Properties

Label 1785.2.a.x.1.1
Level $1785$
Weight $2$
Character 1785.1
Self dual yes
Analytic conductor $14.253$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2532967608\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.51414\) of defining polynomial
Character \(\chi\) \(=\) 1785.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51414 q^{2} +1.00000 q^{3} +4.32088 q^{4} +1.00000 q^{5} -2.51414 q^{6} +1.00000 q^{7} -5.83502 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.51414 q^{2} +1.00000 q^{3} +4.32088 q^{4} +1.00000 q^{5} -2.51414 q^{6} +1.00000 q^{7} -5.83502 q^{8} +1.00000 q^{9} -2.51414 q^{10} -1.70739 q^{11} +4.32088 q^{12} -1.32088 q^{13} -2.51414 q^{14} +1.00000 q^{15} +6.02827 q^{16} -1.00000 q^{17} -2.51414 q^{18} +2.00000 q^{19} +4.32088 q^{20} +1.00000 q^{21} +4.29261 q^{22} -6.64177 q^{23} -5.83502 q^{24} +1.00000 q^{25} +3.32088 q^{26} +1.00000 q^{27} +4.32088 q^{28} +2.34916 q^{29} -2.51414 q^{30} +4.34916 q^{31} -3.48586 q^{32} -1.70739 q^{33} +2.51414 q^{34} +1.00000 q^{35} +4.32088 q^{36} +2.00000 q^{37} -5.02827 q^{38} -1.32088 q^{39} -5.83502 q^{40} +6.00000 q^{41} -2.51414 q^{42} +12.0565 q^{43} -7.37743 q^{44} +1.00000 q^{45} +16.6983 q^{46} -0.641769 q^{47} +6.02827 q^{48} +1.00000 q^{49} -2.51414 q^{50} -1.00000 q^{51} -5.70739 q^{52} +2.67912 q^{53} -2.51414 q^{54} -1.70739 q^{55} -5.83502 q^{56} +2.00000 q^{57} -5.90611 q^{58} +7.61350 q^{59} +4.32088 q^{60} +6.93438 q^{61} -10.9344 q^{62} +1.00000 q^{63} -3.29261 q^{64} -1.32088 q^{65} +4.29261 q^{66} +8.64177 q^{67} -4.32088 q^{68} -6.64177 q^{69} -2.51414 q^{70} +8.34916 q^{71} -5.83502 q^{72} +0.386505 q^{73} -5.02827 q^{74} +1.00000 q^{75} +8.64177 q^{76} -1.70739 q^{77} +3.32088 q^{78} +6.38650 q^{79} +6.02827 q^{80} +1.00000 q^{81} -15.0848 q^{82} -6.00000 q^{83} +4.32088 q^{84} -1.00000 q^{85} -30.3118 q^{86} +2.34916 q^{87} +9.96265 q^{88} -6.97173 q^{89} -2.51414 q^{90} -1.32088 q^{91} -28.6983 q^{92} +4.34916 q^{93} +1.61350 q^{94} +2.00000 q^{95} -3.48586 q^{96} -6.25526 q^{97} -2.51414 q^{98} -1.70739 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} - q^{10} + 5 q^{12} + 4 q^{13} - q^{14} + 3 q^{15} + 5 q^{16} - 3 q^{17} - q^{18} + 6 q^{19} + 5 q^{20} + 3 q^{21} + 18 q^{22} - 4 q^{23} - 3 q^{24} + 3 q^{25} + 2 q^{26} + 3 q^{27} + 5 q^{28} - 14 q^{29} - q^{30} - 8 q^{31} - 17 q^{32} + q^{34} + 3 q^{35} + 5 q^{36} + 6 q^{37} - 2 q^{38} + 4 q^{39} - 3 q^{40} + 18 q^{41} - q^{42} + 10 q^{43} + 12 q^{44} + 3 q^{45} + 8 q^{46} + 14 q^{47} + 5 q^{48} + 3 q^{49} - q^{50} - 3 q^{51} - 12 q^{52} + 16 q^{53} - q^{54} - 3 q^{56} + 6 q^{57} - 20 q^{58} + 20 q^{59} + 5 q^{60} + 10 q^{61} - 22 q^{62} + 3 q^{63} - 15 q^{64} + 4 q^{65} + 18 q^{66} + 10 q^{67} - 5 q^{68} - 4 q^{69} - q^{70} + 4 q^{71} - 3 q^{72} + 4 q^{73} - 2 q^{74} + 3 q^{75} + 10 q^{76} + 2 q^{78} + 22 q^{79} + 5 q^{80} + 3 q^{81} - 6 q^{82} - 18 q^{83} + 5 q^{84} - 3 q^{85} - 46 q^{86} - 14 q^{87} + 6 q^{88} - 34 q^{89} - q^{90} + 4 q^{91} - 44 q^{92} - 8 q^{93} + 2 q^{94} + 6 q^{95} - 17 q^{96} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51414 −1.77776 −0.888882 0.458137i \(-0.848517\pi\)
−0.888882 + 0.458137i \(0.848517\pi\)
\(3\) 1.00000 0.577350
\(4\) 4.32088 2.16044
\(5\) 1.00000 0.447214
\(6\) −2.51414 −1.02639
\(7\) 1.00000 0.377964
\(8\) −5.83502 −2.06299
\(9\) 1.00000 0.333333
\(10\) −2.51414 −0.795040
\(11\) −1.70739 −0.514797 −0.257399 0.966305i \(-0.582865\pi\)
−0.257399 + 0.966305i \(0.582865\pi\)
\(12\) 4.32088 1.24733
\(13\) −1.32088 −0.366347 −0.183174 0.983081i \(-0.558637\pi\)
−0.183174 + 0.983081i \(0.558637\pi\)
\(14\) −2.51414 −0.671931
\(15\) 1.00000 0.258199
\(16\) 6.02827 1.50707
\(17\) −1.00000 −0.242536
\(18\) −2.51414 −0.592588
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 4.32088 0.966179
\(21\) 1.00000 0.218218
\(22\) 4.29261 0.915188
\(23\) −6.64177 −1.38490 −0.692452 0.721464i \(-0.743470\pi\)
−0.692452 + 0.721464i \(0.743470\pi\)
\(24\) −5.83502 −1.19107
\(25\) 1.00000 0.200000
\(26\) 3.32088 0.651279
\(27\) 1.00000 0.192450
\(28\) 4.32088 0.816570
\(29\) 2.34916 0.436228 0.218114 0.975923i \(-0.430010\pi\)
0.218114 + 0.975923i \(0.430010\pi\)
\(30\) −2.51414 −0.459017
\(31\) 4.34916 0.781132 0.390566 0.920575i \(-0.372279\pi\)
0.390566 + 0.920575i \(0.372279\pi\)
\(32\) −3.48586 −0.616219
\(33\) −1.70739 −0.297218
\(34\) 2.51414 0.431171
\(35\) 1.00000 0.169031
\(36\) 4.32088 0.720147
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −5.02827 −0.815694
\(39\) −1.32088 −0.211511
\(40\) −5.83502 −0.922598
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) −2.51414 −0.387940
\(43\) 12.0565 1.83861 0.919303 0.393550i \(-0.128753\pi\)
0.919303 + 0.393550i \(0.128753\pi\)
\(44\) −7.37743 −1.11219
\(45\) 1.00000 0.149071
\(46\) 16.6983 2.46203
\(47\) −0.641769 −0.0936116 −0.0468058 0.998904i \(-0.514904\pi\)
−0.0468058 + 0.998904i \(0.514904\pi\)
\(48\) 6.02827 0.870106
\(49\) 1.00000 0.142857
\(50\) −2.51414 −0.355553
\(51\) −1.00000 −0.140028
\(52\) −5.70739 −0.791472
\(53\) 2.67912 0.368005 0.184002 0.982926i \(-0.441095\pi\)
0.184002 + 0.982926i \(0.441095\pi\)
