Properties

Label 176.4.e.a
Level 176176
Weight 44
Character orbit 176.e
Analytic conductor 10.38410.384
Analytic rank 00
Dimension 22
CM discriminant -11
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 176.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.384336161010.3843361610
Analytic rank: 00
Dimension: 22
Coefficient field: Q(11)\Q(\sqrt{-11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+3 x^{2} - x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=11\beta = \sqrt{-11}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2βq318q517q9+11βq11+36βq15+58βq23+199q2520βq27+18βq31+242q33434q37+306q45+194βq47+187βq99+O(q100) q - 2 \beta q^{3} - 18 q^{5} - 17 q^{9} + 11 \beta q^{11} + 36 \beta q^{15} + 58 \beta q^{23} + 199 q^{25} - 20 \beta q^{27} + 18 \beta q^{31} + 242 q^{33} - 434 q^{37} + 306 q^{45} + 194 \beta q^{47} + \cdots - 187 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q36q534q9+398q25+484q33868q37+612q45686q491476q53+2552q691798q81+3348q89+792q93+68q97+O(q100) 2 q - 36 q^{5} - 34 q^{9} + 398 q^{25} + 484 q^{33} - 868 q^{37} + 612 q^{45} - 686 q^{49} - 1476 q^{53} + 2552 q^{69} - 1798 q^{81} + 3348 q^{89} + 792 q^{93} + 68 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/176Z)×\left(\mathbb{Z}/176\mathbb{Z}\right)^\times.

nn 111111 133133 145145
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
175.1
0.500000 + 1.65831i
0.500000 1.65831i
0 6.63325i 0 −18.0000 0 0 0 −17.0000 0
175.2 0 6.63325i 0 −18.0000 0 0 0 −17.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by Q(11)\Q(\sqrt{-11})
4.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.4.e.a 2
3.b odd 2 1 1584.4.o.c 2
4.b odd 2 1 inner 176.4.e.a 2
8.b even 2 1 704.4.e.c 2
8.d odd 2 1 704.4.e.c 2
11.b odd 2 1 CM 176.4.e.a 2
12.b even 2 1 1584.4.o.c 2
33.d even 2 1 1584.4.o.c 2
44.c even 2 1 inner 176.4.e.a 2
88.b odd 2 1 704.4.e.c 2
88.g even 2 1 704.4.e.c 2
132.d odd 2 1 1584.4.o.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.4.e.a 2 1.a even 1 1 trivial
176.4.e.a 2 4.b odd 2 1 inner
176.4.e.a 2 11.b odd 2 1 CM
176.4.e.a 2 44.c even 2 1 inner
704.4.e.c 2 8.b even 2 1
704.4.e.c 2 8.d odd 2 1
704.4.e.c 2 88.b odd 2 1
704.4.e.c 2 88.g even 2 1
1584.4.o.c 2 3.b odd 2 1
1584.4.o.c 2 12.b even 2 1
1584.4.o.c 2 33.d even 2 1
1584.4.o.c 2 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(176,[χ])S_{4}^{\mathrm{new}}(176, [\chi]):

T32+44 T_{3}^{2} + 44 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+44 T^{2} + 44 Copy content Toggle raw display
55 (T+18)2 (T + 18)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+1331 T^{2} + 1331 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2+37004 T^{2} + 37004 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+3564 T^{2} + 3564 Copy content Toggle raw display
3737 (T+434)2 (T + 434)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2+413996 T^{2} + 413996 Copy content Toggle raw display
5353 (T+738)2 (T + 738)^{2} Copy content Toggle raw display
5959 T2+303116 T^{2} + 303116 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2+1029996 T^{2} + 1029996 Copy content Toggle raw display
7171 T2+1057100 T^{2} + 1057100 Copy content Toggle raw display
7373 T2 T^{2} Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T1674)2 (T - 1674)^{2} Copy content Toggle raw display
9797 (T34)2 (T - 34)^{2} Copy content Toggle raw display
show more
show less