-0.409442\pi\)
0.280674 + 0.959803i \(0.409442\pi\)
\(68\) 0 0
\(69\) −16.1123 49.5886i −0.233512 0.718675i
\(70\) 0 0
\(71\) −43.3875 31.5228i −0.611091 0.443984i 0.238707 0.971092i \(-0.423276\pi\)
−0.849798 + 0.527108i \(0.823276\pi\)
\(72\) 0 0
\(73\) −23.7259 7.70902i −0.325013 0.105603i 0.141966 0.989872i \(-0.454658\pi\)
−0.466979 + 0.884269i \(0.654658\pi\)
\(74\) 0 0
\(75\) −64.7673 + 47.0562i −0.863564 + 0.627416i
\(76\) 0 0
\(77\) 122.896 30.7541i 1.59606 0.399404i
\(78\) 0 0
\(79\) 41.8941 + 57.6623i 0.530305 + 0.729903i 0.987177 0.159630i \(-0.0510301\pi\)
−0.456872 + 0.889533i \(0.651030\pi\)
\(80\) 0 0
\(81\) −19.4674 + 59.9146i −0.240339 + 0.739686i
\(82\) 0 0
\(83\) −6.78240 + 9.33518i −0.0817157 + 0.112472i −0.847918 0.530127i \(-0.822144\pi\)
0.766202 + 0.642600i \(0.222144\pi\)
\(84\) 0 0
\(85\) 53.4687 17.3730i 0.629044 0.204389i
\(86\) 0 0
\(87\) 89.8052i 1.03224i
\(88\) 0 0
\(89\) −75.6980 −0.850540 −0.425270 0.905067i \(-0.639821\pi\)
−0.425270 + 0.905067i \(0.639821\pi\)
\(90\) 0 0
\(91\) −18.0021 55.4048i −0.197826 0.608844i
\(92\) 0 0
\(93\) −130.657 94.9280i −1.40492 1.02073i
\(94\) 0 0
\(95\) −67.6059 21.9665i −0.711641 0.231226i
\(96\) 0 0
\(97\) −2.41589 + 1.75525i −0.0249061 + 0.0180953i −0.600169 0.799873i \(-0.704900\pi\)
0.575263 + 0.817969i \(0.304900\pi\)
\(98\) 0 0
\(99\) 43.9347 109.013i 0.443785 1.10114i
\(100\) 0 0
\(101\) 26.1228 + 35.9549i 0.258641 + 0.355989i 0.918514 0.395388i \(-0.129390\pi\)
−0.659873 + 0.751377i \(0.729390\pi\)
\(102\) 0 0
\(103\) −16.6882 + 51.3610i −0.162021 + 0.498650i −0.998804 0.0488842i \(-0.984433\pi\)
0.836783 + 0.547534i \(0.184433\pi\)
\(104\) 0 0
\(105\) −197.050 + 271.216i −1.87667 + 2.58301i
\(106\) 0 0
\(107\) −124.961 + 40.6022i −1.16786 + 0.379460i −0.827843 0.560960i \(-0.810432\pi\)
−0.340015 + 0.940420i \(0.610432\pi\)
\(108\) 0 0
\(109\) 6.96523i 0.0639012i −0.999489 0.0319506i \(-0.989828\pi\)
0.999489 0.0319506i \(-0.0101719\pi\)
\(110\) 0 0
\(111\) −163.710 −1.47487
\(112\) 0 0
\(113\) 16.8926 + 51.9900i 0.149492 + 0.460089i 0.997561 0.0697966i \(-0.0222350\pi\)
−0.848069 + 0.529885i \(0.822235\pi\)
\(114\) 0 0
\(115\) 62.3768 + 45.3194i 0.542407 + 0.394082i
\(116\) 0 0
\(117\) −51.4020 16.7015i −0.439333 0.142748i
\(118\) 0 0
\(119\) 79.8418 58.0085i 0.670940 0.487466i
\(120\) 0 0
\(121\) 52.8553 108.845i 0.436820 0.899549i
\(122\) 0 0
\(123\) −110.561 152.175i −0.898874 1.23719i
\(124\) 0 0
\(125\) −14.1026 + 43.4033i −0.112821 + 0.347226i
\(126\) 0 0
\(127\) 4.79238 6.59615i 0.0377353 0.0519382i −0.789732 0.613451i \(-0.789781\pi\)
0.827468 + 0.561513i \(0.189781\pi\)
\(128\) 0 0
\(129\) 305.681 99.3218i 2.36962 0.769936i
\(130\) 0 0
\(131\) 162.483i 1.24033i −0.784473 0.620163i \(-0.787066\pi\)
0.784473 0.620163i \(-0.212934\pi\)
\(132\) 0 0
\(133\) −124.784 −0.938223
\(134\) 0 0
\(135\) 15.1551 + 46.6427i 0.112260 + 0.345501i
\(136\) 0 0
\(137\) −190.008 138.049i −1.38692 1.00766i −0.996195 0.0871507i \(-0.972224\pi\)
−0.390726 0.920507i \(-0.627776\pi\)
\(138\) 0 0
\(139\) 225.896 + 73.3980i 1.62515 + 0.528043i 0.973149 0.230175i \(-0.0739299\pi\)
0.652001 + 0.758218i \(0.273930\pi\)
\(140\) 0 0
\(141\) −39.1949 + 28.4767i −0.277978 + 0.201963i
\(142\) 0 0
\(143\) −51.6078 20.7992i −0.360894 0.145449i
\(144\) 0 0
\(145\) −78.0568 107.436i −0.538323 0.740937i
\(146\) 0 0
\(147\) −114.672 + 352.924i −0.780081 + 2.40084i
\(148\) 0 0
\(149\) 96.3895 132.669i 0.646909 0.890394i −0.352051 0.935981i \(-0.614516\pi\)
0.998960 + 0.0455865i \(0.0145157\pi\)
\(150\) 0 0
\(151\) 41.8105 13.5851i 0.276891 0.0899673i −0.167280 0.985909i \(-0.553498\pi\)
0.444171 + 0.895942i \(0.353498\pi\)
\(152\) 0 0
\(153\) 91.5598i 0.598430i
\(154\) 0 0
\(155\) 238.817 1.54076
\(156\) 0 0
\(157\) 2.48642 + 7.65241i 0.0158371 + 0.0487414i 0.958663 0.284545i \(-0.0918425\pi\)
−0.942826 + 0.333286i \(0.891842\pi\)
\(158\) 0 0
\(159\) −259.525 188.556i −1.63223 1.18589i
\(160\) 0 0
\(161\) 128.722 + 41.8242i 0.799513 + 0.259777i
\(162\) 0 0
\(163\) −102.128 + 74.2001i −0.626550 + 0.455216i −0.855203 0.518292i \(-0.826568\pi\)
0.228653 + 0.973508i \(0.426568\pi\)
\(164\) 0 0
\(165\) 77.7301 + 310.617i 0.471091 + 1.88253i
\(166\) 0 0
\(167\) −124.601 171.498i −0.746112 1.02694i −0.998244 0.0592423i \(-0.981132\pi\)
0.252131 0.967693i \(-0.418868\pi\)
\(168\) 0 0
\(169\) 44.3172 136.394i 0.262232 0.807067i
\(170\) 0 0
\(171\) −68.0469 + 93.6585i −0.397935 + 0.547710i
\(172\) 0 0
\(173\) −239.490 + 77.8150i −1.38434 + 0.449798i −0.904092 0.427338i \(-0.859452\pi\)
−0.480243 + 0.877136i \(0.659452\pi\)
\(174\) 0 0
\(175\) 207.811i 1.18749i
\(176\) 0 0
\(177\) −19.8478 −0.112135
\(178\) 0 0
\(179\) 68.5335 + 210.924i 0.382869 + 1.17835i 0.938015 + 0.346596i \(0.112662\pi\)
−0.555146 + 0.831753i \(0.687338\pi\)
