Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1764,4,Mod(361,1764)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1764.361");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1764.k (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 84) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
361.1 |
|
0 | 0 | 0 | −3.00000 | − | 5.19615i | 0 | 0 | 0 | 0 | 0 | ||||||||||||||||||||||
1549.1 | 0 | 0 | 0 | −3.00000 | + | 5.19615i | 0 | 0 | 0 | 0 | 0 | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1764.4.k.f | 2 | |
3.b | odd | 2 | 1 | 588.4.i.c | 2 | ||
7.b | odd | 2 | 1 | 1764.4.k.l | 2 | ||
7.c | even | 3 | 1 | 1764.4.a.j | 1 | ||
7.c | even | 3 | 1 | inner | 1764.4.k.f | 2 | |
7.d | odd | 6 | 1 | 252.4.a.b | 1 | ||
7.d | odd | 6 | 1 | 1764.4.k.l | 2 | ||
21.c | even | 2 | 1 | 588.4.i.f | 2 | ||
21.g | even | 6 | 1 | 84.4.a.a | ✓ | 1 | |
21.g | even | 6 | 1 | 588.4.i.f | 2 | ||
21.h | odd | 6 | 1 | 588.4.a.d | 1 | ||
21.h | odd | 6 | 1 | 588.4.i.c | 2 | ||
28.f | even | 6 | 1 | 1008.4.a.h | 1 | ||
84.j | odd | 6 | 1 | 336.4.a.k | 1 | ||
84.n | even | 6 | 1 | 2352.4.a.d | 1 | ||
105.p | even | 6 | 1 | 2100.4.a.l | 1 | ||
105.w | odd | 12 | 2 | 2100.4.k.j | 2 | ||
168.ba | even | 6 | 1 | 1344.4.a.q | 1 | ||
168.be | odd | 6 | 1 | 1344.4.a.d | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.4.a.a | ✓ | 1 | 21.g | even | 6 | 1 | |
252.4.a.b | 1 | 7.d | odd | 6 | 1 | ||
336.4.a.k | 1 | 84.j | odd | 6 | 1 | ||
588.4.a.d | 1 | 21.h | odd | 6 | 1 | ||
588.4.i.c | 2 | 3.b | odd | 2 | 1 | ||
588.4.i.c | 2 | 21.h | odd | 6 | 1 | ||
588.4.i.f | 2 | 21.c | even | 2 | 1 | ||
588.4.i.f | 2 | 21.g | even | 6 | 1 | ||
1008.4.a.h | 1 | 28.f | even | 6 | 1 | ||
1344.4.a.d | 1 | 168.be | odd | 6 | 1 | ||
1344.4.a.q | 1 | 168.ba | even | 6 | 1 | ||
1764.4.a.j | 1 | 7.c | even | 3 | 1 | ||
1764.4.k.f | 2 | 1.a | even | 1 | 1 | trivial | |
1764.4.k.f | 2 | 7.c | even | 3 | 1 | inner | |
1764.4.k.l | 2 | 7.b | odd | 2 | 1 | ||
1764.4.k.l | 2 | 7.d | odd | 6 | 1 | ||
2100.4.a.l | 1 | 105.p | even | 6 | 1 | ||
2100.4.k.j | 2 | 105.w | odd | 12 | 2 | ||
2352.4.a.d | 1 | 84.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|