Properties

Label 1785.2.a.x.1.1
Level 17851785
Weight 22
Character 1785.1
Self dual yes
Analytic conductor 14.25314.253
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1785=35717 1785 = 3 \cdot 5 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1785.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.253296760814.2532967608
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x25x+3 x^{3} - x^{2} - 5x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.514142.51414 of defining polynomial
Character χ\chi == 1785.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.51414q2+1.00000q3+4.32088q4+1.00000q52.51414q6+1.00000q75.83502q8+1.00000q92.51414q101.70739q11+4.32088q121.32088q132.51414q14+1.00000q15+6.02827q161.00000q172.51414q18+2.00000q19+4.32088q20+1.00000q21+4.29261q226.64177q235.83502q24+1.00000q25+3.32088q26+1.00000q27+4.32088q28+2.34916q292.51414q30+4.34916q313.48586q321.70739q33+2.51414q34+1.00000q35+4.32088q36+2.00000q375.02827q381.32088q395.83502q40+6.00000q412.51414q42+12.0565q437.37743q44+1.00000q45+16.6983q460.641769q47+6.02827q48+1.00000q492.51414q501.00000q515.70739q52+2.67912q532.51414q541.70739q555.83502q56+2.00000q575.90611q58+7.61350q59+4.32088q60+6.93438q6110.9344q62+1.00000q633.29261q641.32088q65+4.29261q66+8.64177q674.32088q686.64177q692.51414q70+8.34916q715.83502q72+0.386505q735.02827q74+1.00000q75+8.64177q761.70739q77+3.32088q78+6.38650q79+6.02827q80+1.00000q8115.0848q826.00000q83+4.32088q841.00000q8530.3118q86+2.34916q87+9.96265q886.97173q892.51414q901.32088q9128.6983q92+4.34916q93+1.61350q94+2.00000q953.48586q966.25526q972.51414q981.70739q99+O(q100)q-2.51414 q^{2} +1.00000 q^{3} +4.32088 q^{4} +1.00000 q^{5} -2.51414 q^{6} +1.00000 q^{7} -5.83502 q^{8} +1.00000 q^{9} -2.51414 q^{10} -1.70739 q^{11} +4.32088 q^{12} -1.32088 q^{13} -2.51414 q^{14} +1.00000 q^{15} +6.02827 q^{16} -1.00000 q^{17} -2.51414 q^{18} +2.00000 q^{19} +4.32088 q^{20} +1.00000 q^{21} +4.29261 q^{22} -6.64177 q^{23} -5.83502 q^{24} +1.00000 q^{25} +3.32088 q^{26} +1.00000 q^{27} +4.32088 q^{28} +2.34916 q^{29} -2.51414 q^{30} +4.34916 q^{31} -3.48586 q^{32} -1.70739 q^{33} +2.51414 q^{34} +1.00000 q^{35} +4.32088 q^{36} +2.00000 q^{37} -5.02827 q^{38} -1.32088 q^{39} -5.83502 q^{40} +6.00000 q^{41} -2.51414 q^{42} +12.0565 q^{43} -7.37743 q^{44} +1.00000 q^{45} +16.6983 q^{46} -0.641769 q^{47} +6.02827 q^{48} +1.00000 q^{49} -2.51414 q^{50} -1.00000 q^{51} -5.70739 q^{52} +2.67912 q^{53} -2.51414 q^{54} -1.70739 q^{55} -5.83502 q^{56} +2.00000 q^{57} -5.90611 q^{58} +7.61350 q^{59} +4.32088 q^{60} +6.93438 q^{61} -10.9344 q^{62} +1.00000 q^{63} -3.29261 q^{64} -1.32088 q^{65} +4.29261 q^{66} +8.64177 q^{67} -4.32088 q^{68} -6.64177 q^{69} -2.51414 q^{70} +8.34916 q^{71} -5.83502 q^{72} +0.386505 q^{73} -5.02827 q^{74} +1.00000 q^{75} +8.64177 q^{76} -1.70739 q^{77} +3.32088 q^{78} +6.38650 q^{79} +6.02827 q^{80} +1.00000 q^{81} -15.0848 q^{82} -6.00000 q^{83} +4.32088 q^{84} -1.00000 q^{85} -30.3118 q^{86} +2.34916 q^{87} +9.96265 q^{88} -6.97173 q^{89} -2.51414 q^{90} -1.32088 q^{91} -28.6983 q^{92} +4.34916 q^{93} +1.61350 q^{94} +2.00000 q^{95} -3.48586 q^{96} -6.25526 q^{97} -2.51414 q^{98} -1.70739 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+3q3+5q4+3q5q6+3q73q8+3q9q10+5q12+4q13q14+3q15+5q163q17q18+6q19+5q20+3q21+18q22+q98+O(q100) 3 q - q^{2} + 3 q^{3} + 5 q^{4} + 3 q^{5} - q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} - q^{10} + 5 q^{12} + 4 q^{13} - q^{14} + 3 q^{15} + 5 q^{16} - 3 q^{17} - q^{18} + 6 q^{19} + 5 q^{20} + 3 q^{21} + 18 q^{22}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.51414 −1.77776 −0.888882 0.458137i 0.848517π-0.848517\pi
−0.888882 + 0.458137i 0.848517π0.848517\pi
33 1.00000 0.577350
44 4.32088 2.16044