\(54\) −2.51414 −0.342131
\(55\) −1.70739 −0.230224
\(56\) −5.83502 −0.779738
\(57\) 2.00000 0.264906
\(58\) −5.90611 −0.775510
\(59\) 7.61350 0.991193 0.495596 0.868553i \(-0.334950\pi\)
0.495596 + 0.868553i \(0.334950\pi\)
\(60\) 4.32088 0.557824
\(61\) 6.93438 0.887856 0.443928 0.896062i \(-0.353585\pi\)
0.443928 + 0.896062i \(0.353585\pi\)
\(62\) −10.9344 −1.38867
\(63\) 1.00000 0.125988
\(64\) −3.29261 −0.411576
\(65\) −1.32088 −0.163836
\(66\) 4.29261 0.528384
\(67\) 8.64177 1.05576 0.527880 0.849319i \(-0.322987\pi\)
0.527880 + 0.849319i \(0.322987\pi\)
\(68\) −4.32088 −0.523984
\(69\) −6.64177 −0.799575
\(70\) −2.51414 −0.300497
\(71\) 8.34916 0.990863 0.495431 0.868647i \(-0.335010\pi\)
0.495431 + 0.868647i \(0.335010\pi\)
\(72\) −5.83502 −0.687664
\(73\) 0.386505 0.0452370 0.0226185 0.999744i \(-0.492800\pi\)
0.0226185 + 0.999744i \(0.492800\pi\)
\(74\) −5.02827 −0.584525
\(75\) 1.00000 0.115470
\(76\) 8.64177 0.991279
\(77\) −1.70739 −0.194575
\(78\) 3.32088 0.376016
\(79\) 6.38650 0.718538 0.359269 0.933234i \(-0.383026\pi\)
0.359269 + 0.933234i \(0.383026\pi\)
\(80\) 6.02827 0.673982
\(81\) 1.00000 0.111111
\(82\) −15.0848 −1.66584
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 4.32088 0.471447
\(85\) −1.00000 −0.108465
\(86\) −30.3118 −3.26861
\(87\) 2.34916 0.251856
\(88\) 9.96265 1.06202
\(89\) −6.97173 −0.739001 −0.369501 0.929230i \(-0.620471\pi\)
−0.369501 + 0.929230i \(0.620471\pi\)
\(90\) −2.51414 −0.265013
\(91\) −1.32088 −0.138466
\(92\) −28.6983 −2.99201
\(93\) 4.34916 0.450987
\(94\) 1.61350 0.166419
\(95\) 2.00000 0.205196
\(96\) −3.48586 −0.355774
\(97\) −6.25526 −0.635126 −0.317563 0.948237i \(-0.602864\pi\)
−0.317563 + 0.948237i \(0.602864\pi\)
\(98\) −2.51414 −0.253966
\(99\) −1.70739 −0.171599
\(100\) 4.32088 0.432088
\(101\) 8.25526 0.821429 0.410715 0.911764i \(-0.365279\pi\)
0.410715 + 0.911764i \(0.365279\pi\)
\(102\) 2.51414 0.248937
\(103\) −2.93438 −0.289133 −0.144567 0.989495i \(-0.546179\pi\)
−0.144567 + 0.989495i \(0.546179\pi\)
\(104\) 7.70739 0.755772
\(105\) 1.00000 0.0975900
\(106\) −6.73566 −0.654225
\(107\) −19.9253 −1.92625 −0.963126 0.269051i \(-0.913290\pi\)
−0.963126 + 0.269051i \(0.913290\pi\)
\(108\) 4.32088 0.415777
\(109\) 7.35823 0.704791 0.352395 0.935851i \(-0.385367\pi\)
0.352395 + 0.935851i \(0.385367\pi\)
\(110\) 4.29261 0.409284
\(111\) 2.00000 0.189832
\(112\) 6.02827 0.569618
\(113\) −0.971726 −0.0914123 −0.0457062 0.998955i \(-0.514554\pi\)
−0.0457062 + 0.998955i \(0.514554\pi\)
\(114\) −5.02827 −0.470941
\(115\) −6.64177 −0.619348
\(116\) 10.1504 0.942445
\(117\) −1.32088 −0.122116
\(118\) −19.1414 −1.76211
\(119\) −1.00000 −0.0916698
\(120\) −5.83502 −0.532662
\(121\) −8.08482 −0.734984
\(122\) −17.4340 −1.57840
\(123\) 6.00000 0.541002
\(124\) 18.7922 1.68759
\(125\) 1.00000 0.0894427
\(126\) −2.51414 −0.223977
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 15.2498 1.34790
\(129\) 12.0565 1.06152
\(130\) 3.32088 0.291261
\(131\) 8.44305 0.737673 0.368836 0.929494i \(-0.379756\pi\)
0.368836 + 0.929494i \(0.379756\pi\)
\(132\) −7.37743 −0.642123
\(133\) 2.00000 0.173422
\(134\) −21.7266 −1.87689
\(135\) 1.00000 0.0860663
\(136\) 5.83502 0.500349
\(137\) 0.735663 0.0628520 0.0314260 0.999506i \(-0.489995\pi\)
0.0314260 + 0.999506i \(0.489995\pi\)
\(138\) 16.6983 1.42146
\(139\) 1.12217 0.0951811 0.0475905 0.998867i \(-0.484846\pi\)
0.0475905 + 0.998867i \(0.484846\pi\)
\(140\) 4.32088 0.365181
\(141\) −0.641769 −0.0540467
\(142\) −20.9909 −1.76152
\(143\) 2.25526 0.188595
\(144\) 6.02827 0.502356
\(145\) 2.34916 0.195087
\(146\) −0.971726 −0.0804206
\(147\) 1.00000 0.0824786
\(148\) 8.64177 0.710349
\(149\) 0.641769 0.0525758 0.0262879 0.999654i \(-0.491631\pi\)
0.0262879 + 0.999654i \(0.491631\pi\)
\(150\) −2.51414 −0.205278
\(151\) 16.1131 1.31127 0.655633 0.755080i \(-0.272402\pi\)
0.655633 + 0.755080i \(0.272402\pi\)
\(152\) −11.6700 −0.946565
\(153\) −1.00000 −0.0808452
\(154\) 4.29261 0.345908
\(155\) 4.34916 0.349333
\(156\) −5.70739 −0.456957
\(157\) −23.3774 −1.86572 −0.932861 0.360236i \(-0.882696\pi\)
−0.932861 + 0.360236i \(0.882696\pi\)
\(158\) −16.0565 −1.27739
\(159\) 2.67912 0.212468
\(160\) −3.48586 −0.275582
\(161\) −6.64177 −0.523445
\(162\) −2.51414 −0.197529
\(163\) 6.05655 0.474385 0.237193 0.971463i \(-0.423773\pi\)
0.237193 + 0.971463i \(0.423773\pi\)
\(164\) 25.9253 2.02443
\(165\) −1.70739 −0.132920
\(166\) 15.0848 1.17081
\(167\) −9.08482 −0.703005 −0.351502 0.936187i \(-0.614329\pi\)
−0.351502 + 0.936187i \(0.614329\pi\)
\(168\) −5.83502 −0.450182
\(169\) −11.2553 −0.865790
\(170\) 2.51414 0.192826
\(171\) 2.00000 0.152944
\(172\) 52.0950 3.97220
\(173\) 24.9536 1.89719 0.948593 0.316499i \(-0.102507\pi\)
0.948593 + 0.316499i \(0.102507\pi\)
\(174\) −5.90611 −0.447741
\(175\) 1.00000 0.0755929
\(176\) −10.2926 −0.775835
\(177\) 7.61350 0.572265
\(178\) 17.5279 1.31377
\(179\) 22.8861 1.71059 0.855294 0.518143i \(-0.173377\pi\)
0.855294 + 0.518143i \(0.173377\pi\)
\(180\) 4.32088 0.322060
\(181\) 13.5761 1.00911 0.504554 0.863380i \(-0.331657\pi\)
0.504554 + 0.863380i \(0.331657\pi\)
\(182\) 3.32088 0.246160