\(180\) 0 0
\(181\) 1.59618 + 1.15970i 0.00881869 + 0.00640716i 0.592186 0.805801i \(-0.298265\pi\)
−0.583367 + 0.812209i \(0.698265\pi\)
\(182\) 0 0
\(183\) 458.444 + 148.957i 2.50516 + 0.813975i
\(184\) 0 0
\(185\) 195.850 142.293i 1.05865 0.769154i
\(186\) 0 0
\(187\) 6.49420 94.0366i 0.0347283 0.502869i
\(188\) 0 0
\(189\) 50.6029 + 69.6488i 0.267740 + 0.368512i
\(190\) 0 0
\(191\) 6.42642 19.7785i 0.0336462 0.103552i −0.932823 0.360335i \(-0.882662\pi\)
0.966469 + 0.256783i \(0.0826624\pi\)
\(192\) 0 0
\(193\) −109.830 + 151.168i −0.569068 + 0.783255i −0.992444 0.122699i \(-0.960845\pi\)
0.423376 + 0.905954i \(0.360845\pi\)
\(194\) 0 0
\(195\) 140.034 45.4999i 0.718124 0.233333i
\(196\) 0 0
\(197\) 325.621i 1.65290i 0.563011 + 0.826449i \(0.309643\pi\)
−0.563011 + 0.826449i \(0.690357\pi\)
\(198\) 0 0
\(199\) 76.6068 0.384959 0.192479 0.981301i \(-0.438347\pi\)
0.192479 + 0.981301i \(0.438347\pi\)
\(200\) 0 0
\(201\) 51.5651 + 158.701i 0.256543 + 0.789557i
\(202\) 0 0
\(203\) −188.594 137.022i −0.929037 0.674985i
\(204\) 0 0
\(205\) 264.534 + 85.9524i 1.29041 + 0.419280i
\(206\) 0 0
\(207\) 101.586 73.8066i 0.490754 0.356554i
\(208\) 0 0
\(209\) −76.5307 + 91.3656i −0.366175 + 0.437156i
\(210\) 0 0
\(211\) 134.868 + 185.630i 0.639186 + 0.879764i 0.998572 0.0534249i \(-0.0170138\pi\)
−0.359386 + 0.933189i \(0.617014\pi\)
\(212\) 0 0
\(213\) 73.5284 226.297i 0.345204 1.06243i
\(214\) 0 0
\(215\) −279.365 + 384.512i −1.29937 + 1.78843i
\(216\) 0 0
\(217\) 398.705 129.547i 1.83735 0.596991i
\(218\) 0 0
\(219\) 110.683i 0.505404i
\(220\) 0 0
\(221\) −43.3454 −0.196133
\(222\) 0 0
\(223\) −105.098 323.459i −0.471293 1.45049i −0.850893 0.525339i \(-0.823938\pi\)
0.379600 0.925151i \(-0.376062\pi\)
\(224\) 0 0
\(225\) −155.976 113.323i −0.693227 0.503659i
\(226\) 0 0
\(227\) 176.746 + 57.4282i 0.778616 + 0.252988i 0.671249 0.741232i \(-0.265758\pi\)
0.107367 + 0.994219i \(0.465758\pi\)
\(228\) 0 0
\(229\) −120.106 + 87.2618i −0.524479 + 0.381056i −0.818288 0.574808i \(-0.805077\pi\)
0.293810 + 0.955864i \(0.405077\pi\)
\(230\) 0 0
\(231\) 298.265 + 476.409i 1.29119 + 2.06238i
\(232\) 0 0
\(233\) 47.8872 + 65.9111i 0.205525 + 0.282880i 0.899319 0.437292i \(-0.144063\pi\)
−0.693795 + 0.720173i \(0.744063\pi\)
\(234\) 0 0
\(235\) 22.1383 68.1347i 0.0942056 0.289935i
\(236\) 0 0
\(237\) −185.874 + 255.834i −0.784279 + 1.07947i
\(238\) 0 0
\(239\) −191.525 + 62.2303i −0.801360 + 0.260378i −0.680934 0.732345i \(-0.738426\pi\)
−0.120426 + 0.992722i \(0.538426\pi\)
\(240\) 0 0
\(241\) 381.337i 1.58231i −0.611616 0.791155i \(-0.709480\pi\)
0.611616 0.791155i \(-0.290520\pi\)
\(242\) 0 0
\(243\) −346.783 −1.42709
\(244\) 0 0
\(245\) −169.569 521.881i −0.692120 2.13013i
\(246\) 0 0
\(247\) 44.3390 + 32.2141i 0.179510 + 0.130422i
\(248\) 0 0
\(249\) −48.6897 15.8202i −0.195541 0.0635351i
\(250\) 0 0
\(251\) 84.0788 61.0868i 0.334975 0.243374i −0.407563 0.913177i \(-0.633621\pi\)
0.742539 + 0.669803i \(0.233621\pi\)
\(252\) 0 0
\(253\) 109.569 68.5978i 0.433080 0.271138i
\(254\) 0 0
\(255\) 146.615 + 201.798i 0.574960 + 0.791365i
\(256\) 0 0
\(257\) −49.5999 + 152.653i −0.192996 + 0.593980i 0.806998 + 0.590554i \(0.201091\pi\)
−0.999994 + 0.00342612i \(0.998909\pi\)
\(258\) 0 0
\(259\) 249.784 343.798i 0.964416 1.32740i
\(260\) 0 0
\(261\) −205.688 + 66.8321i −0.788077 + 0.256062i
\(262\) 0 0
\(263\) 203.520i 0.773840i 0.922113 + 0.386920i \(0.126461\pi\)
−0.922113 + 0.386920i \(0.873539\pi\)
\(264\) 0 0
\(265\) 474.364 1.79005
\(266\) 0 0
\(267\) −103.785 319.416i −0.388706 1.19631i
\(268\) 0 0
\(269\) −182.799 132.812i −0.679552 0.493723i 0.193657 0.981069i \(-0.437965\pi\)
−0.873209 + 0.487346i \(0.837965\pi\)
\(270\) 0 0
\(271\) −276.556 89.8585i −1.02050 0.331581i −0.249474 0.968382i \(-0.580258\pi\)
−0.771029 + 0.636800i \(0.780258\pi\)
\(272\) 0 0
\(273\) 209.105 151.924i 0.765953 0.556498i
\(274\) 0 0
\(275\) −152.157 127.452i −0.553300 0.463461i
\(276\) 0 0
\(277\) 112.068 + 154.248i 0.404577 + 0.556853i 0.961885 0.273453i \(-0.0881658\pi\)
−0.557308 + 0.830306i \(0.688166\pi\)
\(278\) 0 0
\(279\) 120.188 369.899i 0.430780 1.32580i
\(280\) 0 0
\(281\) 12.7725 17.5799i 0.0454538 0.0625618i −0.785685 0.618627i \(-0.787689\pi\)
0.831139 + 0.556065i \(0.187689\pi\)
\(282\) 0 0
\(283\) −52.2884 + 16.9895i −0.184765 + 0.0600337i −0.399938 0.916542i \(-0.630968\pi\)
0.215173 + 0.976576i \(0.430968\pi\)
\(284\) 0 0
\(285\) 315.387i 1.10662i
\(286\) 0 0
\(287\) 488.264 1.70127
\(288\) 0 0
\(289\) 66.6147 + 205.019i 0.230501 + 0.709409i
\(290\) 0 0
\(291\) −10.7187 7.78761i −0.0368341 0.0267615i
\(292\) 0 0
\(293\) 417.197 + 135.556i 1.42388 + 0.462647i 0.916833 0.399271i \(-0.130737\pi\)
0.507048 + 0.861918i \(0.330737\pi\)
\(294\) 0 0