55 1.00000 0.447214
66 −2.51414 −1.02639
77 1.00000 0.377964
88 −5.83502 −2.06299
99 1.00000 0.333333
1010 −2.51414 −0.795040
1111 −1.70739 −0.514797 −0.257399 0.966305i 0.582865π-0.582865\pi
−0.257399 + 0.966305i 0.582865π0.582865\pi
1212 4.32088 1.24733
1313 −1.32088 −0.366347 −0.183174 0.983081i 0.558637π-0.558637\pi
−0.183174 + 0.983081i 0.558637π0.558637\pi
1414 −2.51414 −0.671931
1515 1.00000 0.258199
1616 6.02827 1.50707
1717 −1.00000 −0.242536
1818 −2.51414 −0.592588
1919 2.00000 0.458831 0.229416 0.973329i 0.426318π-0.426318\pi
0.229416 + 0.973329i 0.426318π0.426318\pi
2020 4.32088 0.966179
2121 1.00000 0.218218
2222 4.29261 0.915188
2323 −6.64177 −1.38490 −0.692452 0.721464i 0.743470π-0.743470\pi
−0.692452 + 0.721464i 0.743470π0.743470\pi
2424 −5.83502 −1.19107
2525 1.00000 0.200000
2626 3.32088 0.651279
2727 1.00000 0.192450
2828 4.32088 0.816570
2929 2.34916 0.436228 0.218114 0.975923i 0.430010π-0.430010\pi
0.218114 + 0.975923i 0.430010π0.430010\pi
3030 −2.51414 −0.459017
3131 4.34916 0.781132 0.390566 0.920575i 0.372279π-0.372279\pi
0.390566 + 0.920575i 0.372279π0.372279\pi
3232 −3.48586 −0.616219
3333 −1.70739 −0.297218
3434 2.51414 0.431171
3535 1.00000 0.169031
3636 4.32088 0.720147
3737 2.00000 0.328798 0.164399 0.986394i 0.447432π-0.447432\pi
0.164399 + 0.986394i 0.447432π0.447432\pi
3838 −5.02827 −0.815694
3939 −1.32088 −0.211511
4040 −5.83502 −0.922598
4141 6.00000 0.937043 0.468521 0.883452i 0.344787π-0.344787\pi
0.468521 + 0.883452i 0.344787π0.344787\pi
4242 −2.51414 −0.387940
4343 12.0565 1.83861 0.919303 0.393550i 0.128753π-0.128753\pi
0.919303 + 0.393550i 0.128753π0.128753\pi
4444 −7.37743 −1.11219
4545 1.00000 0.149071
4646 16.6983 2.46203
4747 −0.641769 −0.0936116 −0.0468058 0.998904i 0.514904π-0.514904\pi
−0.0468058 + 0.998904i 0.514904π0.514904\pi
4848 6.02827 0.870106
4949 1.00000 0.142857
5050 −2.51414 −0.355553
5151 −1.00000 −0.140028
5252 −5.70739 −0.791472
5353 2.67912 0.368005 0.184002 0.982926i 0.441095π-0.441095\pi
0.184002 + 0.982926i 0.441095π0.441095\pi
5454 −2.51414 −0.342131
5555 −1.70739 −0.230224
5656 −5.83502 −0.779738
5757 2.00000 0.264906
5858 −5.90611 −0.775510
5959 7.61350 0.991193 0.495596 0.868553i 0.334950π-0.334950\pi
0.495596 + 0.868553i 0.334950π0.334950\pi
6060 4.32088 0.557824
6161 6.93438 0.887856 0.443928 0.896062i 0.353585π-0.353585\pi
0.443928 + 0.896062i 0.353585π0.353585\pi
6262 −10.9344 −1.38867
6363 1.00000 0.125988
6464 −3.29261 −0.411576
6565 −1.32088 −0.163836
6666 4.29261 0.528384
6767 8.64177 1.05576 0.527880 0.849319i 0.322987π-0.322987\pi
0.527880 + 0.849319i 0.322987π0.322987\pi
6868 −4.32088 −0.523984
6969 −6.64177 −0.799575
7070 −2.51414 −0.300497
7171 8.34916 0.990863 0.495431 0.868647i 0.335010π-0.335010\pi
0.495431 + 0.868647i 0.335010π0.335010\pi
7272 −5.83502 −0.687664
7373 0.386505 0.0452370 0.0226185 0.999744i 0.492800π-0.492800\pi
0.0226185 + 0.999744i 0.492800π0.492800\pi
7474 −5.02827 −0.584525
7575 1.00000 0.115470
7676 8.64177 0.991279
7777 −1.70739 −0.194575
7878 3.32088 0.376016
7979 6.38650 0.718538 0.359269 0.933234i 0.383026π-0.383026\pi
0.359269 + 0.933234i 0.383026π0.383026\pi
8080 6.02827 0.673982
8181 1.00000 0.111111
8282 −15.0848 −1.66584
8383 −6.00000 −0.658586 −0.329293 0.944228i 0.606810π-0.606810\pi
−0.329293 + 0.944228i 0.606810π0.606810\pi
8484 4.32088 0.471447
8585 −1.00000 −0.108465
8686 −30.3118 −3.26861
8787 2.34916 0.251856
8888 9.96265 1.06202
8989 −6.97173 −0.739001 −0.369501 0.929230i 0.620471π-0.620471\pi
−0.369501 + 0.929230i 0.620471π0.620471\pi
9090 −2.51414 −0.265013
9191 −1.32088 −0.138466
9292 −28.6983 −2.99201
9393 4.34916 0.450987
9494 1.61350 0.166419
9595 2.00000 0.205196
9696 −3.48586 −0.355774
9797 −6.25526 −0.635126 −0.317563 0.948237i 0.602864π-0.602864\pi