\(183\) 6.93438 0.512604
\(184\) 38.7549 2.85705
\(185\) 2.00000 0.147043
\(186\) −10.9344 −0.801748
\(187\) 1.70739 0.124857
\(188\) −2.77301 −0.202243
\(189\) 1.00000 0.0727393
\(190\) −5.02827 −0.364789
\(191\) −2.77301 −0.200648 −0.100324 0.994955i \(-0.531988\pi\)
−0.100324 + 0.994955i \(0.531988\pi\)
\(192\) −3.29261 −0.237624
\(193\) −8.84049 −0.636352 −0.318176 0.948032i \(-0.603070\pi\)
−0.318176 + 0.948032i \(0.603070\pi\)
\(194\) 15.7266 1.12910
\(195\) −1.32088 −0.0945905
\(196\) 4.32088 0.308635
\(197\) −2.44305 −0.174060 −0.0870301 0.996206i \(-0.527738\pi\)
−0.0870301 + 0.996206i \(0.527738\pi\)
\(198\) 4.29261 0.305063
\(199\) 11.6508 0.825906 0.412953 0.910752i \(-0.364497\pi\)
0.412953 + 0.910752i \(0.364497\pi\)
\(200\) −5.83502 −0.412598
\(201\) 8.64177 0.609543
\(202\) −20.7549 −1.46031
\(203\) 2.34916 0.164879
\(204\) −4.32088 −0.302522
\(205\) 6.00000 0.419058
\(206\) 7.37743 0.514010
\(207\) −6.64177 −0.461635
\(208\) −7.96265 −0.552111
\(209\) −3.41478 −0.236205
\(210\) −2.51414 −0.173492
\(211\) −5.61350 −0.386449 −0.193224 0.981155i \(-0.561895\pi\)
−0.193224 + 0.981155i \(0.561895\pi\)
\(212\) 11.5761 0.795053
\(213\) 8.34916 0.572075
\(214\) 50.0950 3.42442
\(215\) 12.0565 0.822250
\(216\) −5.83502 −0.397023
\(217\) 4.34916 0.295240
\(218\) −18.4996 −1.25295
\(219\) 0.386505 0.0261176
\(220\) −7.37743 −0.497386
\(221\) 1.32088 0.0888523
\(222\) −5.02827 −0.337476
\(223\) −12.9909 −0.869937 −0.434968 0.900446i \(-0.643240\pi\)
−0.434968 + 0.900446i \(0.643240\pi\)
\(224\) −3.48586 −0.232909
\(225\) 1.00000 0.0666667
\(226\) 2.44305 0.162509
\(227\) −10.0565 −0.667477 −0.333738 0.942666i \(-0.608310\pi\)
−0.333738 + 0.942666i \(0.608310\pi\)
\(228\) 8.64177 0.572315
\(229\) −4.82956 −0.319146 −0.159573 0.987186i \(-0.551012\pi\)
−0.159573 + 0.987186i \(0.551012\pi\)
\(230\) 16.6983 1.10105
\(231\) −1.70739 −0.112338
\(232\) −13.7074 −0.899934
\(233\) 24.4996 1.60502 0.802511 0.596637i \(-0.203497\pi\)
0.802511 + 0.596637i \(0.203497\pi\)
\(234\) 3.32088 0.217093
\(235\) −0.641769 −0.0418644
\(236\) 32.8970 2.14141
\(237\) 6.38650 0.414848
\(238\) 2.51414 0.162967
\(239\) −13.9253 −0.900753 −0.450377 0.892839i \(-0.648710\pi\)
−0.450377 + 0.892839i \(0.648710\pi\)
\(240\) 6.02827 0.389123
\(241\) −4.40571 −0.283796 −0.141898 0.989881i \(-0.545321\pi\)
−0.141898 + 0.989881i \(0.545321\pi\)
\(242\) 20.3263 1.30663
\(243\) 1.00000 0.0641500
\(244\) 29.9627 1.91816
\(245\) 1.00000 0.0638877
\(246\) −15.0848 −0.961773
\(247\) −2.64177 −0.168092
\(248\) −25.3774 −1.61147
\(249\) −6.00000 −0.380235
\(250\) −2.51414 −0.159008
\(251\) 3.22699 0.203686 0.101843 0.994800i \(-0.467526\pi\)
0.101843 + 0.994800i \(0.467526\pi\)
\(252\) 4.32088 0.272190
\(253\) 11.3401 0.712945
\(254\) −5.02827 −0.315502
\(255\) −1.00000 −0.0626224
\(256\) −31.7549 −1.98468
\(257\) 17.3401 1.08164 0.540822 0.841137i \(-0.318113\pi\)
0.540822 + 0.841137i \(0.318113\pi\)
\(258\) −30.3118 −1.88713
\(259\) 2.00000 0.124274
\(260\) −5.70739 −0.353957
\(261\) 2.34916 0.145409
\(262\) −21.2270 −1.31141
\(263\) 22.2745 1.37350 0.686751 0.726893i \(-0.259036\pi\)
0.686751 + 0.726893i \(0.259036\pi\)
\(264\) 9.96265 0.613159
\(265\) 2.67912 0.164577
\(266\) −5.02827 −0.308303
\(267\) −6.97173 −0.426663
\(268\) 37.3401 2.28091
\(269\) 20.7549 1.26545 0.632723 0.774378i \(-0.281937\pi\)
0.632723 + 0.774378i \(0.281937\pi\)
\(270\) −2.51414 −0.153006
\(271\) 5.22699 0.317517 0.158759 0.987317i \(-0.449251\pi\)
0.158759 + 0.987317i \(0.449251\pi\)
\(272\) −6.02827 −0.365518
\(273\) −1.32088 −0.0799436
\(274\) −1.84956 −0.111736
\(275\) −1.70739 −0.102959
\(276\) −28.6983 −1.72744
\(277\) 12.0565 0.724408 0.362204 0.932099i \(-0.382024\pi\)
0.362204 + 0.932099i \(0.382024\pi\)
\(278\) −2.82128 −0.169209
\(279\) 4.34916 0.260377
\(280\) −5.83502 −0.348709
\(281\) −11.3582 −0.677575 −0.338788 0.940863i \(-0.610017\pi\)
−0.338788 + 0.940863i \(0.610017\pi\)
\(282\) 1.61350 0.0960822
\(283\) 4.58522 0.272563 0.136282 0.990670i \(-0.456485\pi\)
0.136282 + 0.990670i \(0.456485\pi\)
\(284\) 36.0757 2.14070
\(285\) 2.00000 0.118470
\(286\) −5.67004 −0.335277
\(287\) 6.00000 0.354169
\(288\) −3.48586 −0.205406
\(289\) 1.00000 0.0588235
\(290\) −5.90611 −0.346818
\(291\) −6.25526 −0.366690
\(292\) 1.67004 0.0977319
\(293\) 17.3401 1.01302 0.506509 0.862234i \(-0.330936\pi\)
0.506509 + 0.862234i \(0.330936\pi\)
\(294\) −2.51414 −0.146627
\(295\) 7.61350 0.443275
\(296\) −11.6700 −0.678307
\(297\) −1.70739 −0.0990728
\(298\) −1.61350 −0.0934673
\(299\) 8.77301 0.507356
\(300\) 4.32088 0.249466
\(301\) 12.0565 0.694928
\(302\) −40.5105 −2.33112
\(303\) 8.25526 0.474253
\(304\) 12.0565 0.691490
\(305\) 6.93438 0.397061
\(306\) 2.51414 0.143724
\(307\) −8.48040 −0.484002 −0.242001 0.970276i \(-0.577804\pi\)
−0.242001 + 0.970276i \(0.577804\pi\)
\(308\) −7.37743 −0.420368
\(309\) −2.93438 −0.166931
\(310\) −10.9344 −0.621031
\(311\) −24.9536 −1.41499 −0.707494 0.706719i \(-0.750174\pi\)
−0.707494 + 0.706719i \(0.750174\pi\)
\(312\) 7.70739 0.436345
\(313\) −21.8578 −1.23548 −0.617739 0.786383i \(-0.711951\pi\)