\(295\) 23.7444 17.2513i 0.0804895 0.0584790i
\(296\) 0 0
\(297\) 82.0314 + 5.66512i 0.276200 + 0.0190745i
\(298\) 0 0
\(299\) −34.9409 48.0920i −0.116859 0.160843i
\(300\) 0 0
\(301\) −257.819 + 793.484i −0.856540 + 2.63616i
\(302\) 0 0
\(303\) −115.900 + 159.523i −0.382510 + 0.526480i
\(304\) 0 0
\(305\) −677.917 + 220.269i −2.22268 + 0.722192i
\(306\) 0 0
\(307\) 232.888i 0.758594i 0.925275 + 0.379297i \(0.123834\pi\)
−0.925275 + 0.379297i \(0.876166\pi\)
\(308\) 0 0
\(309\) −239.603 −0.775415
\(310\) 0 0
\(311\) 47.0093 + 144.680i 0.151155 + 0.465208i 0.997751 0.0670284i \(-0.0213518\pi\)
−0.846596 + 0.532236i \(0.821352\pi\)
\(312\) 0 0
\(313\) −81.4642 59.1872i −0.260269 0.189097i 0.449997 0.893030i \(-0.351425\pi\)
−0.710266 + 0.703934i \(0.751425\pi\)
\(314\) 0 0
\(315\) −767.831 249.483i −2.43756 0.792011i
\(316\) 0 0
\(317\) −270.287 + 196.375i −0.852639 + 0.619478i −0.925872 0.377836i \(-0.876668\pi\)
0.0732335 + 0.997315i \(0.476668\pi\)
\(318\) 0 0
\(319\) −215.993 + 54.0509i −0.677093 + 0.169438i
\(320\) 0 0
\(321\) −342.651 471.619i −1.06745 1.46922i
\(322\) 0 0
\(323\) −28.6907 + 88.3010i −0.0888258 + 0.273378i
\(324\) 0 0
\(325\) −53.6484 + 73.8408i −0.165072 + 0.227202i
\(326\) 0 0
\(327\) 29.3905 9.54956i 0.0898793 0.0292036i
\(328\) 0 0
\(329\) 125.760i 0.382248i
\(330\) 0 0
\(331\) −168.614 −0.509409 −0.254705 0.967019i \(-0.581978\pi\)
−0.254705 + 0.967019i \(0.581978\pi\)
\(332\) 0 0
\(333\) −121.832 374.959i −0.365860 1.12600i
\(334\) 0 0
\(335\) −199.628 145.038i −0.595905 0.432950i
\(336\) 0 0
\(337\) −497.959 161.797i −1.47762 0.480108i −0.544220 0.838942i \(-0.683174\pi\)
−0.933401 + 0.358834i \(0.883174\pi\)
\(338\) 0 0
\(339\) −196.217 + 142.560i −0.578812 + 0.420531i
\(340\) 0 0
\(341\) 149.675 371.381i 0.438930 1.08909i
\(342\) 0 0
\(343\) −234.487 322.744i −0.683636 0.940945i
\(344\) 0 0
\(345\) −105.709 + 325.340i −0.306404 + 0.943015i
\(346\) 0 0
\(347\) −281.084 + 386.879i −0.810040 + 1.11493i 0.181277 + 0.983432i \(0.441977\pi\)
−0.991317 + 0.131493i \(0.958023\pi\)
\(348\) 0 0
\(349\) −9.13440 + 2.96795i −0.0261731 + 0.00850415i −0.322074 0.946714i \(-0.604380\pi\)
0.295901 + 0.955219i \(0.404380\pi\)
\(350\) 0 0
\(351\) 37.8117i 0.107726i
\(352\) 0 0
\(353\) 691.089 1.95776 0.978880 0.204436i \(-0.0655361\pi\)
0.978880 + 0.204436i \(0.0655361\pi\)
\(354\) 0 0
\(355\) 108.729 + 334.633i 0.306279 + 0.942629i
\(356\) 0 0
\(357\) 354.239 + 257.370i 0.992266 + 0.720923i
\(358\) 0 0
\(359\) −43.9277 14.2730i −0.122361 0.0397576i 0.247196 0.968965i \(-0.420491\pi\)
−0.369558 + 0.929208i \(0.620491\pi\)
\(360\) 0 0
\(361\) −197.082 + 143.188i −0.545933 + 0.396644i
\(362\) 0 0
\(363\) 531.751 + 73.7978i 1.46488 + 0.203300i
\(364\) 0 0
\(365\) 96.2037 + 132.413i 0.263572 + 0.362775i
\(366\) 0 0
\(367\) −140.965 + 433.846i −0.384101 + 1.18214i 0.553030 + 0.833162i \(0.313472\pi\)
−0.937131 + 0.348979i \(0.886528\pi\)
\(368\) 0 0
\(369\) 266.260 366.475i 0.721571 0.993157i
\(370\) 0 0
\(371\) 791.950 257.320i 2.13464 0.693585i
\(372\) 0 0
\(373\) 99.8021i 0.267566i −0.991011 0.133783i \(-0.957288\pi\)
0.991011 0.133783i \(-0.0427125\pi\)
\(374\) 0 0
\(375\) −202.480 −0.539947
\(376\) 0 0
\(377\) 31.6391 + 97.3751i 0.0839233 + 0.258289i
\(378\) 0 0
\(379\) 313.281 + 227.612i 0.826600 + 0.600560i 0.918595 0.395199i \(-0.129324\pi\)
−0.0919953 + 0.995759i \(0.529324\pi\)
\(380\) 0 0
\(381\) 34.4037 + 11.1784i 0.0902984 + 0.0293397i
\(382\) 0 0
\(383\) 490.495 356.366i 1.28067 0.930458i 0.281093 0.959681i \(-0.409303\pi\)
0.999573 + 0.0292222i \(0.00930304\pi\)
\(384\) 0 0
\(385\) −770.906 310.693i −2.00235 0.806996i
\(386\) 0 0
\(387\) 454.970 + 626.212i 1.17563 + 1.61812i
\(388\) 0 0
\(389\) 179.028 550.992i 0.460226 1.41643i −0.404662 0.914466i \(-0.632611\pi\)
0.864888 0.501964i \(-0.167389\pi\)
\(390\) 0 0
\(391\) 59.1923 81.4712i 0.151387 0.208366i
\(392\) 0 0
\(393\) 685.614 222.769i 1.74456 0.566843i
\(394\) 0 0
\(395\) 467.617i 1.18384i
\(396\) 0 0
\(397\) −163.072 −0.410761 −0.205381 0.978682i \(-0.565843\pi\)
−0.205381 + 0.978682i \(0.565843\pi\)
\(398\) 0 0
\(399\) −171.083 526.538i −0.428778 1.31964i
\(400\) 0 0
\(401\) 604.368 + 439.099i 1.50715 + 1.09501i 0.967422 + 0.253171i \(0.0814736\pi\)
0.539730 + 0.841838i \(0.318526\pi\)
\(402\) 0 0
\(403\) −175.114 56.8981i −0.434527 0.141186i
\(404\) 0 0
\(405\) 334.380 242.941i 0.825629 0.599855i
\(406\) 0 0
\(407\) −98.5319 393.743i −0.242093 0.967428i
\(408\) 0 0
\(409\) −71.6699 98.6451i −0.175232 0.241186i 0.712363 0.701812i \(-0.247625\pi\)
−0.887595 + 0.460625i \(0.847625\pi\)
\(410\) 0 0
\(411\) 322.005 991.030i 0.783468 2.41127i
\(412\) 0 0
\(413\) 30.2832 41.6812i 0.0733249 0.100923i
\(414\) 0 0
\(415\) 71.9992 23.3940i 0.173492 0.0563710i
\(416\) 0 0
\(417\) 1053.82i 2.52715i
