Properties

Label 1764.4.k.f
Level 17641764
Weight 44
Character orbit 1764.k
Analytic conductor 104.079104.079
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,4,Mod(361,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1764=223272 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1764.k (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 104.079369250104.079369250
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q6ζ6q5+(36ζ6+36)q1162q13+(114ζ6114)q1776ζ6q1924ζ6q23+(89ζ6+89)q2554q29+(112ζ6112)q31+1010q97+O(q100) q - 6 \zeta_{6} q^{5} + ( - 36 \zeta_{6} + 36) q^{11} - 62 q^{13} + (114 \zeta_{6} - 114) q^{17} - 76 \zeta_{6} q^{19} - 24 \zeta_{6} q^{23} + ( - 89 \zeta_{6} + 89) q^{25} - 54 q^{29} + (112 \zeta_{6} - 112) q^{31} + \cdots - 1010 q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q5+36q11124q13114q1776q1924q23+89q25108q29112q31+178q37+756q41344q43+192q47402q53432q55396q59+2020q97+O(q100) 2 q - 6 q^{5} + 36 q^{11} - 124 q^{13} - 114 q^{17} - 76 q^{19} - 24 q^{23} + 89 q^{25} - 108 q^{29} - 112 q^{31} + 178 q^{37} + 756 q^{41} - 344 q^{43} + 192 q^{47} - 402 q^{53} - 432 q^{55} - 396 q^{59}+ \cdots - 2020 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1764Z)×\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times.

nn 785785 883883 10811081
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −3.00000 5.19615i 0 0 0 0 0
1549.1 0 0 0 −3.00000 + 5.19615i 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1764.4.k.f 2
3.b odd 2 1 588.4.i.c 2
7.b odd 2 1 1764.4.k.l 2
7.c even 3 1 1764.4.a.j 1
7.c even 3 1 inner 1764.4.k.f 2
7.d odd 6 1 252.4.a.b 1
7.d odd 6 1 1764.4.k.l 2
21.c even 2 1 588.4.i.f 2
21.g even 6 1 84.4.a.a 1
21.g even 6 1 588.4.i.f 2
21.h odd 6 1 588.4.a.d 1
21.h odd 6 1 588.4.i.c 2
28.f even 6 1 1008.4.a.h 1
84.j odd 6 1 336.4.a.k 1
84.n even 6 1 2352.4.a.d 1
105.p even 6 1 2100.4.a.l 1
105.w odd 12 2 2100.4.k.j 2
168.ba even 6 1 1344.4.a.q 1
168.be odd 6 1 1344.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.a 1 21.g even 6 1
252.4.a.b 1 7.d odd 6 1
336.4.a.k 1 84.j odd 6 1
588.4.a.d 1 21.h odd 6 1
588.4.i.c 2 3.b odd 2 1
588.4.i.c 2 21.h odd 6 1
588.4.i.f 2 21.c even 2 1
588.4.i.f 2 21.g even 6 1
1008.4.a.h 1 28.f even 6 1
1344.4.a.d 1 168.be odd 6 1
1344.4.a.q 1 168.ba even 6 1
1764.4.a.j 1 7.c even 3 1
1764.4.k.f 2 1.a even 1 1 trivial
1764.4.k.f 2 7.c even 3 1 inner
1764.4.k.l 2 7.b odd 2 1
1764.4.k.l 2 7.d odd 6 1
2100.4.a.l 1 105.p even 6 1
2100.4.k.j 2 105.w odd 12 2
2352.4.a.d 1 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1764,[χ])S_{4}^{\mathrm{new}}(1764, [\chi]):

T52+6T5+36 T_{5}^{2} + 6T_{5} + 36 Copy content Toggle raw display
T11236T11+1296 T_{11}^{2} - 36T_{11} + 1296 Copy content Toggle raw display
T13+62 T_{13} + 62 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T236T+1296 T^{2} - 36T + 1296 Copy content Toggle raw display
1313 (T+62)2 (T + 62)^{2} Copy content Toggle raw display
1717 T2+114T+12996 T^{2} + 114T + 12996 Copy content Toggle raw display
1919 T2+76T+5776 T^{2} + 76T + 5776 Copy content Toggle raw display
2323 T2+24T+576 T^{2} + 24T + 576 Copy content Toggle raw display
2929 (T+54)2 (T + 54)^{2} Copy content Toggle raw display
3131 T2+112T+12544 T^{2} + 112T + 12544 Copy content Toggle raw display
3737 T2178T+31684 T^{2} - 178T + 31684 Copy content Toggle raw display
4141 (T378)2 (T - 378)^{2} Copy content Toggle raw display
4343 (T+172)2 (T + 172)^{2} Copy content Toggle raw display
4747 T2192T+36864 T^{2} - 192T + 36864 Copy content Toggle raw display
5353 T2+402T+161604 T^{2} + 402T + 161604 Copy content Toggle raw display
5959 T2+396T+156816 T^{2} + 396T + 156816 Copy content Toggle raw display
6161 T2254T+64516 T^{2} - 254T + 64516 Copy content Toggle raw display
6767 T21012T+1024144 T^{2} - 1012 T + 1024144 Copy content Toggle raw display
7171 (T+840)2 (T + 840)^{2} Copy content Toggle raw display
7373 T2890T+792100 T^{2} - 890T + 792100 Copy content Toggle raw display
7979 T2+80T+6400 T^{2} + 80T + 6400 Copy content Toggle raw display
8383 (T+108)2 (T + 108)^{2} Copy content Toggle raw display
8989 T21638T+2683044 T^{2} - 1638 T + 2683044 Copy content Toggle raw display
9797 (T+1010)2 (T + 1010)^{2} Copy content Toggle raw display
show more
show less