−0.617739 + 0.786383i \(0.711951\pi\)
\(314\) 58.7741 3.31681
\(315\) 1.00000 0.0563436
\(316\) 27.5953 1.55236
\(317\) −34.5561 −1.94087 −0.970433 0.241369i \(-0.922403\pi\)
−0.970433 + 0.241369i \(0.922403\pi\)
\(318\) −6.73566 −0.377717
\(319\) −4.01093 −0.224569
\(320\) −3.29261 −0.184063
\(321\) −19.9253 −1.11212
\(322\) 16.6983 0.930561
\(323\) −2.00000 −0.111283
\(324\) 4.32088 0.240049
\(325\) −1.32088 −0.0732695
\(326\) −15.2270 −0.843345
\(327\) 7.35823 0.406911
\(328\) −35.0101 −1.93311
\(329\) −0.641769 −0.0353819
\(330\) 4.29261 0.236300
\(331\) −10.8296 −0.595246 −0.297623 0.954683i \(-0.596194\pi\)
−0.297623 + 0.954683i \(0.596194\pi\)
\(332\) −25.9253 −1.42284
\(333\) 2.00000 0.109599
\(334\) 22.8405 1.24978
\(335\) 8.64177 0.472150
\(336\) 6.02827 0.328869
\(337\) −4.82956 −0.263083 −0.131541 0.991311i \(-0.541993\pi\)
−0.131541 + 0.991311i \(0.541993\pi\)
\(338\) 28.2973 1.53917
\(339\) −0.971726 −0.0527769
\(340\) −4.32088 −0.234333
\(341\) −7.42571 −0.402125
\(342\) −5.02827 −0.271898
\(343\) 1.00000 0.0539949
\(344\) −70.3502 −3.79303
\(345\) −6.64177 −0.357581
\(346\) −62.7367 −3.37275
\(347\) 16.5105 0.886332 0.443166 0.896440i \(-0.353855\pi\)
0.443166 + 0.896440i \(0.353855\pi\)
\(348\) 10.1504 0.544121
\(349\) −21.3401 −1.14231 −0.571154 0.820843i \(-0.693504\pi\)
−0.571154 + 0.820843i \(0.693504\pi\)
\(350\) −2.51414 −0.134386
\(351\) −1.32088 −0.0705036
\(352\) 5.95173 0.317228
\(353\) 19.2835 1.02636 0.513180 0.858281i \(-0.328467\pi\)
0.513180 + 0.858281i \(0.328467\pi\)
\(354\) −19.1414 −1.01735
\(355\) 8.34916 0.443127
\(356\) −30.1240 −1.59657
\(357\) −1.00000 −0.0529256
\(358\) −57.5388 −3.04102
\(359\) 10.5105 0.554724 0.277362 0.960765i \(-0.410540\pi\)
0.277362 + 0.960765i \(0.410540\pi\)
\(360\) −5.83502 −0.307533
\(361\) −15.0000 −0.789474
\(362\) −34.1323 −1.79395
\(363\) −8.08482 −0.424343
\(364\) −5.70739 −0.299148
\(365\) 0.386505 0.0202306
\(366\) −17.4340 −0.911289
\(367\) 22.5671 1.17799 0.588996 0.808136i \(-0.299523\pi\)
0.588996 + 0.808136i \(0.299523\pi\)
\(368\) −40.0384 −2.08715
\(369\) 6.00000 0.312348
\(370\) −5.02827 −0.261408
\(371\) 2.67912 0.139093
\(372\) 18.7922 0.974331
\(373\) −31.2088 −1.61593 −0.807966 0.589229i \(-0.799432\pi\)
−0.807966 + 0.589229i \(0.799432\pi\)
\(374\) −4.29261 −0.221966
\(375\) 1.00000 0.0516398
\(376\) 3.74474 0.193120
\(377\) −3.10297 −0.159811
\(378\) −2.51414 −0.129313
\(379\) 4.91518 0.252476 0.126238 0.992000i \(-0.459710\pi\)
0.126238 + 0.992000i \(0.459710\pi\)
\(380\) 8.64177 0.443313
\(381\) 2.00000 0.102463
\(382\) 6.97173 0.356705
\(383\) −19.2835 −0.985343 −0.492671 0.870215i \(-0.663980\pi\)
−0.492671 + 0.870215i \(0.663980\pi\)
\(384\) 15.2498 0.778213
\(385\) −1.70739 −0.0870166
\(386\) 22.2262 1.13128
\(387\) 12.0565 0.612869
\(388\) −27.0283 −1.37215
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 3.32088 0.168160
\(391\) 6.64177 0.335889
\(392\) −5.83502 −0.294713
\(393\) 8.44305 0.425896
\(394\) 6.14217 0.309438
\(395\) 6.38650 0.321340
\(396\) −7.37743 −0.370730
\(397\) 0.386505 0.0193981 0.00969906 0.999953i \(-0.496913\pi\)
0.00969906 + 0.999953i \(0.496913\pi\)
\(398\) −29.2918 −1.46827
\(399\) 2.00000 0.100125
\(400\) 6.02827 0.301414
\(401\) −8.80314 −0.439608 −0.219804 0.975544i \(-0.570542\pi\)
−0.219804 + 0.975544i \(0.570542\pi\)
\(402\) −21.7266 −1.08362
\(403\) −5.74474 −0.286166
\(404\) 35.6700 1.77465
\(405\) 1.00000 0.0496904
\(406\) −5.90611 −0.293115
\(407\) −3.41478 −0.169264
\(408\) 5.83502 0.288877
\(409\) −2.07469 −0.102587 −0.0512935 0.998684i \(-0.516334\pi\)
−0.0512935 + 0.998684i \(0.516334\pi\)
\(410\) −15.0848 −0.744986
\(411\) 0.735663 0.0362876
\(412\) −12.6791 −0.624655
\(413\) 7.61350 0.374636
\(414\) 16.6983 0.820677
\(415\) −6.00000 −0.294528
\(416\) 4.60442 0.225750
\(417\) 1.12217 0.0549528
\(418\) 8.58522 0.419917
\(419\) −29.8397 −1.45776 −0.728882 0.684639i \(-0.759960\pi\)
−0.728882 + 0.684639i \(0.759960\pi\)
\(420\) 4.32088 0.210838
\(421\) −29.1414 −1.42026 −0.710132 0.704069i \(-0.751365\pi\)
−0.710132 + 0.704069i \(0.751365\pi\)
\(422\) 14.1131 0.687015
\(423\) −0.641769 −0.0312039
\(424\) −15.6327 −0.759191
\(425\) −1.00000 −0.0485071
\(426\) −20.9909 −1.01701
\(427\) 6.93438 0.335578
\(428\) −86.0950 −4.16156
\(429\) 2.25526 0.108885
\(430\) −30.3118 −1.46177
\(431\) 6.21792 0.299507 0.149753 0.988723i \(-0.452152\pi\)
0.149753 + 0.988723i \(0.452152\pi\)
\(432\) 6.02827 0.290035
\(433\) −2.60442 −0.125161 −0.0625803 0.998040i \(-0.519933\pi\)
−0.0625803 + 0.998040i \(0.519933\pi\)
\(434\) −10.9344 −0.524867
\(435\) 2.34916 0.112634
\(436\) 31.7941 1.52266
\(437\) −13.2835 −0.635438
\(438\) −0.971726 −0.0464309
\(439\) −13.8205 −0.659616 −0.329808 0.944048i \(-0.606984\pi\)
−0.329808 + 0.944048i \(0.606984\pi\)
\(440\) 9.96265 0.474951
\(441\) 1.00000 0.0476190
\(442\) −3.32088 −0.157958
\(443\) 17.9517 0.852912 0.426456 0.904508i \(-0.359762\pi\)
0.426456 + 0.904508i \(0.359762\pi\)
\(444\) 8.64177 0.410120
\(445\) −6.97173 −0.330492
\(446\) 32.6610 1.54654
\(447\) 0.641769 0.0303546
\(448\) −3.29261 −0.155561
\(449\) −39.8205 −1.87924 −0.939622 0.342213i \(-0.888824\pi\)
