Properties

Label 176.4.e.a
Level $176$
Weight $4$
Character orbit 176.e
Analytic conductor $10.384$
Analytic rank $0$
Dimension $2$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(175,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.175");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-11}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta q^{3} - 18 q^{5} - 17 q^{9} + 11 \beta q^{11} + 36 \beta q^{15} + 58 \beta q^{23} + 199 q^{25} - 20 \beta q^{27} + 18 \beta q^{31} + 242 q^{33} - 434 q^{37} + 306 q^{45} + 194 \beta q^{47} + \cdots - 187 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 36 q^{5} - 34 q^{9} + 398 q^{25} + 484 q^{33} - 868 q^{37} + 612 q^{45} - 686 q^{49} - 1476 q^{53} + 2552 q^{69} - 1798 q^{81} + 3348 q^{89} + 792 q^{93} + 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
175.1
0.500000 + 1.65831i
0.500000 1.65831i
0 6.63325i 0 −18.0000 0 0 0 −17.0000 0
175.2 0 6.63325i 0 −18.0000 0 0 0 −17.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
4.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 176.4.e.a 2
3.b odd 2 1 1584.4.o.c 2
4.b odd 2 1 inner 176.4.e.a 2
8.b even 2 1 704.4.e.c 2
8.d odd 2 1 704.4.e.c 2
11.b odd 2 1 CM 176.4.e.a 2
12.b even 2 1 1584.4.o.c 2
33.d even 2 1 1584.4.o.c 2
44.c even 2 1 inner 176.4.e.a 2
88.b odd 2 1 704.4.e.c 2
88.g even 2 1 704.4.e.c 2
132.d odd 2 1 1584.4.o.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.4.e.a 2 1.a even 1 1 trivial
176.4.e.a 2 4.b odd 2 1 inner
176.4.e.a 2 11.b odd 2 1 CM
176.4.e.a 2 44.c even 2 1 inner
704.4.e.c 2 8.b even 2 1
704.4.e.c 2 8.d odd 2 1
704.4.e.c 2 88.b odd 2 1
704.4.e.c 2 88.g even 2 1
1584.4.o.c 2 3.b odd 2 1
1584.4.o.c 2 12.b even 2 1
1584.4.o.c 2 33.d even 2 1
1584.4.o.c 2 132.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(176, [\chi])\):

\( T_{3}^{2} + 44 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 44 \) Copy content Toggle raw display
$5$ \( (T + 18)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1331 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 37004 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3564 \) Copy content Toggle raw display
$37$ \( (T + 434)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 413996 \) Copy content Toggle raw display
$53$ \( (T + 738)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 303116 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1029996 \) Copy content Toggle raw display
$71$ \( T^{2} + 1057100 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 1674)^{2} \) Copy content Toggle raw display
$97$ \( (T - 34)^{2} \) Copy content Toggle raw display
show more
show less