\(418\) 0 0
\(419\) −330.708 −0.789279 −0.394640 0.918836i \(-0.629131\pi\)
−0.394640 + 0.918836i \(0.629131\pi\)
\(420\) 0 0
\(421\) 197.794 + 608.747i 0.469819 + 1.44595i 0.852819 + 0.522206i \(0.174891\pi\)
−0.383000 + 0.923748i \(0.625109\pi\)
\(422\) 0 0
\(423\) −94.3910 68.5791i −0.223147 0.162126i
\(424\) 0 0
\(425\) −147.054 47.7807i −0.346009 0.112425i
\(426\) 0 0
\(427\) −1012.30 + 735.476i −2.37072 + 1.72243i
\(428\) 0 0
\(429\) 17.0083 246.281i 0.0396463 0.574082i
\(430\) 0 0
\(431\) 85.8703 + 118.190i 0.199235 + 0.274223i 0.896931 0.442170i \(-0.145791\pi\)
−0.697696 + 0.716394i \(0.745791\pi\)
\(432\) 0 0
\(433\) 28.3924 87.3827i 0.0655713 0.201808i −0.912903 0.408177i \(-0.866165\pi\)
0.978474 + 0.206369i \(0.0661647\pi\)
\(434\) 0 0
\(435\) 346.319 476.667i 0.796136 1.09579i
\(436\) 0 0
\(437\) −121.098 + 39.3472i −0.277112 + 0.0900393i
\(438\) 0 0
\(439\) 358.371i 0.816335i 0.912907 + 0.408168i \(0.133832\pi\)
−0.912907 + 0.408168i \(0.866168\pi\)
\(440\) 0 0
\(441\) −893.668 −2.02646
\(442\) 0 0
\(443\) 253.799 + 781.114i 0.572910 + 1.76324i 0.643186 + 0.765710i \(0.277612\pi\)
−0.0702760 + 0.997528i \(0.522388\pi\)
\(444\) 0 0
\(445\) 401.790 + 291.917i 0.902898 + 0.655994i
\(446\) 0 0
\(447\) 691.963 + 224.833i 1.54802 + 0.502981i
\(448\) 0 0
\(449\) −131.173 + 95.3029i −0.292145 + 0.212256i −0.724197 0.689593i \(-0.757790\pi\)
0.432052 + 0.901849i \(0.357790\pi\)
\(450\) 0 0
\(451\) 299.456 357.503i 0.663982 0.792690i
\(452\) 0 0
\(453\) 114.647 + 157.798i 0.253084 + 0.348341i
\(454\) 0 0
\(455\) −118.108 + 363.500i −0.259578 + 0.798900i
\(456\) 0 0
\(457\) 213.638 294.048i 0.467479 0.643430i −0.508559 0.861027i \(-0.669822\pi\)
0.976039 + 0.217597i \(0.0698217\pi\)
\(458\) 0 0
\(459\) 60.9206 19.7943i 0.132725 0.0431249i
\(460\) 0 0
\(461\) 487.885i 1.05832i −0.848523 0.529159i \(-0.822507\pi\)
0.848523 0.529159i \(-0.177493\pi\)
\(462\) 0 0
\(463\) −367.635 −0.794028 −0.397014 0.917812i \(-0.629954\pi\)
−0.397014 + 0.917812i \(0.629954\pi\)
\(464\) 0 0
\(465\) 327.427 + 1007.72i 0.704144 + 2.16713i
\(466\) 0 0
\(467\) 333.686 + 242.437i 0.714531 + 0.519137i 0.884632 0.466289i \(-0.154409\pi\)
−0.170101 + 0.985427i \(0.554409\pi\)
\(468\) 0 0
\(469\) −411.955 133.852i −0.878368 0.285399i
\(470\) 0 0
\(471\) −28.8812 + 20.9834i −0.0613189 + 0.0445508i
\(472\) 0 0
\(473\) 422.861 + 675.422i 0.893998 + 1.42795i
\(474\) 0 0
\(475\) 114.914 + 158.166i 0.241924 + 0.332980i
\(476\) 0 0
\(477\) 238.729 734.733i 0.500481 1.54032i
\(478\) 0 0
\(479\) 312.503 430.123i 0.652407 0.897961i −0.346794 0.937941i \(-0.612730\pi\)
0.999200 + 0.0399806i \(0.0127296\pi\)
\(480\) 0 0
\(481\) −177.510 + 57.6764i −0.369043 + 0.119909i
\(482\) 0 0
\(483\) 600.497i 1.24326i
\(484\) 0 0
\(485\) 19.5919 0.0403956
\(486\) 0 0
\(487\) 198.833 + 611.946i 0.408282 + 1.25656i 0.918124 + 0.396294i \(0.129704\pi\)
−0.509842 + 0.860268i \(0.670296\pi\)
\(488\) 0 0
\(489\) −453.116 329.208i −0.926618 0.673227i
\(490\) 0 0
\(491\) −713.624 231.871i −1.45341 0.472241i −0.527360 0.849642i \(-0.676818\pi\)
−0.926050 + 0.377401i \(0.876818\pi\)
\(492\) 0 0
\(493\) −140.324 + 101.951i −0.284632 + 0.206797i
\(494\) 0 0
\(495\) −653.586 + 409.190i −1.32038 + 0.826646i
\(496\) 0 0
\(497\) 363.045 + 499.689i 0.730474 + 1.00541i
\(498\) 0 0
\(499\) −56.8823 + 175.066i −0.113993 + 0.350833i −0.991736 0.128298i \(-0.959048\pi\)
0.877743 + 0.479132i \(0.159048\pi\)
\(500\) 0 0
\(501\) 552.823 760.896i 1.10344 1.51875i
\(502\) 0 0
\(503\) −422.195 + 137.180i −0.839355 + 0.272723i −0.696981 0.717090i \(-0.745474\pi\)
−0.142374 + 0.989813i \(0.545474\pi\)
\(504\) 0 0
\(505\) 291.580i 0.577385i
\(506\) 0 0
\(507\) 636.291 1.25501
\(508\) 0 0
\(509\) −154.181 474.520i −0.302909 0.932259i −0.980449 0.196773i \(-0.936954\pi\)
0.677540 0.735486i \(-0.263046\pi\)
\(510\) 0 0
\(511\) 232.440 + 168.877i 0.454872 + 0.330484i
\(512\) 0 0
\(513\) −77.0281 25.0279i −0.150152 0.0487874i
\(514\) 0 0
\(515\) 286.643 208.258i 0.556588 0.404385i
\(516\) 0 0
\(517\) −92.0802 77.1293i −0.178105 0.149186i
\(518\) 0 0
\(519\) −656.698 903.867i −1.26531 1.74155i
\(520\) 0 0
\(521\) −79.1535 + 243.610i −0.151926 + 0.467581i −0.997836 0.0657445i \(-0.979058\pi\)
0.845910 + 0.533325i \(0.179058\pi\)
\(522\) 0 0
\(523\) 429.405 591.025i 0.821041 1.13007i −0.168484 0.985704i \(-0.553887\pi\)
0.989525 0.144362i \(-0.0461129\pi\)
\(524\) 0 0
\(525\) 876.880 284.916i 1.67025 0.542697i
\(526\) 0 0
\(527\) 311.923i 0.591884i
\(528\) 0 0
\(529\) −390.892 −0.738926
\(530\) 0 0
\(531\) −14.7706 45.4591i −0.0278165 0.0856104i
\(532\) 0 0
\(533\) −173.493 126.050i −0.325503 0.236492i
\(534\) 0 0
\(535\) 819.842 + 266.383i 1.53242 + 0.497912i
\(536\) 0 0
\(537\) −796.057 + 578.369i −1.48241 + 1.07704i