−0.939622 + 0.342213i \(0.888824\pi\)
\(450\) −2.51414 −0.118518
\(451\) −10.2443 −0.482387
\(452\) −4.19872 −0.197491
\(453\) 16.1131 0.757059
\(454\) 25.2835 1.18662
\(455\) −1.32088 −0.0619240
\(456\) −11.6700 −0.546500
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 12.1422 0.567366
\(459\) −1.00000 −0.0466760
\(460\) −28.6983 −1.33807
\(461\) 1.80128 0.0838941 0.0419471 0.999120i \(-0.486644\pi\)
0.0419471 + 0.999120i \(0.486644\pi\)
\(462\) 4.29261 0.199710
\(463\) 11.8688 0.551588 0.275794 0.961217i \(-0.411059\pi\)
0.275794 + 0.961217i \(0.411059\pi\)
\(464\) 14.1614 0.657425
\(465\) 4.34916 0.201687
\(466\) −61.5953 −2.85335
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) −5.70739 −0.263824
\(469\) 8.64177 0.399040
\(470\) 1.61350 0.0744250
\(471\) −23.3774 −1.07718
\(472\) −44.4249 −2.04482
\(473\) −20.5852 −0.946509
\(474\) −16.0565 −0.737502
\(475\) 2.00000 0.0917663
\(476\) −4.32088 −0.198047
\(477\) 2.67912 0.122668
\(478\) 35.0101 1.60133
\(479\) 2.89703 0.132369 0.0661844 0.997807i \(-0.478917\pi\)
0.0661844 + 0.997807i \(0.478917\pi\)
\(480\) −3.48586 −0.159107
\(481\) −2.64177 −0.120454
\(482\) 11.0765 0.504523
\(483\) −6.64177 −0.302211
\(484\) −34.9336 −1.58789
\(485\) −6.25526 −0.284037
\(486\) −2.51414 −0.114044
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −40.4623 −1.83164
\(489\) 6.05655 0.273887
\(490\) −2.51414 −0.113577
\(491\) 30.8114 1.39050 0.695250 0.718768i \(-0.255294\pi\)
0.695250 + 0.718768i \(0.255294\pi\)
\(492\) 25.9253 1.16880
\(493\) −2.34916 −0.105801
\(494\) 6.64177 0.298827
\(495\) −1.70739 −0.0767414
\(496\) 26.2179 1.17722
\(497\) 8.34916 0.374511
\(498\) 15.0848 0.675967
\(499\) −33.6519 −1.50647 −0.753233 0.657754i \(-0.771507\pi\)
−0.753233 + 0.657754i \(0.771507\pi\)
\(500\) 4.32088 0.193236
\(501\) −9.08482 −0.405880
\(502\) −8.11310 −0.362105
\(503\) 36.6236 1.63297 0.816483 0.577369i \(-0.195921\pi\)
0.816483 + 0.577369i \(0.195921\pi\)
\(504\) −5.83502 −0.259913
\(505\) 8.25526 0.367354
\(506\) −28.5105 −1.26745
\(507\) −11.2553 −0.499864
\(508\) 8.64177 0.383416
\(509\) −41.6519 −1.84619 −0.923094 0.384575i \(-0.874348\pi\)
−0.923094 + 0.384575i \(0.874348\pi\)
\(510\) 2.51414 0.111328
\(511\) 0.386505 0.0170980
\(512\) 49.3365 2.18038
\(513\) 2.00000 0.0883022
\(514\) −43.5953 −1.92291
\(515\) −2.93438 −0.129304
\(516\) 52.0950 2.29335
\(517\) 1.09575 0.0481910
\(518\) −5.02827 −0.220930
\(519\) 24.9536 1.09534
\(520\) 7.70739 0.337991
\(521\) 9.41478 0.412469 0.206234 0.978503i \(-0.433879\pi\)
0.206234 + 0.978503i \(0.433879\pi\)
\(522\) −5.90611 −0.258503
\(523\) −0.367304 −0.0160611 −0.00803053 0.999968i \(-0.502556\pi\)
−0.00803053 + 0.999968i \(0.502556\pi\)
\(524\) 36.4815 1.59370
\(525\) 1.00000 0.0436436
\(526\) −56.0011 −2.44176
\(527\) −4.34916 −0.189452
\(528\) −10.2926 −0.447928
\(529\) 21.1131 0.917961
\(530\) −6.73566 −0.292579
\(531\) 7.61350 0.330398
\(532\) 8.64177 0.374668
\(533\) −7.92531 −0.343283
\(534\) 17.5279 0.758505
\(535\) −19.9253 −0.861446
\(536\) −50.4249 −2.17802
\(537\) 22.8861 0.987608
\(538\) −52.1806 −2.24966
\(539\) −1.70739 −0.0735425
\(540\) 4.32088 0.185941
\(541\) 25.1523 1.08138 0.540691 0.841221i \(-0.318163\pi\)
0.540691 + 0.841221i \(0.318163\pi\)
\(542\) −13.1414 −0.564470
\(543\) 13.5761 0.582608
\(544\) 3.48586 0.149455
\(545\) 7.35823 0.315192
\(546\) 3.32088 0.142121
\(547\) 14.4540 0.618008 0.309004 0.951061i \(-0.400004\pi\)
0.309004 + 0.951061i \(0.400004\pi\)
\(548\) 3.17872 0.135788
\(549\) 6.93438 0.295952
\(550\) 4.29261 0.183038
\(551\) 4.69832 0.200155
\(552\) 38.7549 1.64952
\(553\) 6.38650 0.271582
\(554\) −30.3118 −1.28783
\(555\) 2.00000 0.0848953
\(556\) 4.84876 0.205633
\(557\) −9.69646 −0.410852 −0.205426 0.978673i \(-0.565858\pi\)
−0.205426 + 0.978673i \(0.565858\pi\)
\(558\) −10.9344 −0.462889
\(559\) −15.9253 −0.673569
\(560\) 6.02827 0.254741
\(561\) 1.70739 0.0720860
\(562\) 28.5561 1.20457
\(563\) −13.9253 −0.586882 −0.293441 0.955977i \(-0.594800\pi\)
−0.293441 + 0.955977i \(0.594800\pi\)
\(564\) −2.77301 −0.116765
\(565\) −0.971726 −0.0408808
\(566\) −11.5279 −0.484553
\(567\) 1.00000 0.0419961
\(568\) −48.7175 −2.04414
\(569\) −14.1131 −0.591652 −0.295826 0.955242i \(-0.595595\pi\)
−0.295826 + 0.955242i \(0.595595\pi\)
\(570\) −5.02827 −0.210611
\(571\) 13.6882 0.572833 0.286416 0.958105i \(-0.407536\pi\)
0.286416 + 0.958105i \(0.407536\pi\)
\(572\) 9.74474 0.407448
\(573\) −2.77301 −0.115844
\(574\) −15.0848 −0.629628
\(575\) −6.64177 −0.276981
\(576\) −3.29261 −0.137192
\(577\) 3.37743 0.140604 0.0703022 0.997526i \(-0.477604\pi\)
0.0703022 + 0.997526i \(0.477604\pi\)
\(578\) −2.51414 −0.104574
\(579\) −8.84049 −0.367398
\(580\) 10.1504 0.421474
\(581\) −6.00000 −0.248922
\(582\) 15.7266 0.651888
\(583\) −4.57429 −0.189448
\(584\) −2.25526 −0.0933235
\(585\) −1.32088 −0.0546119
\(586\) −43.5953 −1.80091
\(587\) −2.77301 −0.114454 −0.0572272 0.998361i \(-0.518226\pi\)
−0.0572272 + 0.998361i \(0.518226\pi\)
\(588\) 4.32088 0.178190
\(589\) 8.69832 0.358408
\(590\) −19.1414 −0.788038
\(591\) −2.44305 −0.100494