−0.317563 + 0.948237i 0.602864π0.602864\pi
9898 −2.51414 −0.253966
9999 −1.70739 −0.171599
100100 4.32088 0.432088
101101 8.25526 0.821429 0.410715 0.911764i 0.365279π-0.365279\pi
0.410715 + 0.911764i 0.365279π0.365279\pi
102102 2.51414 0.248937
103103 −2.93438 −0.289133 −0.144567 0.989495i 0.546179π-0.546179\pi
−0.144567 + 0.989495i 0.546179π0.546179\pi
104104 7.70739 0.755772
105105 1.00000 0.0975900
106106 −6.73566 −0.654225
107107 −19.9253 −1.92625 −0.963126 0.269051i 0.913290π-0.913290\pi
−0.963126 + 0.269051i 0.913290π0.913290\pi
108108 4.32088 0.415777
109109 7.35823 0.704791 0.352395 0.935851i 0.385367π-0.385367\pi
0.352395 + 0.935851i 0.385367π0.385367\pi
110110 4.29261 0.409284
111111 2.00000 0.189832
112112 6.02827 0.569618
113113 −0.971726 −0.0914123 −0.0457062 0.998955i 0.514554π-0.514554\pi
−0.0457062 + 0.998955i 0.514554π0.514554\pi
114114 −5.02827 −0.470941
115115 −6.64177 −0.619348
116116 10.1504 0.942445
117117 −1.32088 −0.122116
118118 −19.1414 −1.76211
119119 −1.00000 −0.0916698
120120 −5.83502 −0.532662
121121 −8.08482 −0.734984
122122 −17.4340 −1.57840
123123 6.00000 0.541002
124124 18.7922 1.68759
125125 1.00000 0.0894427
126126 −2.51414 −0.223977
127127 2.00000 0.177471 0.0887357 0.996055i 0.471717π-0.471717\pi
0.0887357 + 0.996055i 0.471717π0.471717\pi
128128 15.2498 1.34790
129129 12.0565 1.06152
130130 3.32088 0.291261
131131 8.44305 0.737673 0.368836 0.929494i 0.379756π-0.379756\pi
0.368836 + 0.929494i 0.379756π0.379756\pi
132132 −7.37743 −0.642123
133133 2.00000 0.173422
134134 −21.7266 −1.87689
135135 1.00000 0.0860663
136136 5.83502 0.500349
137137 0.735663 0.0628520 0.0314260 0.999506i 0.489995π-0.489995\pi
0.0314260 + 0.999506i 0.489995π0.489995\pi
138138 16.6983 1.42146
139139 1.12217 0.0951811 0.0475905 0.998867i 0.484846π-0.484846\pi
0.0475905 + 0.998867i 0.484846π0.484846\pi
140140 4.32088 0.365181
141141 −0.641769 −0.0540467
142142 −20.9909 −1.76152
143143 2.25526 0.188595
144144 6.02827 0.502356
145145 2.34916 0.195087
146146 −0.971726 −0.0804206
147147 1.00000 0.0824786
148148 8.64177 0.710349
149149 0.641769 0.0525758 0.0262879 0.999654i 0.491631π-0.491631\pi
0.0262879 + 0.999654i 0.491631π0.491631\pi
150150 −2.51414 −0.205278
151151 16.1131 1.31127 0.655633 0.755080i 0.272402π-0.272402\pi
0.655633 + 0.755080i 0.272402π0.272402\pi
152152 −11.6700 −0.946565
153153 −1.00000 −0.0808452
154154 4.29261 0.345908
155155 4.34916 0.349333
156156 −5.70739 −0.456957
157157 −23.3774 −1.86572 −0.932861 0.360236i 0.882696π-0.882696\pi
−0.932861 + 0.360236i 0.882696π0.882696\pi
158158 −16.0565 −1.27739
159159 2.67912 0.212468
160160 −3.48586 −0.275582
161161 −6.64177 −0.523445
162162 −2.51414 −0.197529
163163 6.05655 0.474385 0.237193 0.971463i 0.423773π-0.423773\pi
0.237193 + 0.971463i 0.423773π0.423773\pi
164164 25.9253 2.02443
165165 −1.70739 −0.132920
166166 15.0848 1.17081
167167 −9.08482 −0.703005 −0.351502 0.936187i 0.614329π-0.614329\pi
−0.351502 + 0.936187i 0.614329π0.614329\pi
168168 −5.83502 −0.450182
169169 −11.2553 −0.865790
170170 2.51414 0.192826
171171 2.00000 0.152944
172172 52.0950 3.97220
173173 24.9536 1.89719 0.948593 0.316499i 0.102507π-0.102507\pi
0.948593 + 0.316499i 0.102507π0.102507\pi
174174 −5.90611 −0.447741
175175 1.00000 0.0755929
176176 −10.2926 −0.775835
177177 7.61350 0.572265
178178 17.5279 1.31377
179179 22.8861 1.71059 0.855294 0.518143i 0.173377π-0.173377\pi
0.855294 + 0.518143i 0.173377π0.173377\pi
180180 4.32088 0.322060
181181 13.5761 1.00911 0.504554 0.863380i 0.331657π-0.331657\pi
0.504554 + 0.863380i 0.331657π0.331657\pi
182182 3.32088 0.246160
183183 6.93438 0.512604
184184 38.7549 2.85705
185185 2.00000 0.147043
186186 −10.9344 −0.801748
187187 1.70739 0.124857