\(538\) 0 0
\(539\) −917.843 63.3865i −1.70286 0.117600i
\(540\) 0 0
\(541\) −207.051 284.981i −0.382718 0.526766i 0.573584 0.819147i \(-0.305553\pi\)
−0.956302 + 0.292380i \(0.905553\pi\)
\(542\) 0 0
\(543\) −2.70504 + 8.32525i −0.00498165 + 0.0153320i
\(544\) 0 0
\(545\) −26.8603 + 36.9700i −0.0492849 + 0.0678348i
\(546\) 0 0
\(547\) −794.486 + 258.144i −1.45244 + 0.471927i −0.925752 0.378131i \(-0.876567\pi\)
−0.526690 + 0.850058i \(0.676567\pi\)
\(548\) 0 0
\(549\) 1160.86i 2.11451i
\(550\) 0 0
\(551\) 219.310 0.398021
\(552\) 0 0
\(553\) −253.660 780.686i −0.458698 1.41173i
\(554\) 0 0
\(555\) 868.940 + 631.322i 1.56566 + 1.13752i
\(556\) 0 0
\(557\) 373.525 + 121.366i 0.670601 + 0.217891i 0.624476 0.781044i \(-0.285313\pi\)
0.0461252 + 0.998936i \(0.485313\pi\)
\(558\) 0 0
\(559\) 296.456 215.388i 0.530332 0.385309i
\(560\) 0 0
\(561\) 405.701 101.524i 0.723175 0.180970i
\(562\) 0 0
\(563\) −228.481 314.478i −0.405828 0.558575i 0.556366 0.830937i \(-0.312195\pi\)
−0.962195 + 0.272362i \(0.912195\pi\)
\(564\) 0 0
\(565\) 110.829 341.096i 0.196157 0.603709i
\(566\) 0 0
\(567\) 426.462 586.975i 0.752138 1.03523i
\(568\) 0 0
\(569\) −626.840 + 203.673i −1.10165 + 0.357948i −0.802738 0.596332i \(-0.796624\pi\)
−0.298914 + 0.954280i \(0.596624\pi\)
\(570\) 0 0
\(571\) 893.667i 1.56509i −0.622593 0.782546i \(-0.713921\pi\)
0.622593 0.782546i \(-0.286079\pi\)
\(572\) 0 0
\(573\) 92.2683 0.161027
\(574\) 0 0
\(575\) −65.5276 201.673i −0.113961 0.350736i
\(576\) 0 0
\(577\) 14.3594 + 10.4327i 0.0248864 + 0.0180810i 0.600159 0.799881i \(-0.295104\pi\)
−0.575273 + 0.817962i \(0.695104\pi\)
\(578\) 0 0
\(579\) −788.452 256.183i −1.36175 0.442459i
\(580\) 0 0
\(581\) 107.512 78.1123i 0.185047 0.134445i
\(582\) 0 0
\(583\) 297.301 737.676i 0.509950 1.26531i
\(584\) 0 0
\(585\) 208.424 + 286.871i 0.356281 + 0.490378i
\(586\) 0 0
\(587\) 50.3870 155.075i 0.0858382 0.264183i −0.898920 0.438113i \(-0.855647\pi\)
0.984758 + 0.173931i \(0.0556468\pi\)
\(588\) 0 0
\(589\) −231.820 + 319.073i −0.393582 + 0.541719i
\(590\) 0 0
\(591\) −1373.99 + 446.438i −2.32486 + 0.755393i
\(592\) 0 0
\(593\) 513.367i 0.865711i −0.901463 0.432855i \(-0.857506\pi\)
0.901463 0.432855i \(-0.142494\pi\)
\(594\) 0 0
\(595\) −647.484 −1.08821
\(596\) 0 0
\(597\) 105.031 + 323.251i 0.175931 + 0.541458i
\(598\) 0 0
\(599\) 749.454 + 544.510i 1.25118 + 0.909032i 0.998290 0.0584638i \(-0.0186202\pi\)
0.252886 + 0.967496i \(0.418620\pi\)
\(600\) 0 0
\(601\) 152.709 + 49.6182i 0.254092 + 0.0825594i 0.433293 0.901253i \(-0.357351\pi\)
−0.179202 + 0.983812i \(0.557351\pi\)
\(602\) 0 0
\(603\) −325.112 + 236.208i −0.539157 + 0.391721i
\(604\) 0 0
\(605\) −700.289 + 373.901i −1.15750 + 0.618018i
\(606\) 0 0
\(607\) −309.898 426.539i −0.510541 0.702700i 0.473469 0.880810i \(-0.343001\pi\)
−0.984010 + 0.178111i \(0.943001\pi\)
\(608\) 0 0
\(609\) 319.609 983.656i 0.524810 1.61520i
\(610\) 0 0
\(611\) −32.4661 + 44.6858i −0.0531360 + 0.0731355i
\(612\) 0 0
\(613\) −630.712 + 204.931i −1.02889 + 0.334308i −0.774353 0.632754i \(-0.781924\pi\)
−0.254541 + 0.967062i \(0.581924\pi\)
\(614\) 0 0
\(615\) 1234.07i 2.00662i
\(616\) 0 0
\(617\) −260.782 −0.422661 −0.211331 0.977415i \(-0.567780\pi\)
−0.211331 + 0.977415i \(0.567780\pi\)
\(618\) 0 0
\(619\) −328.398 1010.70i −0.530529 1.63280i −0.753115 0.657889i \(-0.771450\pi\)
0.222586 0.974913i \(-0.428550\pi\)
\(620\) 0 0
\(621\) 71.0702 + 51.6355i 0.114445 + 0.0831490i
\(622\) 0 0
\(623\) 829.138 + 269.403i 1.33088 + 0.432429i
\(624\) 0 0
\(625\) 607.179 441.141i 0.971486 0.705826i
\(626\) 0 0
\(627\) −490.453 197.664i −0.782222 0.315254i
\(628\) 0 0
\(629\) −185.851 255.803i −0.295471 0.406681i
\(630\) 0 0
\(631\) −161.533 + 497.148i −0.255996 + 0.787874i 0.737636 + 0.675199i \(0.235942\pi\)
−0.993632 + 0.112675i \(0.964058\pi\)
\(632\) 0 0
\(633\) −598.378 + 823.597i −0.945305 + 1.30110i
\(634\) 0 0
\(635\) −50.8740 + 16.5300i −0.0801165 + 0.0260314i
\(636\) 0 0
\(637\) 423.072i 0.664164i
\(638\) 0 0
\(639\) 573.026 0.896754
\(640\) 0 0
\(641\) −343.291 1056.54i −0.535556 1.64827i −0.742445 0.669907i \(-0.766334\pi\)
0.206889 0.978364i \(-0.433666\pi\)
\(642\) 0 0
\(643\) −716.585 520.630i −1.11444 0.809689i −0.131084 0.991371i \(-0.541846\pi\)
−0.983357 + 0.181683i \(0.941846\pi\)
\(644\) 0 0
\(645\) −2005.51 651.630i −3.10932 1.01028i
\(646\) 0 0
\(647\) −92.5424 + 67.2360i −0.143033 + 0.103920i −0.657001 0.753890i \(-0.728175\pi\)
0.513968 + 0.857810i \(0.328175\pi\)
\(648\) 0 0
\(649\) −11.9458 47.7365i −0.0184064 0.0735539i
\(650\) 0 0
\(651\) 1093.28 + 1504.77i 1.67938 + 2.31147i
\(652\) 0 0
\(653\) −50.6565 + 155.905i −0.0775750 + 0.238751i −0.982322 0.187197i \(-0.940060\pi\)
0.904747 + 0.425949i \(0.140060\pi\)
\(654\) 0 0