\(592\) 12.0565 0.495521
\(593\) 39.5844 1.62554 0.812769 0.582587i \(-0.197959\pi\)
0.812769 + 0.582587i \(0.197959\pi\)
\(594\) 4.29261 0.176128
\(595\) −1.00000 −0.0409960
\(596\) 2.77301 0.113587
\(597\) 11.6508 0.476837
\(598\) −22.0565 −0.901959
\(599\) −13.3017 −0.543492 −0.271746 0.962369i \(-0.587601\pi\)
−0.271746 + 0.962369i \(0.587601\pi\)
\(600\) −5.83502 −0.238214
\(601\) −15.1222 −0.616846 −0.308423 0.951249i \(-0.599801\pi\)
−0.308423 + 0.951249i \(0.599801\pi\)
\(602\) −30.3118 −1.23542
\(603\) 8.64177 0.351920
\(604\) 69.6228 2.83291
\(605\) −8.08482 −0.328695
\(606\) −20.7549 −0.843109
\(607\) −35.2654 −1.43138 −0.715689 0.698419i \(-0.753887\pi\)
−0.715689 + 0.698419i \(0.753887\pi\)
\(608\) −6.97173 −0.282741
\(609\) 2.34916 0.0951927
\(610\) −17.4340 −0.705881
\(611\) 0.847703 0.0342944
\(612\) −4.32088 −0.174661
\(613\) −24.9427 −1.00742 −0.503712 0.863872i \(-0.668033\pi\)
−0.503712 + 0.863872i \(0.668033\pi\)
\(614\) 21.3209 0.860441
\(615\) 6.00000 0.241943
\(616\) 9.96265 0.401407
\(617\) 32.4249 1.30538 0.652689 0.757626i \(-0.273641\pi\)
0.652689 + 0.757626i \(0.273641\pi\)
\(618\) 7.37743 0.296764
\(619\) 17.4449 0.701170 0.350585 0.936531i \(-0.385983\pi\)
0.350585 + 0.936531i \(0.385983\pi\)
\(620\) 18.7922 0.754713
\(621\) −6.64177 −0.266525
\(622\) 62.7367 2.51551
\(623\) −6.97173 −0.279316
\(624\) −7.96265 −0.318761
\(625\) 1.00000 0.0400000
\(626\) 54.9536 2.19639
\(627\) −3.41478 −0.136373
\(628\) −101.011 −4.03079
\(629\) −2.00000 −0.0797452
\(630\) −2.51414 −0.100166
\(631\) 36.3865 1.44852 0.724262 0.689525i \(-0.242181\pi\)
0.724262 + 0.689525i \(0.242181\pi\)
\(632\) −37.2654 −1.48234
\(633\) −5.61350 −0.223116
\(634\) 86.8789 3.45040
\(635\) 2.00000 0.0793676
\(636\) 11.5761 0.459024
\(637\) −1.32088 −0.0523353
\(638\) 10.0840 0.399230
\(639\) 8.34916 0.330288
\(640\) 15.2498 0.602801
\(641\) 30.3876 1.20024 0.600118 0.799911i \(-0.295120\pi\)
0.600118 + 0.799911i \(0.295120\pi\)
\(642\) 50.0950 1.97709
\(643\) −12.1131 −0.477694 −0.238847 0.971057i \(-0.576769\pi\)
−0.238847 + 0.971057i \(0.576769\pi\)
\(644\) −28.6983 −1.13087
\(645\) 12.0565 0.474726
\(646\) 5.02827 0.197835
\(647\) 34.2262 1.34557 0.672785 0.739838i \(-0.265098\pi\)
0.672785 + 0.739838i \(0.265098\pi\)
\(648\) −5.83502 −0.229221
\(649\) −12.9992 −0.510263
\(650\) 3.32088 0.130256
\(651\) 4.34916 0.170457
\(652\) 26.1696 1.02488
\(653\) −0.971726 −0.0380266 −0.0190133 0.999819i \(-0.506052\pi\)
−0.0190133 + 0.999819i \(0.506052\pi\)
\(654\) −18.4996 −0.723392
\(655\) 8.44305 0.329897
\(656\) 36.1696 1.41219
\(657\) 0.386505 0.0150790
\(658\) 1.61350 0.0629006
\(659\) 17.1523 0.668159 0.334079 0.942545i \(-0.391575\pi\)
0.334079 + 0.942545i \(0.391575\pi\)
\(660\) −7.37743 −0.287166
\(661\) −23.0957 −0.898321 −0.449160 0.893451i \(-0.648277\pi\)
−0.449160 + 0.893451i \(0.648277\pi\)
\(662\) 27.2270 1.05821
\(663\) 1.32088 0.0512989
\(664\) 35.0101 1.35866
\(665\) 2.00000 0.0775567
\(666\) −5.02827 −0.194842
\(667\) −15.6026 −0.604134
\(668\) −39.2545 −1.51880
\(669\) −12.9909 −0.502258
\(670\) −21.7266 −0.839371
\(671\) −11.8397 −0.457066
\(672\) −3.48586 −0.134470
\(673\) 31.5097 1.21461 0.607305 0.794468i \(-0.292250\pi\)
0.607305 + 0.794468i \(0.292250\pi\)
\(674\) 12.1422 0.467699
\(675\) 1.00000 0.0384900
\(676\) −48.6327 −1.87049
\(677\) −34.3502 −1.32019 −0.660093 0.751184i \(-0.729483\pi\)
−0.660093 + 0.751184i \(0.729483\pi\)
\(678\) 2.44305 0.0938249
\(679\) −6.25526 −0.240055
\(680\) 5.83502 0.223763
\(681\) −10.0565 −0.385368
\(682\) 18.6692 0.714882
\(683\) 8.11310 0.310439 0.155219 0.987880i \(-0.450392\pi\)
0.155219 + 0.987880i \(0.450392\pi\)
\(684\) 8.64177 0.330426
\(685\) 0.735663 0.0281082
\(686\) −2.51414 −0.0959902
\(687\) −4.82956 −0.184259
\(688\) 72.6802 2.77091
\(689\) −3.53880 −0.134818
\(690\) 16.6983 0.635694
\(691\) 5.00907 0.190554 0.0952771 0.995451i \(-0.469626\pi\)
0.0952771 + 0.995451i \(0.469626\pi\)
\(692\) 107.822 4.09876
\(693\) −1.70739 −0.0648584
\(694\) −41.5097 −1.57569
\(695\) 1.12217 0.0425663
\(696\) −13.7074 −0.519577
\(697\) −6.00000 −0.227266
\(698\) 53.6519 2.03075
\(699\) 24.4996 0.926660
\(700\) 4.32088 0.163314
\(701\) 37.4532 1.41459 0.707294 0.706920i \(-0.249916\pi\)
0.707294 + 0.706920i \(0.249916\pi\)
\(702\) 3.32088 0.125339
\(703\) 4.00000 0.150863
\(704\) 5.62177 0.211878
\(705\) −0.641769 −0.0241704
\(706\) −48.4815 −1.82462
\(707\) 8.25526 0.310471
\(708\) 32.8970 1.23635
\(709\) −18.1131 −0.680252 −0.340126 0.940380i \(-0.610470\pi\)
−0.340126 + 0.940380i \(0.610470\pi\)
\(710\) −20.9909 −0.787775
\(711\) 6.38650 0.239513
\(712\) 40.6802 1.52455
\(713\) −28.8861 −1.08179
\(714\) 2.51414 0.0940892
\(715\) 2.25526 0.0843421
\(716\) 98.8882 3.69563
\(717\) −13.9253 −0.520050
\(718\) −26.4249 −0.986169
\(719\) 6.97173 0.260002 0.130001 0.991514i \(-0.458502\pi\)
0.130001 + 0.991514i \(0.458502\pi\)
\(720\) 6.02827 0.224661
\(721\) −2.93438 −0.109282
\(722\) 37.7121 1.40350
\(723\) −4.40571 −0.163850
\(724\) 58.6610 2.18012
\(725\) 2.34916 0.0872456
\(726\) 20.3263 0.754382
\(727\) −39.3702 −1.46016 −0.730080 0.683361i \(-0.760517\pi\)