188188 −2.77301 −0.202243
189189 1.00000 0.0727393
190190 −5.02827 −0.364789
191191 −2.77301 −0.200648 −0.100324 0.994955i 0.531988π-0.531988\pi
−0.100324 + 0.994955i 0.531988π0.531988\pi
192192 −3.29261 −0.237624
193193 −8.84049 −0.636352 −0.318176 0.948032i 0.603070π-0.603070\pi
−0.318176 + 0.948032i 0.603070π0.603070\pi
194194 15.7266 1.12910
195195 −1.32088 −0.0945905
196196 4.32088 0.308635
197197 −2.44305 −0.174060 −0.0870301 0.996206i 0.527738π-0.527738\pi
−0.0870301 + 0.996206i 0.527738π0.527738\pi
198198 4.29261 0.305063
199199 11.6508 0.825906 0.412953 0.910752i 0.364497π-0.364497\pi
0.412953 + 0.910752i 0.364497π0.364497\pi
200200 −5.83502 −0.412598
201201 8.64177 0.609543
202202 −20.7549 −1.46031
203203 2.34916 0.164879
204204 −4.32088 −0.302522
205205 6.00000 0.419058
206206 7.37743 0.514010
207207 −6.64177 −0.461635
208208 −7.96265 −0.552111
209209 −3.41478 −0.236205
210210 −2.51414 −0.173492
211211 −5.61350 −0.386449 −0.193224 0.981155i 0.561895π-0.561895\pi
−0.193224 + 0.981155i 0.561895π0.561895\pi
212212 11.5761 0.795053
213213 8.34916 0.572075
214214 50.0950 3.42442
215215 12.0565 0.822250
216216 −5.83502 −0.397023
217217 4.34916 0.295240
218218 −18.4996 −1.25295
219219 0.386505 0.0261176
220220 −7.37743 −0.497386
221221 1.32088 0.0888523
222222 −5.02827 −0.337476
223223 −12.9909 −0.869937 −0.434968 0.900446i 0.643240π-0.643240\pi
−0.434968 + 0.900446i 0.643240π0.643240\pi
224224 −3.48586 −0.232909
225225 1.00000 0.0666667
226226 2.44305 0.162509
227227 −10.0565 −0.667477 −0.333738 0.942666i 0.608310π-0.608310\pi
−0.333738 + 0.942666i 0.608310π0.608310\pi
228228 8.64177 0.572315
229229 −4.82956 −0.319146 −0.159573 0.987186i 0.551012π-0.551012\pi
−0.159573 + 0.987186i 0.551012π0.551012\pi
230230 16.6983 1.10105
231231 −1.70739 −0.112338
232232 −13.7074 −0.899934
233233 24.4996 1.60502 0.802511 0.596637i 0.203497π-0.203497\pi
0.802511 + 0.596637i 0.203497π0.203497\pi
234234 3.32088 0.217093
235235 −0.641769 −0.0418644
236236 32.8970 2.14141
237237 6.38650 0.414848
238238 2.51414 0.162967
239239 −13.9253 −0.900753 −0.450377 0.892839i 0.648710π-0.648710\pi
−0.450377 + 0.892839i 0.648710π0.648710\pi
240240 6.02827 0.389123
241241 −4.40571 −0.283796 −0.141898 0.989881i 0.545321π-0.545321\pi
−0.141898 + 0.989881i 0.545321π0.545321\pi
242242 20.3263 1.30663
243243 1.00000 0.0641500
244244 29.9627 1.91816
245245 1.00000 0.0638877
246246 −15.0848 −0.961773
247247 −2.64177 −0.168092
248248 −25.3774 −1.61147
249249 −6.00000 −0.380235
250250 −2.51414 −0.159008
251251 3.22699 0.203686 0.101843 0.994800i 0.467526π-0.467526\pi
0.101843 + 0.994800i 0.467526π0.467526\pi
252252 4.32088 0.272190
253253 11.3401 0.712945
254254 −5.02827 −0.315502
255255 −1.00000 −0.0626224
256256 −31.7549 −1.98468
257257 17.3401 1.08164 0.540822 0.841137i 0.318113π-0.318113\pi
0.540822 + 0.841137i 0.318113π0.318113\pi
258258 −30.3118 −1.88713
259259 2.00000 0.124274
260260 −5.70739 −0.353957
261261 2.34916 0.145409
262262 −21.2270 −1.31141
263263 22.2745 1.37350 0.686751 0.726893i 0.259036π-0.259036\pi
0.686751 + 0.726893i 0.259036π0.259036\pi
264264 9.96265 0.613159
265265 2.67912 0.164577
266266 −5.02827 −0.308303
267267 −6.97173 −0.426663
268268 37.3401 2.28091
269269 20.7549 1.26545 0.632723 0.774378i 0.281937π-0.281937\pi
0.632723 + 0.774378i 0.281937π0.281937\pi
270270 −2.51414 −0.153006
271271 5.22699 0.317517 0.158759 0.987317i 0.449251π-0.449251\pi
0.158759 + 0.987317i 0.449251π0.449251\pi
272272 −6.02827 −0.365518
273273 −1.32088 −0.0799436
274274 −1.84956 −0.111736
275275 −1.70739 −0.102959
276276 −28.6983 −1.72744
277277 12.0565 0.724408 0.362204 0.932099i 0.382024π-0.382024\pi
0.362204 + 0.932099i 0.382024π0.382024\pi
278278 −2.82128 −0.169209
279279 4.34916 0.260377