\(655\) −626.588 + 862.425i −0.956623 + 1.31668i
\(656\) 0 0
\(657\) 253.507 82.3695i 0.385856 0.125372i
\(658\) 0 0
\(659\) 116.651i 0.177012i 0.996076 + 0.0885062i \(0.0282093\pi\)
−0.996076 + 0.0885062i \(0.971791\pi\)
\(660\) 0 0
\(661\) 205.962 0.311591 0.155796 0.987789i \(-0.450206\pi\)
0.155796 + 0.987789i \(0.450206\pi\)
\(662\) 0 0
\(663\) −59.4280 182.901i −0.0896350 0.275868i
\(664\) 0 0
\(665\) 662.325 + 481.208i 0.995978 + 0.723620i
\(666\) 0 0
\(667\) −226.231 73.5068i −0.339176 0.110205i
\(668\) 0 0
\(669\) 1220.78 886.947i 1.82478 1.32578i
\(670\) 0 0
\(671\) −82.3384 + 1192.27i −0.122710 + 1.77685i
\(672\) 0 0
\(673\) 16.4238 + 22.6055i 0.0244039 + 0.0335891i 0.821045 0.570864i \(-0.193392\pi\)
−0.796641 + 0.604453i \(0.793392\pi\)
\(674\) 0 0
\(675\) 41.6808 128.280i 0.0617493 0.190045i
\(676\) 0 0
\(677\) 317.546 437.064i 0.469049 0.645590i −0.507306 0.861766i \(-0.669359\pi\)
0.976354 + 0.216176i \(0.0693585\pi\)
\(678\) 0 0
\(679\) 32.7086 10.6277i 0.0481717 0.0156519i
\(680\) 0 0
\(681\) 824.534i 1.21077i
\(682\) 0 0
\(683\) 1117.89 1.63674 0.818369 0.574694i \(-0.194879\pi\)
0.818369 + 0.574694i \(0.194879\pi\)
\(684\) 0 0
\(685\) 476.161 + 1465.47i 0.695125 + 2.13937i
\(686\) 0 0
\(687\) −532.880 387.160i −0.775662 0.563551i
\(688\) 0 0
\(689\) −347.831 113.017i −0.504834 0.164031i
\(690\) 0 0
\(691\) 404.704 294.035i 0.585679 0.425521i −0.255088 0.966918i \(-0.582104\pi\)
0.840767 + 0.541397i \(0.182104\pi\)
\(692\) 0 0
\(693\) −869.194 + 1037.68i −1.25425 + 1.49737i
\(694\) 0 0
\(695\) −915.961 1260.71i −1.31793 1.81397i
\(696\) 0 0
\(697\) 112.264 345.512i 0.161067 0.495713i
\(698\) 0 0
\(699\) −212.464 + 292.432i −0.303954 + 0.418357i
\(700\) 0 0
\(701\) 615.162 199.878i 0.877549 0.285133i 0.164610 0.986359i \(-0.447364\pi\)
0.712939 + 0.701226i \(0.247364\pi\)
\(702\) 0 0
\(703\) 399.790i 0.568691i
\(704\) 0 0
\(705\) 317.854 0.450857
\(706\) 0 0
\(707\) −158.168 486.791i −0.223717 0.688531i
\(708\) 0 0
\(709\) 638.569 + 463.948i 0.900662 + 0.654369i 0.938636 0.344910i \(-0.112090\pi\)
−0.0379740 + 0.999279i \(0.512090\pi\)
\(710\) 0 0
\(711\) −724.283 235.334i −1.01868 0.330990i
\(712\) 0 0
\(713\) 346.080 251.442i 0.485386 0.352654i
\(714\) 0 0
\(715\) 193.715 + 309.415i 0.270930 + 0.432748i
\(716\) 0 0
\(717\) −525.175 722.841i −0.732461 1.00815i
\(718\) 0 0
\(719\) 76.5507 235.599i 0.106468 0.327676i −0.883604 0.468235i \(-0.844890\pi\)
0.990072 + 0.140559i \(0.0448900\pi\)
\(720\) 0 0
\(721\) 365.579 503.176i 0.507044 0.697887i
\(722\) 0 0
\(723\) 1609.09 522.825i 2.22558 0.723133i
\(724\) 0 0
\(725\) 365.231i 0.503768i
\(726\) 0 0
\(727\) 133.030 0.182986 0.0914928 0.995806i \(-0.470836\pi\)
0.0914928 + 0.995806i \(0.470836\pi\)
\(728\) 0 0
\(729\) −300.244 924.057i −0.411858 1.26757i
\(730\) 0 0
\(731\) 502.217 + 364.882i 0.687027 + 0.499154i
\(732\) 0 0
\(733\) −392.639 127.576i −0.535661 0.174047i 0.0286800 0.999589i \(-0.490870\pi\)
−0.564341 + 0.825542i \(0.690870\pi\)
\(734\) 0 0
\(735\) 1969.65 1431.03i 2.67979 1.94698i
\(736\) 0 0
\(737\) −350.660 + 219.538i −0.475794 + 0.297880i
\(738\) 0 0
\(739\) −46.5395 64.0561i −0.0629763 0.0866794i 0.776367 0.630281i \(-0.217060\pi\)
−0.839343 + 0.543602i \(0.817060\pi\)
\(740\) 0 0
\(741\) −75.1408 + 231.260i −0.101405 + 0.312091i
\(742\) 0 0
\(743\) −302.034 + 415.714i −0.406506 + 0.559507i −0.962362 0.271771i \(-0.912391\pi\)
0.555856 + 0.831279i \(0.312391\pi\)
\(744\) 0 0
\(745\) −1023.23 + 332.468i −1.37346 + 0.446266i
\(746\) 0 0
\(747\) 123.291i 0.165049i
\(748\) 0 0
\(749\) 1513.22 2.02033
\(750\) 0 0
\(751\) 15.0351 + 46.2733i 0.0200201 + 0.0616156i 0.960567 0.278047i \(-0.0896871\pi\)
−0.940547 + 0.339663i \(0.889687\pi\)
\(752\) 0 0
\(753\) 373.037 + 271.027i 0.495401 + 0.359930i
\(754\) 0 0
\(755\) −274.310 89.1288i −0.363325 0.118051i
\(756\) 0 0
\(757\) 165.372 120.149i 0.218456 0.158718i −0.473175 0.880968i \(-0.656892\pi\)
0.691632 + 0.722250i \(0.256892\pi\)
\(758\) 0 0
\(759\) 439.679 + 368.289i 0.579287 + 0.485229i
\(760\) 0 0
\(761\) 218.796 + 301.147i 0.287512 + 0.395726i 0.928204 0.372072i \(-0.121353\pi\)
−0.640692 + 0.767798i \(0.721353\pi\)
\(762\) 0 0
\(763\) −24.7887 + 76.2917i −0.0324884 + 0.0999891i
\(764\) 0 0
\(765\) −353.085 + 485.980i −0.461549 + 0.635268i
\(766\) 0 0
\(767\) −21.5208 + 6.99255i −0.0280585 + 0.00911675i
\(768\) 0 0
\(769\) 1491.70i 1.93979i 0.243531 + 0.969893i \(0.421694\pi\)
−0.243531 + 0.969893i \(0.578306\pi\)
\(770\) 0 0
\(771\) −712.138 −0.923655
\(772\) 0 0
\(773\) −209.903 646.014i −0.271543 0.835723i −0.990113 0.140269i \(-0.955203\pi\)
0.718570 0.695454i \(-0.244797\pi\)
\(774\) 0 0
\(775\) −531.374 386.066i −0.685644 0.498149i
\(776\) 0 0
\(777\) 1793.15 + 582.631i 2.30779 + 0.749847i
\(778\) 0 0
\(779\) −371.620 + 269.998i −0.477047 + 0.346595i