−0.730080 + 0.683361i \(0.760517\pi\)
\(728\) 7.70739 0.285655
\(729\) 1.00000 0.0370370
\(730\) −0.971726 −0.0359652
\(731\) −12.0565 −0.445928
\(732\) 29.9627 1.10745
\(733\) −12.0373 −0.444610 −0.222305 0.974977i \(-0.571358\pi\)
−0.222305 + 0.974977i \(0.571358\pi\)
\(734\) −56.7367 −2.09419
\(735\) 1.00000 0.0368856
\(736\) 23.1523 0.853405
\(737\) −14.7549 −0.543502
\(738\) −15.0848 −0.555280
\(739\) −21.6700 −0.797145 −0.398573 0.917137i \(-0.630494\pi\)
−0.398573 + 0.917137i \(0.630494\pi\)
\(740\) 8.64177 0.317678
\(741\) −2.64177 −0.0970478
\(742\) −6.73566 −0.247274
\(743\) 21.3966 0.784966 0.392483 0.919759i \(-0.371616\pi\)
0.392483 + 0.919759i \(0.371616\pi\)
\(744\) −25.3774 −0.930382
\(745\) 0.641769 0.0235126
\(746\) 78.4633 2.87275
\(747\) −6.00000 −0.219529
\(748\) 7.37743 0.269746
\(749\) −19.9253 −0.728055
\(750\) −2.51414 −0.0918033
\(751\) −13.7266 −0.500890 −0.250445 0.968131i \(-0.580577\pi\)
−0.250445 + 0.968131i \(0.580577\pi\)
\(752\) −3.86876 −0.141079
\(753\) 3.22699 0.117598
\(754\) 7.80128 0.284106
\(755\) 16.1131 0.586416
\(756\) 4.32088 0.157149
\(757\) −33.5279 −1.21859 −0.609296 0.792943i \(-0.708548\pi\)
−0.609296 + 0.792943i \(0.708548\pi\)
\(758\) −12.3574 −0.448842
\(759\) 11.3401 0.411619
\(760\) −11.6700 −0.423317
\(761\) 24.8296 0.900071 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(762\) −5.02827 −0.182155
\(763\) 7.35823 0.266386
\(764\) −11.9819 −0.433488
\(765\) −1.00000 −0.0361551
\(766\) 48.4815 1.75171
\(767\) −10.0565 −0.363121
\(768\) −31.7549 −1.14585
\(769\) −17.2654 −0.622606 −0.311303 0.950311i \(-0.600765\pi\)
−0.311303 + 0.950311i \(0.600765\pi\)
\(770\) 4.29261 0.154695
\(771\) 17.3401 0.624488
\(772\) −38.1987 −1.37480
\(773\) 12.6418 0.454693 0.227346 0.973814i \(-0.426995\pi\)
0.227346 + 0.973814i \(0.426995\pi\)
\(774\) −30.3118 −1.08954
\(775\) 4.34916 0.156226
\(776\) 36.4996 1.31026
\(777\) 2.00000 0.0717496
\(778\) 15.0848 0.540817
\(779\) 12.0000 0.429945
\(780\) −5.70739 −0.204357
\(781\) −14.2553 −0.510093
\(782\) −16.6983 −0.597131
\(783\) 2.34916 0.0839521
\(784\) 6.02827 0.215295
\(785\) −23.3774 −0.834376
\(786\) −21.2270 −0.757142
\(787\) 1.35823 0.0484157 0.0242079 0.999707i \(-0.492294\pi\)
0.0242079 + 0.999707i \(0.492294\pi\)
\(788\) −10.5561 −0.376047
\(789\) 22.2745 0.792992
\(790\) −16.0565 −0.571266
\(791\) −0.971726 −0.0345506
\(792\) 9.96265 0.354007
\(793\) −9.15951 −0.325264
\(794\) −0.971726 −0.0344853
\(795\) 2.67912 0.0950184
\(796\) 50.3419 1.78432
\(797\) −11.1704 −0.395677 −0.197839 0.980235i \(-0.563392\pi\)
−0.197839 + 0.980235i \(0.563392\pi\)
\(798\) −5.02827 −0.177999
\(799\) 0.641769 0.0227042
\(800\) −3.48586 −0.123244
\(801\) −6.97173 −0.246334
\(802\) 22.1323 0.781519
\(803\) −0.659914 −0.0232879
\(804\) 37.3401 1.31688
\(805\) −6.64177 −0.234092
\(806\) 14.4431 0.508735
\(807\) 20.7549 0.730606
\(808\) −48.1696 −1.69460
\(809\) −32.8031 −1.15330 −0.576648 0.816992i \(-0.695640\pi\)
−0.576648 + 0.816992i \(0.695640\pi\)
\(810\) −2.51414 −0.0883378
\(811\) 28.3492 0.995474 0.497737 0.867328i \(-0.334165\pi\)
0.497737 + 0.867328i \(0.334165\pi\)
\(812\) 10.1504 0.356211
\(813\) 5.22699 0.183319
\(814\) 8.58522 0.300912
\(815\) 6.05655 0.212152
\(816\) −6.02827 −0.211032
\(817\) 24.1131 0.843610
\(818\) 5.21606 0.182375
\(819\) −1.32088 −0.0461554
\(820\) 25.9253 0.905351
\(821\) −27.8205 −0.970942 −0.485471 0.874253i \(-0.661352\pi\)
−0.485471 + 0.874253i \(0.661352\pi\)
\(822\) −1.84956 −0.0645107
\(823\) 19.4039 0.676376 0.338188 0.941079i \(-0.390186\pi\)
0.338188 + 0.941079i \(0.390186\pi\)
\(824\) 17.1222 0.596479
\(825\) −1.70739 −0.0594437
\(826\) −19.1414 −0.666013
\(827\) −39.8506 −1.38574 −0.692871 0.721062i \(-0.743654\pi\)
−0.692871 + 0.721062i \(0.743654\pi\)
\(828\) −28.6983 −0.997335
\(829\) 55.3219 1.92141 0.960705 0.277571i \(-0.0895293\pi\)
0.960705 + 0.277571i \(0.0895293\pi\)
\(830\) 15.0848 0.523602
\(831\) 12.0565 0.418237
\(832\) 4.34916 0.150780
\(833\) −1.00000 −0.0346479
\(834\) −2.82128 −0.0976931
\(835\) −9.08482 −0.314393
\(836\) −14.7549 −0.510308
\(837\) 4.34916 0.150329
\(838\) 75.0211 2.59156
\(839\) −36.4815 −1.25948 −0.629740 0.776806i \(-0.716839\pi\)
−0.629740 + 0.776806i \(0.716839\pi\)
\(840\) −5.83502 −0.201327
\(841\) −23.4815 −0.809705
\(842\) 73.2654 2.52489
\(843\) −11.3582 −0.391198
\(844\) −24.2553 −0.834901
\(845\) −11.2553 −0.387193
\(846\) 1.61350 0.0554731
\(847\) −8.08482 −0.277798
\(848\) 16.1504 0.554608
\(849\) 4.58522 0.157364
\(850\) 2.51414 0.0862342
\(851\) −13.2835 −0.455354
\(852\) 36.0757 1.23593
\(853\) 52.8970 1.81116 0.905580 0.424176i \(-0.139436\pi\)
0.905580 + 0.424176i \(0.139436\pi\)
\(854\) −17.4340 −0.596579
\(855\) 2.00000 0.0683986
\(856\) 116.265 3.97384
\(857\) −10.0109 −0.341967 −0.170983 0.985274i \(-0.554694\pi\)
−0.170983 + 0.985274i \(0.554694\pi\)
\(858\) −5.67004 −0.193572
\(859\) −0.567076 −0.0193484 −0.00967419 0.999953i \(-0.503079\pi\)
−0.00967419 + 0.999953i \(0.503079\pi\)
\(860\) 52.0950 1.77642
\(861\) 6.00000 0.204479
\(862\) −15.6327 −0.532452
\(863\) 32.8031 1.11663 0.558316 0.829628i \(-0.311448\pi\)