280280 −5.83502 −0.348709
281281 −11.3582 −0.677575 −0.338788 0.940863i 0.610017π-0.610017\pi
−0.338788 + 0.940863i 0.610017π0.610017\pi
282282 1.61350 0.0960822
283283 4.58522 0.272563 0.136282 0.990670i 0.456485π-0.456485\pi
0.136282 + 0.990670i 0.456485π0.456485\pi
284284 36.0757 2.14070
285285 2.00000 0.118470
286286 −5.67004 −0.335277
287287 6.00000 0.354169
288288 −3.48586 −0.205406
289289 1.00000 0.0588235
290290 −5.90611 −0.346818
291291 −6.25526 −0.366690
292292 1.67004 0.0977319
293293 17.3401 1.01302 0.506509 0.862234i 0.330936π-0.330936\pi
0.506509 + 0.862234i 0.330936π0.330936\pi
294294 −2.51414 −0.146627
295295 7.61350 0.443275
296296 −11.6700 −0.678307
297297 −1.70739 −0.0990728
298298 −1.61350 −0.0934673
299299 8.77301 0.507356
300300 4.32088 0.249466
301301 12.0565 0.694928
302302 −40.5105 −2.33112
303303 8.25526 0.474253
304304 12.0565 0.691490
305305 6.93438 0.397061
306306 2.51414 0.143724
307307 −8.48040 −0.484002 −0.242001 0.970276i 0.577804π-0.577804\pi
−0.242001 + 0.970276i 0.577804π0.577804\pi
308308 −7.37743 −0.420368
309309 −2.93438 −0.166931
310310 −10.9344 −0.621031
311311 −24.9536 −1.41499 −0.707494 0.706719i 0.750174π-0.750174\pi
−0.707494 + 0.706719i 0.750174π0.750174\pi
312312 7.70739 0.436345
313313 −21.8578 −1.23548 −0.617739 0.786383i 0.711951π-0.711951\pi
−0.617739 + 0.786383i 0.711951π0.711951\pi
314314 58.7741 3.31681
315315 1.00000 0.0563436
316316 27.5953 1.55236
317317 −34.5561 −1.94087 −0.970433 0.241369i 0.922403π-0.922403\pi
−0.970433 + 0.241369i 0.922403π0.922403\pi
318318 −6.73566 −0.377717
319319 −4.01093 −0.224569
320320 −3.29261 −0.184063
321321 −19.9253 −1.11212
322322 16.6983 0.930561
323323 −2.00000 −0.111283
324324 4.32088 0.240049
325325 −1.32088 −0.0732695
326326 −15.2270 −0.843345
327327 7.35823 0.406911
328328 −35.0101 −1.93311
329329 −0.641769 −0.0353819
330330 4.29261 0.236300
331331 −10.8296 −0.595246 −0.297623 0.954683i 0.596194π-0.596194\pi
−0.297623 + 0.954683i 0.596194π0.596194\pi
332332 −25.9253 −1.42284
333333 2.00000 0.109599
334334 22.8405 1.24978
335335 8.64177 0.472150
336336 6.02827 0.328869
337337 −4.82956 −0.263083 −0.131541 0.991311i 0.541993π-0.541993\pi
−0.131541 + 0.991311i 0.541993π0.541993\pi
338338 28.2973 1.53917
339339 −0.971726 −0.0527769
340340 −4.32088 −0.234333
341341 −7.42571 −0.402125
342342 −5.02827 −0.271898
343343 1.00000 0.0539949
344344 −70.3502 −3.79303
345345 −6.64177 −0.357581
346346 −62.7367 −3.37275
347347 16.5105 0.886332 0.443166 0.896440i 0.353855π-0.353855\pi
0.443166 + 0.896440i 0.353855π0.353855\pi
348348 10.1504 0.544121
349349 −21.3401 −1.14231 −0.571154 0.820843i 0.693504π-0.693504\pi
−0.571154 + 0.820843i 0.693504π0.693504\pi
350350 −2.51414 −0.134386
351351 −1.32088 −0.0705036
352352 5.95173 0.317228
353353 19.2835 1.02636 0.513180 0.858281i 0.328467π-0.328467\pi
0.513180 + 0.858281i 0.328467π0.328467\pi
354354 −19.1414 −1.01735
355355 8.34916 0.443127
356356 −30.1240 −1.59657
357357 −1.00000 −0.0529256
358358 −57.5388 −3.04102
359359 10.5105 0.554724 0.277362 0.960765i 0.410540π-0.410540\pi
0.277362 + 0.960765i 0.410540π0.410540\pi
360360 −5.83502 −0.307533
361361 −15.0000 −0.789474
362362 −34.1323 −1.79395
363363 −8.08482 −0.424343
364364 −5.70739 −0.299148
365365 0.386505 0.0202306
366366 −17.4340 −0.911289
367367 22.5671 1.17799 0.588996 0.808136i 0.299523π-0.299523\pi
0.588996 + 0.808136i 0.299523π0.299523\pi
368368 −40.0384 −2.08715
369369 6.00000 0.312348
370370 −5.02827 −0.261408
371371 2.67912 0.139093
372372 18.7922 0.974331
373373 −31.2088 −1.61593 −0.807966 0.589229i 0.799432π-0.799432\pi
−0.807966 + 0.589229i 0.799432π0.799432\pi
374374 −4.29261 −0.221966
375375 1.00000 0.0516398
376376 3.74474 0.193120
377377 −3.10297 −0.159811