\(780\) 0 0
\(781\) 588.527 + 40.6439i 0.753555 + 0.0520408i
\(782\) 0 0
\(783\) −88.9355 122.409i −0.113583 0.156334i
\(784\) 0 0
\(785\) 16.3129 50.2058i 0.0207807 0.0639565i
\(786\) 0 0
\(787\) 311.831 429.199i 0.396228 0.545361i −0.563564 0.826072i \(-0.690570\pi\)
0.959792 + 0.280711i \(0.0905703\pi\)
\(788\) 0 0
\(789\) −858.774 + 279.033i −1.08843 + 0.353654i
\(790\) 0 0
\(791\) 629.577i 0.795926i
\(792\) 0 0
\(793\) 549.566 0.693022
\(794\) 0 0
\(795\) 650.370 + 2001.63i 0.818075 + 2.51778i
\(796\) 0 0
\(797\) −723.680 525.784i −0.908005 0.659704i 0.0325047 0.999472i \(-0.489652\pi\)
−0.940509 + 0.339768i \(0.889652\pi\)
\(798\) 0 0
\(799\) −88.9917 28.9151i −0.111379 0.0361892i
\(800\) 0 0
\(801\) 654.349 475.413i 0.816916 0.593524i
\(802\) 0 0
\(803\) 266.207 66.6168i 0.331516 0.0829599i
\(804\) 0 0
\(805\) −521.939 718.388i −0.648372 0.892407i
\(806\) 0 0
\(807\) 309.789 953.431i 0.383877 1.18145i
\(808\) 0 0
\(809\) 634.298 873.036i 0.784052 1.07915i −0.210772 0.977535i \(-0.567598\pi\)
0.994823 0.101619i \(-0.0324023\pi\)
\(810\) 0 0
\(811\) −1130.95 + 367.469i −1.39452 + 0.453106i −0.907414 0.420237i \(-0.861947\pi\)
−0.487104 + 0.873344i \(0.661947\pi\)
\(812\) 0 0
\(813\) 1290.16i 1.58691i
\(814\) 0 0
\(815\) 828.213 1.01621
\(816\) 0 0
\(817\) −242.550 746.491i −0.296878 0.913698i
\(818\) 0 0
\(819\) 503.578 + 365.871i 0.614869 + 0.446728i
\(820\) 0 0
\(821\) 1011.88 + 328.781i 1.23250 + 0.400464i 0.851620 0.524159i \(-0.175620\pi\)
0.380882 + 0.924623i \(0.375620\pi\)
\(822\) 0 0
\(823\) 832.874 605.118i 1.01200 0.735259i 0.0473700 0.998877i \(-0.484916\pi\)
0.964627 + 0.263619i \(0.0849160\pi\)
\(824\) 0 0
\(825\) 329.184 816.786i 0.399011 0.990043i
\(826\) 0 0
\(827\) 654.331 + 900.610i 0.791211 + 1.08901i 0.993956 + 0.109776i \(0.0350135\pi\)
−0.202746 + 0.979231i \(0.564986\pi\)
\(828\) 0 0
\(829\) −399.558 + 1229.71i −0.481976 + 1.48337i 0.354338 + 0.935117i \(0.384706\pi\)
−0.836314 + 0.548251i \(0.815294\pi\)
\(830\) 0 0
\(831\) −497.218 + 684.362i −0.598337 + 0.823540i
\(832\) 0 0
\(833\) −681.636 + 221.477i −0.818290 + 0.265879i
\(834\) 0 0
\(835\) 1390.78i 1.66560i
\(836\) 0 0
\(837\) 272.101 0.325091
\(838\) 0 0
\(839\) −380.239 1170.26i −0.453205 1.39482i −0.873229 0.487309i \(-0.837978\pi\)
0.420024 0.907513i \(-0.362022\pi\)
\(840\) 0 0
\(841\) −348.925 253.509i −0.414893 0.301437i
\(842\) 0 0
\(843\) 91.6917 + 29.7924i 0.108768 + 0.0353410i
\(844\) 0 0
\(845\) −761.209 + 553.051i −0.900839 + 0.654498i
\(846\) 0 0
\(847\) −966.307 + 1004.10i −1.14086 + 1.18548i
\(848\) 0 0
\(849\) −143.378 197.343i −0.168879 0.232442i
\(850\) 0 0
\(851\) 133.999 412.407i 0.157461 0.484614i
\(852\) 0 0
\(853\) −509.204 + 700.859i −0.596956 + 0.821640i −0.995425 0.0955420i \(-0.969542\pi\)
0.398469 + 0.917182i \(0.369542\pi\)
\(854\) 0 0
\(855\) 722.357 234.708i 0.844862 0.274512i
\(856\) 0 0
\(857\) 1219.98i 1.42354i −0.702411 0.711772i \(-0.747893\pi\)
0.702411 0.711772i \(-0.252107\pi\)
\(858\) 0 0
\(859\) 469.893 0.547023 0.273512 0.961869i \(-0.411815\pi\)
0.273512 + 0.961869i \(0.411815\pi\)
\(860\) 0 0
\(861\) 669.427 + 2060.28i 0.777499 + 2.39290i
\(862\) 0 0
\(863\) 3.42992 + 2.49198i 0.00397442 + 0.00288758i 0.589771 0.807571i \(-0.299218\pi\)
−0.585796 + 0.810458i \(0.699218\pi\)
\(864\) 0 0
\(865\) 1571.24 + 510.528i 1.81647 + 0.590206i
\(866\) 0 0
\(867\) −773.769 + 562.176i −0.892467 + 0.648415i
\(868\) 0 0
\(869\) −727.184 293.072i −0.836805 0.337252i
\(870\) 0 0
\(871\) 111.823 + 153.912i 0.128385 + 0.176707i
\(872\) 0 0
\(873\) 9.85983 30.3454i 0.0112942 0.0347599i
\(874\) 0 0
\(875\) 308.938 425.216i 0.353071 0.485961i
\(876\) 0 0
\(877\) 404.726 131.503i 0.461489 0.149947i −0.0690394 0.997614i \(-0.521993\pi\)
0.530529 + 0.847667i \(0.321993\pi\)
\(878\) 0 0
\(879\) 1946.26i 2.21417i
\(880\) 0 0
\(881\) −1669.31 −1.89479 −0.947396 0.320064i \(-0.896296\pi\)
−0.947396 + 0.320064i \(0.896296\pi\)
\(882\) 0 0
\(883\) 65.8838 + 202.770i 0.0746136 + 0.229637i 0.981407 0.191938i \(-0.0614773\pi\)
−0.906793 + 0.421575i \(0.861477\pi\)
\(884\) 0 0
\(885\) 105.348 + 76.5399i 0.119037 + 0.0864857i
\(886\) 0 0
\(887\) 498.213 + 161.879i 0.561683 + 0.182502i 0.576078 0.817394i \(-0.304582\pi\)
−0.0143952 + 0.999896i \(0.504582\pi\)
\(888\) 0 0
\(889\) −75.9672 + 55.1934i −0.0854524 + 0.0620848i
\(890\) 0 0
\(891\) −168.226 672.248i −0.188806 0.754487i
\(892\) 0 0
\(893\) 69.5419 + 95.7162i 0.0778744 + 0.107185i
\(894\) 0 0
\(895\) 449.634 1383.83i 0.502384 1.54618i
\(896\) 0 0
\(897\) 155.024 213.373i 0.172825 0.237874i
\(898\) 0 0
\(899\) −700.732 + 227.682i −0.779457 + 0.253261i
\(900\) 0 0
\(901\) 619.574i 0.687651i
\(902\) 0 0
\(903\) −3701.67 −4.09930
\(904\) 0 0
\(905\) −4.00004 12.3108i −0.00441993 0.0136031i