0.558316 + 0.829628i \(0.311448\pi\)
\(864\) −3.48586 −0.118591
\(865\) 24.9536 0.848447
\(866\) 6.54787 0.222506
\(867\) 1.00000 0.0339618
\(868\) 18.7922 0.637849
\(869\) −10.9043 −0.369901
\(870\) −5.90611 −0.200236
\(871\) −11.4148 −0.386775
\(872\) −42.9354 −1.45398
\(873\) −6.25526 −0.211709
\(874\) 33.3966 1.12966
\(875\) 1.00000 0.0338062
\(876\) 1.67004 0.0564255
\(877\) −52.1696 −1.76164 −0.880822 0.473448i \(-0.843009\pi\)
−0.880822 + 0.473448i \(0.843009\pi\)
\(878\) 34.7466 1.17264
\(879\) 17.3401 0.584867
\(880\) −10.2926 −0.346964
\(881\) −40.6802 −1.37055 −0.685275 0.728284i \(-0.740318\pi\)
−0.685275 + 0.728284i \(0.740318\pi\)
\(882\) −2.51414 −0.0846554
\(883\) −42.1131 −1.41722 −0.708609 0.705601i \(-0.750677\pi\)
−0.708609 + 0.705601i \(0.750677\pi\)
\(884\) 5.70739 0.191960
\(885\) 7.61350 0.255925
\(886\) −45.1331 −1.51628
\(887\) 54.1696 1.81884 0.909419 0.415880i \(-0.136527\pi\)
0.909419 + 0.415880i \(0.136527\pi\)
\(888\) −11.6700 −0.391621
\(889\) 2.00000 0.0670778
\(890\) 17.5279 0.587536
\(891\) −1.70739 −0.0571997
\(892\) −56.1323 −1.87945
\(893\) −1.28354 −0.0429520
\(894\) −1.61350 −0.0539633
\(895\) 22.8861 0.764998
\(896\) 15.2498 0.509460
\(897\) 8.77301 0.292922
\(898\) 100.114 3.34085
\(899\) 10.2169 0.340751
\(900\) 4.32088 0.144029
\(901\) −2.67912 −0.0892543
\(902\) 25.7557 0.857570
\(903\) 12.0565 0.401217
\(904\) 5.67004 0.188583
\(905\) 13.5761 0.451286
\(906\) −40.5105 −1.34587
\(907\) 36.8223 1.22267 0.611333 0.791374i \(-0.290634\pi\)
0.611333 + 0.791374i \(0.290634\pi\)
\(908\) −43.4532 −1.44204
\(909\) 8.25526 0.273810
\(910\) 3.32088 0.110086
\(911\) −1.70739 −0.0565683 −0.0282842 0.999600i \(-0.509004\pi\)
−0.0282842 + 0.999600i \(0.509004\pi\)
\(912\) 12.0565 0.399232
\(913\) 10.2443 0.339038
\(914\) −65.3676 −2.16217
\(915\) 6.93438 0.229244
\(916\) −20.8680 −0.689497
\(917\) 8.44305 0.278814
\(918\) 2.51414 0.0829789
\(919\) 23.8506 0.786759 0.393380 0.919376i \(-0.371306\pi\)
0.393380 + 0.919376i \(0.371306\pi\)
\(920\) 38.7549 1.27771
\(921\) −8.48040 −0.279439
\(922\) −4.52867 −0.149144
\(923\) −11.0283 −0.363000
\(924\) −7.37743 −0.242700
\(925\) 2.00000 0.0657596
\(926\) −29.8397 −0.980593
\(927\) −2.93438 −0.0963777
\(928\) −8.18884 −0.268812
\(929\) −8.75486 −0.287238 −0.143619 0.989633i \(-0.545874\pi\)
−0.143619 + 0.989633i \(0.545874\pi\)
\(930\) −10.9344 −0.358552
\(931\) 2.00000 0.0655474
\(932\) 105.860 3.46756
\(933\) −24.9536 −0.816944
\(934\) 45.2545 1.48077
\(935\) 1.70739 0.0558376
\(936\) 7.70739 0.251924
\(937\) −16.5479 −0.540596 −0.270298 0.962777i \(-0.587122\pi\)
−0.270298 + 0.962777i \(0.587122\pi\)
\(938\) −21.7266 −0.709398
\(939\) −21.8578 −0.713303
\(940\) −2.77301 −0.0904456
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 58.7741 1.91496
\(943\) −39.8506 −1.29771
\(944\) 45.8962 1.49380
\(945\) 1.00000 0.0325300
\(946\) 51.7541 1.68267
\(947\) −7.92531 −0.257538 −0.128769 0.991675i \(-0.541103\pi\)
−0.128769 + 0.991675i \(0.541103\pi\)
\(948\) 27.5953 0.896255
\(949\) −0.510528 −0.0165724
\(950\) −5.02827 −0.163139
\(951\) −34.5561 −1.12056
\(952\) 5.83502 0.189114
\(953\) 2.20699 0.0714914 0.0357457 0.999361i \(-0.488619\pi\)
0.0357457 + 0.999361i \(0.488619\pi\)
\(954\) −6.73566 −0.218075
\(955\) −2.77301 −0.0897325
\(956\) −60.1696 −1.94603
\(957\) −4.01093 −0.129655
\(958\) −7.28354 −0.235320
\(959\) 0.735663 0.0237558
\(960\) −3.29261 −0.106269
\(961\) −12.0848 −0.389833
\(962\) 6.64177 0.214139
\(963\) −19.9253 −0.642084
\(964\) −19.0365 −0.613126
\(965\) −8.84049 −0.284585
\(966\) 16.6983 0.537260
\(967\) −33.9637 −1.09220 −0.546100 0.837720i \(-0.683888\pi\)
−0.546100 + 0.837720i \(0.683888\pi\)
\(968\) 47.1751 1.51627
\(969\) −2.00000 −0.0642493
\(970\) 15.7266 0.504950
\(971\) −57.8962 −1.85798 −0.928989 0.370107i \(-0.879321\pi\)
−0.928989 + 0.370107i \(0.879321\pi\)
\(972\) 4.32088 0.138592
\(973\) 1.12217 0.0359751
\(974\) 40.2262 1.28893
\(975\) −1.32088 −0.0423022
\(976\) 41.8023 1.33806
\(977\) −52.9619 −1.69440 −0.847200 0.531274i \(-0.821713\pi\)
−0.847200 + 0.531274i \(0.821713\pi\)
\(978\) −15.2270 −0.486905
\(979\) 11.9035 0.380436
\(980\) 4.32088 0.138026
\(981\) 7.35823 0.234930
\(982\) −77.4641 −2.47198
\(983\) −38.8789 −1.24004 −0.620022 0.784584i \(-0.712876\pi\)
−0.620022 + 0.784584i \(0.712876\pi\)
\(984\) −35.0101 −1.11608
\(985\) −2.44305 −0.0778421
\(986\) 5.90611 0.188089
\(987\) −0.641769 −0.0204277
\(988\) −11.4148 −0.363152
\(989\) −80.0768 −2.54629
\(990\) 4.29261 0.136428
\(991\) −22.4996 −0.714723 −0.357362 0.933966i \(-0.616324\pi\)
−0.357362 + 0.933966i \(0.616324\pi\)
\(992\) −15.1606 −0.481349
\(993\) −10.8296 −0.343666
\(994\) −20.9909 −0.665792
\(995\) 11.6508 0.369357
\(996\) −25.9253 −0.821475
\(997\) 18.5561 0.587679 0.293840 0.955855i \(-0.405067\pi\)
0.293840 + 0.955855i \(0.405067\pi\)
\(998\) 84.6055 2.67814
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.a.x.1.1 3
3.2 odd 2 5355.2.a.bd.1.3 3
5.4 even 2 8925.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.x.1.1 3 1.1 even 1 trivial
5355.2.a.bd.1.3 3 3.2 odd 2
8925.2.a.bp.1.3 3 5.4 even 2