378378 −2.51414 −0.129313
379379 4.91518 0.252476 0.126238 0.992000i 0.459710π-0.459710\pi
0.126238 + 0.992000i 0.459710π0.459710\pi
380380 8.64177 0.443313
381381 2.00000 0.102463
382382 6.97173 0.356705
383383 −19.2835 −0.985343 −0.492671 0.870215i 0.663980π-0.663980\pi
−0.492671 + 0.870215i 0.663980π0.663980\pi
384384 15.2498 0.778213
385385 −1.70739 −0.0870166
386386 22.2262 1.13128
387387 12.0565 0.612869
388388 −27.0283 −1.37215
389389 −6.00000 −0.304212 −0.152106 0.988364i 0.548606π-0.548606\pi
−0.152106 + 0.988364i 0.548606π0.548606\pi
390390 3.32088 0.168160
391391 6.64177 0.335889
392392 −5.83502 −0.294713
393393 8.44305 0.425896
394394 6.14217 0.309438
395395 6.38650 0.321340
396396 −7.37743 −0.370730
397397 0.386505 0.0193981 0.00969906 0.999953i 0.496913π-0.496913\pi
0.00969906 + 0.999953i 0.496913π0.496913\pi
398398 −29.2918 −1.46827
399399 2.00000 0.100125
400400 6.02827 0.301414
401401 −8.80314 −0.439608 −0.219804 0.975544i 0.570542π-0.570542\pi
−0.219804 + 0.975544i 0.570542π0.570542\pi
402402 −21.7266 −1.08362
403403 −5.74474 −0.286166
404404 35.6700 1.77465
405405 1.00000 0.0496904
406406 −5.90611 −0.293115
407407 −3.41478 −0.169264
408408 5.83502 0.288877
409409 −2.07469 −0.102587 −0.0512935 0.998684i 0.516334π-0.516334\pi
−0.0512935 + 0.998684i 0.516334π0.516334\pi
410410 −15.0848 −0.744986
411411 0.735663 0.0362876
412412 −12.6791 −0.624655
413413 7.61350 0.374636
414414 16.6983 0.820677
415415 −6.00000 −0.294528
416416 4.60442 0.225750
417417 1.12217 0.0549528
418418 8.58522 0.419917
419419 −29.8397 −1.45776 −0.728882 0.684639i 0.759960π-0.759960\pi
−0.728882 + 0.684639i 0.759960π0.759960\pi
420420 4.32088 0.210838
421421 −29.1414 −1.42026 −0.710132 0.704069i 0.751365π-0.751365\pi
−0.710132 + 0.704069i 0.751365π0.751365\pi
422422 14.1131 0.687015
423423 −0.641769 −0.0312039
424424 −15.6327 −0.759191
425425 −1.00000 −0.0485071
426426 −20.9909 −1.01701
427427 6.93438 0.335578
428428 −86.0950 −4.16156
429429 2.25526 0.108885
430430 −30.3118 −1.46177
431431 6.21792 0.299507 0.149753 0.988723i 0.452152π-0.452152\pi
0.149753 + 0.988723i 0.452152π0.452152\pi
432432 6.02827 0.290035
433433 −2.60442 −0.125161 −0.0625803 0.998040i 0.519933π-0.519933\pi
−0.0625803 + 0.998040i 0.519933π0.519933\pi
434434 −10.9344 −0.524867
435435 2.34916 0.112634
436436 31.7941 1.52266
437437 −13.2835 −0.635438
438438 −0.971726 −0.0464309
439439 −13.8205 −0.659616 −0.329808 0.944048i 0.606984π-0.606984\pi
−0.329808 + 0.944048i 0.606984π0.606984\pi
440440 9.96265 0.474951
441441 1.00000 0.0476190
442442 −3.32088 −0.157958
443443 17.9517 0.852912 0.426456 0.904508i 0.359762π-0.359762\pi
0.426456 + 0.904508i 0.359762π0.359762\pi
444444 8.64177 0.410120
445445 −6.97173 −0.330492
446446 32.6610 1.54654
447447 0.641769 0.0303546
448448 −3.29261 −0.155561
449449 −39.8205 −1.87924 −0.939622 0.342213i 0.888824π-0.888824\pi
−0.939622 + 0.342213i 0.888824π0.888824\pi
450450 −2.51414 −0.118518
451451 −10.2443 −0.482387
452452 −4.19872 −0.197491
453453 16.1131 0.757059
454454 25.2835 1.18662
455455 −1.32088 −0.0619240
456456 −11.6700 −0.546500
457457 26.0000 1.21623 0.608114 0.793849i 0.291926π-0.291926\pi
0.608114 + 0.793849i 0.291926π0.291926\pi
458458 12.1422 0.567366
459459 −1.00000 −0.0466760
460460 −28.6983 −1.33807
461461 1.80128 0.0838941 0.0419471 0.999120i 0.486644π-0.486644\pi
0.0419471 + 0.999120i 0.486644π0.486644\pi
462462 4.29261 0.199710
463463 11.8688 0.551588 0.275794 0.961217i 0.411059π-0.411059\pi
0.275794 + 0.961217i 0.411059π0.411059\pi
464464 14.1614 0.657425
465465 4.34916 0.201687
466466 −61.5953 −2.85335
467467 −18.0000 −0.832941 −0.416470 0.909149i 0.636733π-0.636733\pi
−0.416470 + 0.909149i 0.636733π0.636733\pi
468468 −5.70739 −0.263824
469469 8.64177 0.399040