\(906\) 0 0
\(907\) 705.473 + 512.556i 0.777810 + 0.565112i 0.904321 0.426853i \(-0.140378\pi\)
−0.126511 + 0.991965i \(0.540378\pi\)
\(908\) 0 0
\(909\) −451.621 146.741i −0.496833 0.161431i
\(910\) 0 0
\(911\) −733.848 + 533.172i −0.805541 + 0.585260i −0.912534 0.409000i \(-0.865878\pi\)
0.106993 + 0.994260i \(0.465878\pi\)
\(912\) 0 0
\(913\) 8.74487 126.626i 0.00957817 0.138693i
\(914\) 0 0
\(915\) −1858.89 2558.55i −2.03158 2.79623i
\(916\) 0 0
\(917\) −578.263 + 1779.71i −0.630603 + 1.94080i
\(918\) 0 0
\(919\) 708.097 974.612i 0.770508 1.06051i −0.225758 0.974183i \(-0.572486\pi\)
0.996267 0.0863305i \(-0.0275141\pi\)
\(920\) 0 0
\(921\) −982.698 + 319.298i −1.06699 + 0.346686i
\(922\) 0 0
\(923\) 271.277i 0.293908i
\(924\) 0 0
\(925\) −665.798 −0.719782
\(926\) 0 0
\(927\) −178.310 548.783i −0.192352 0.591999i
\(928\) 0 0
\(929\) 1387.31 + 1007.94i 1.49334 + 1.08497i 0.972942 + 0.231050i \(0.0742160\pi\)
0.520397 + 0.853924i \(0.325784\pi\)
\(930\) 0 0
\(931\) 861.860 + 280.035i 0.925736 + 0.300790i
\(932\) 0 0
\(933\) −546.040 + 396.721i −0.585252 + 0.425210i
\(934\) 0 0
\(935\) −397.107 + 474.083i −0.424713 + 0.507040i
\(936\) 0 0
\(937\) −525.277 722.982i −0.560595 0.771593i 0.430807 0.902444i \(-0.358229\pi\)
−0.991402 + 0.130851i \(0.958229\pi\)
\(938\) 0 0
\(939\) 138.057 424.895i 0.147025 0.452497i
\(940\) 0 0
\(941\) −856.109 + 1178.33i −0.909786 + 1.25221i 0.0574535 + 0.998348i \(0.481702\pi\)
−0.967240 + 0.253865i \(0.918298\pi\)
\(942\) 0 0
\(943\) 473.843 153.961i 0.502485 0.163267i
\(944\) 0 0
\(945\) 564.823i 0.597697i
\(946\) 0 0
\(947\) −1026.37 −1.08381 −0.541906 0.840439i \(-0.682297\pi\)
−0.541906 + 0.840439i \(0.682297\pi\)
\(948\) 0 0
\(949\) −38.9946 120.013i −0.0410902 0.126463i
\(950\) 0 0
\(951\) −1199.20 871.267i −1.26098 0.916159i
\(952\) 0 0
\(953\) 73.2826 + 23.8110i 0.0768968 + 0.0249853i 0.347213 0.937786i \(-0.387128\pi\)
−0.270316 + 0.962772i \(0.587128\pi\)
\(954\) 0 0
\(955\) −110.383 + 80.1977i −0.115584 + 0.0839766i
\(956\) 0 0
\(957\) −524.207 837.299i −0.547760 0.874920i
\(958\) 0 0
\(959\) 1589.90 + 2188.31i 1.65787 + 2.28186i
\(960\) 0 0
\(961\) 112.486 346.196i 0.117051 0.360245i
\(962\) 0 0
\(963\) 825.190 1135.78i 0.856895 1.17941i
\(964\) 0 0
\(965\) 1165.91 378.828i 1.20820 0.392567i
\(966\) 0 0
\(967\) 637.935i 0.659705i 0.944032 + 0.329853i \(0.106999\pi\)
−0.944032 + 0.329853i \(0.893001\pi\)
\(968\) 0 0
\(969\) −411.931 −0.425110
\(970\) 0 0
\(971\) −415.360 1278.35i −0.427766 1.31653i −0.900321 0.435226i \(-0.856668\pi\)
0.472556 0.881301i \(-0.343332\pi\)
\(972\) 0 0
\(973\) −2213.07 1607.89i −2.27448 1.65251i
\(974\) 0 0
\(975\) −385.133 125.137i −0.395008 0.128346i
\(976\) 0 0
\(977\) −620.481 + 450.806i −0.635088 + 0.461418i −0.858159 0.513384i \(-0.828392\pi\)
0.223071 + 0.974802i \(0.428392\pi\)
\(978\) 0 0
\(979\) 705.771 441.861i 0.720910 0.451339i
\(980\) 0 0
\(981\) 43.7443 + 60.2089i 0.0445915 + 0.0613750i
\(982\) 0 0
\(983\) −198.170 + 609.906i −0.201598 + 0.620454i 0.798238 + 0.602342i \(0.205765\pi\)
−0.999836 + 0.0181119i \(0.994235\pi\)
\(984\) 0 0
\(985\) 1255.70 1728.33i 1.27483 1.75465i
\(986\) 0 0
\(987\) 530.656 172.421i 0.537646 0.174692i
\(988\) 0 0
\(989\) 851.345i 0.860814i
\(990\) 0 0
\(991\) 1547.49 1.56154 0.780770 0.624818i \(-0.214827\pi\)
0.780770 + 0.624818i \(0.214827\pi\)
\(992\) 0 0
\(993\) −231.176 711.487i −0.232806 0.716502i
\(994\) 0 0
\(995\) −406.613 295.422i −0.408656 0.296906i
\(996\) 0 0
\(997\) 1848.46 + 600.601i 1.85402 + 0.602408i 0.996059 + 0.0886972i \(0.0282703\pi\)
0.857963 + 0.513711i \(0.171730\pi\)
\(998\) 0 0
\(999\) 223.146 162.125i 0.223369 0.162287i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.3.n.c.129.2 8
4.3 odd 2 44.3.f.a.41.1 yes 8
11.7 odd 10 inner 176.3.n.c.161.2 8
12.11 even 2 396.3.t.a.217.2 8
44.3 odd 10 484.3.f.d.457.2 8
44.7 even 10 44.3.f.a.29.1 8
44.15 odd 10 484.3.f.a.161.1 8
44.19 even 10 484.3.f.e.457.2 8
44.27 odd 10 484.3.f.e.233.2 8
44.31 odd 10 484.3.d.c.241.2 8
44.35 even 10 484.3.d.c.241.1 8
44.39 even 10 484.3.f.d.233.2 8
44.43 even 2 484.3.f.a.481.1 8
132.35 odd 10 4356.3.f.g.1693.1 8
132.95 odd 10 396.3.t.a.73.2 8
132.119 even 10 4356.3.f.g.1693.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.29.1 8 44.7 even 10
44.3.f.a.41.1 yes 8 4.3 odd 2
176.3.n.c.129.2 8 1.1 even 1 trivial
176.3.n.c.161.2 8 11.7 odd 10 inner
396.3.t.a.73.2 8 132.95 odd 10
396.3.t.a.217.2 8 12.11 even 2
484.3.d.c.241.1 8 44.35 even 10
484.3.d.c.241.2 8 44.31 odd 10
484.3.f.a.161.1 8 44.15 odd 10
484.3.f.a.481.1 8 44.43 even 2
484.3.f.d.233.2 8 44.39 even 10
484.3.f.d.457.2 8 44.3 odd 10
484.3.f.e.233.2 8 44.27 odd 10
484.3.f.e.457.2 8 44.19 even 10
4356.3.f.g.1693.1 8 132.35 odd 10
4356.3.f.g.1693.2 8 132.119 even 10