470470 1.61350 0.0744250
471471 −23.3774 −1.07718
472472 −44.4249 −2.04482
473473 −20.5852 −0.946509
474474 −16.0565 −0.737502
475475 2.00000 0.0917663
476476 −4.32088 −0.198047
477477 2.67912 0.122668
478478 35.0101 1.60133
479479 2.89703 0.132369 0.0661844 0.997807i 0.478917π-0.478917\pi
0.0661844 + 0.997807i 0.478917π0.478917\pi
480480 −3.48586 −0.159107
481481 −2.64177 −0.120454
482482 11.0765 0.504523
483483 −6.64177 −0.302211
484484 −34.9336 −1.58789
485485 −6.25526 −0.284037
486486 −2.51414 −0.114044
487487 −16.0000 −0.725029 −0.362515 0.931978i 0.618082π-0.618082\pi
−0.362515 + 0.931978i 0.618082π0.618082\pi
488488 −40.4623 −1.83164
489489 6.05655 0.273887
490490 −2.51414 −0.113577
491491 30.8114 1.39050 0.695250 0.718768i 0.255294π-0.255294\pi
0.695250 + 0.718768i 0.255294π0.255294\pi
492492 25.9253 1.16880
493493 −2.34916 −0.105801
494494 6.64177 0.298827
495495 −1.70739 −0.0767414
496496 26.2179 1.17722
497497 8.34916 0.374511
498498 15.0848 0.675967
499499 −33.6519 −1.50647 −0.753233 0.657754i 0.771507π-0.771507\pi
−0.753233 + 0.657754i 0.771507π0.771507\pi
500500 4.32088 0.193236
501501 −9.08482 −0.405880
502502 −8.11310 −0.362105
503503 36.6236 1.63297 0.816483 0.577369i 0.195921π-0.195921\pi
0.816483 + 0.577369i 0.195921π0.195921\pi
504504 −5.83502 −0.259913
505505 8.25526 0.367354
506506 −28.5105 −1.26745
507507 −11.2553 −0.499864
508508 8.64177 0.383416
509509 −41.6519 −1.84619 −0.923094 0.384575i 0.874348π-0.874348\pi
−0.923094 + 0.384575i 0.874348π0.874348\pi
510510 2.51414 0.111328
511511 0.386505 0.0170980
512512 49.3365 2.18038
513513 2.00000 0.0883022
514514 −43.5953 −1.92291
515515 −2.93438 −0.129304
516516 52.0950 2.29335
517517 1.09575 0.0481910
518518 −5.02827 −0.220930
519519 24.9536 1.09534
520520 7.70739 0.337991
521521 9.41478 0.412469 0.206234 0.978503i 0.433879π-0.433879\pi
0.206234 + 0.978503i 0.433879π0.433879\pi
522522 −5.90611 −0.258503
523523 −0.367304 −0.0160611 −0.00803053 0.999968i 0.502556π-0.502556\pi
−0.00803053 + 0.999968i 0.502556π0.502556\pi
524524 36.4815 1.59370
525525 1.00000 0.0436436
526526 −56.0011 −2.44176
527527 −4.34916 −0.189452
528528 −10.2926 −0.447928
529529 21.1131 0.917961
530530 −6.73566 −0.292579
531531 7.61350 0.330398
532532 8.64177 0.374668
533533 −7.92531 −0.343283
534534 17.5279 0.758505
535535 −19.9253 −0.861446
536536 −50.4249 −2.17802
537537 22.8861 0.987608
538538 −52.1806 −2.24966
539539 −1.70739 −0.0735425
540540 4.32088 0.185941
541541 25.1523 1.08138 0.540691 0.841221i 0.318163π-0.318163\pi
0.540691 + 0.841221i 0.318163π0.318163\pi
542542 −13.1414 −0.564470
543543 13.5761 0.582608
544544 3.48586 0.149455
545545 7.35823 0.315192
546546 3.32088 0.142121
547547 14.4540 0.618008 0.309004 0.951061i 0.400004π-0.400004\pi
0.309004 + 0.951061i 0.400004π0.400004\pi
548548 3.17872 0.135788
549549 6.93438 0.295952
550550 4.29261 0.183038
551551 4.69832 0.200155
552552 38.7549 1.64952
553553 6.38650 0.271582
554554 −30.3118 −1.28783
555555 2.00000 0.0848953
556556 4.84876 0.205633
557557 −9.69646 −0.410852 −0.205426 0.978673i 0.565858π-0.565858\pi
−0.205426 + 0.978673i 0.565858π0.565858\pi
558558 −10.9344 −0.462889
559559 −15.9253 −0.673569
560560 6.02827 0.254741
561561 1.70739 0.0720860
562562 28.5561 1.20457
563563 −13.9253 −0.586882 −0.293441 0.955977i 0.594800π-0.594800\pi
−0.293441 + 0.955977i 0.594800π0.594800\pi
564564 −2.77301 −0.116765
565565 −0.971726 −0.0408808
566566 −11.5279 −0.484553
567567 1.00000 0.0419961
568568 −48.7175 −2.04414
569569 −14.1131 −0.591652 −0.295826 0.955242i 0.595595π-0.595595\pi
−0.295826 + 0.955242i 0.595595π0.595595\pi
570570 −5.02827 −0.210611
571571 13.6882 0.572833 0.286416 0.958105i 0.407536π-0.407536\pi
0.286416 + 0.958105i 0.407536π0.407536\pi
572572 9.74474 0.407448
573573 −2.77301 −0.115844
574574 −15.0848 −0.629628
575575 −6.64177 −0.276981
576576 −3.29261 −0.137192
577577 3.37743 0.140604 0.0703022 0.997526i 0.477604π-0.477604\pi
0.0703022 + 0.997526i 0.477604π0.477604\pi
578578 −2.51414 −0.104574
579579 −8.84049 −0.367398
580580 10.1504 0.421474
581581 −6.00000 −0.248922
582582 15.7266 0.651888
583583 −4.57429 −0.189448
584584 −2.25526 −0.0933235
585585 −1.32088 −0.0546119
586586 −43.5953 −1.80091
587587 −2.77301 −0.114454 −0.0572272 0.998361i 0.518226π-0.518226\pi
−0.0572272 + 0.998361i 0.518226π0.518226\pi
588588 4.32088 0.178190
589589 8.69832 0.358408
590590 −19.1414 −0.788038
591591 −2.44305 −0.100494
592592 12.0565 0.495521
593593 39.5844 1.62554 0.812769 0.582587i 0.197959π-0.197959\pi
0.812769 + 0.582587i 0.197959π0.197959\pi
594594 4.29261 0.176128
595595 −1.00000 −0.0409960
596596 2.77301 0.113587
597597 11.6508 0.476837
598598 −22.0565 −0.901959
599599 −13.3017 −0.543492 −0.271746 0.962369i 0.587601π-0.587601\pi
−0.271746 + 0.962369i 0.587601π0.587601\pi
600600 −5.83502 −0.238214
601601 −15.1222 −0.616846 −0.308423 0.951249i 0.599801π-0.599801\pi
−0.308423 + 0.951249i 0.599801π0.599801\pi
602602 −30.3118 −1.23542
603603 8.64177 0.351920
604604 69.6228 2.83291
605605 −8.08482 −0.328695
606606 −20.7549 −0.843109
607607 −35.2654 −1.43138 −0.715689 0.698419i 0.753887π-0.753887\pi
−0.715689 + 0.698419i 0.753887π0.753887\pi
608608 −6.97173 −0.282741
609609 2.34916 0.0951927
610610 −17.4340 −0.705881
611611 0.847703 0.0342944
612612 −4.32088 −0.174661
613613 −24.9427 −1.00742 −0.503712 0.863872i 0.668033π-0.668033\pi
−0.503712 + 0.863872i 0.668033π0.668033\pi
614614 21.3209 0.860441
615615 6.00000 0.241943
616616 9.96265 0.401407
617617 32.4249 1.30538 0.652689 0.757626i 0.273641π-0.273641\pi
0.652689 + 0.757626i 0.273641π0.273641\pi
618618 7.37743 0.296764
619619 17.4449 0.701170 0.350585 0.936531i 0.385983π-0.385983\pi
0.350585 + 0.936531i 0.385983π0.385983\pi
620620 18.7922 0.754713
621621 −6.64177 −0.266525
622622 62.7367 2.51551
623623 −6.97173 −0.279316
624624 −7.96265 −0.318761
625625 1.00000 0.0400000
626626 54.9536 2.19639
627627 −3.41478 −0.136373
628628 −101.011 −4.03079
629629 −2.00000 −0.0797452
630630 −2.51414 −0.100166
631631 36.3865 1.44852 0.724262 0.689525i 0.242181π-0.242181\pi
0.724262 + 0.689525i 0.242181π0.242181\pi
632632 −37.2654 −1.48234
633633 −5.61350 −0.223116
634634 86.8789 3.45040
635635 2.00000 0.0793676
636636 11.5761 0.459024
637637 −1.32088 −0.0523353
638638 10.0840 0.399230
639639 8.34916 0.330288
640640 15.2498 0.602801
641641 30.3876 1.20024 0.600118 0.799911i 0.295120π-0.295120\pi
0.600118 + 0.799911i 0.295120π0.295120\pi
642642 50.0950 1.97709
643643 −12.1131 −0.477694 −0.238847 0.971057i 0.576769π-0.576769\pi
−0.238847 + 0.971057i 0.576769π0.576769\pi
644644 −28.6983 −1.13087
645645 12.0565 0.474726
646646 5.02827 0.197835
647647 34.2262 1.34557 0.672785 0.739838i 0.265098π-0.265098\pi
0.672785 + 0.739838i 0.265098π0.265098\pi
648648 −5.83502 −0.229221
649649 −12.9992 −0.510263
650650 3.32088 0.130256
651651 4.34916 0.170457
652652 26.1696 1.02488
653653 −0.971726 −0.0380266 −0.0190133 0.999819i 0.506052π-0.506052\pi
−0.0190133 + 0.999819i 0.506052π0.506052\pi
654654 −18.4996 −0.723392
655655 8.44305 0.329897
656656 36.1696 1.41219
657657 0.386505 0.0150790
658658 1.61350 0.0629006
659659 17.1523 0.668159 0.334079 0.942545i 0.391575π-0.391575\pi
0.334079 + 0.942545i 0.391575π0.391575\pi
660660 −7.37743 −0.287166
661661 −23.0957 −0.898321 −0.449160 0.893451i 0.648277π-0.648277\pi
−0.449160 + 0.893451i 0.648277π0.648277\pi
662662 27.2270 1.05821
663663 1.32088 0.0512989
664664 35.0101 1.35866
665665 2.00000 0.0775567
666666 −5.02827 −0.194842
667667 −15.6026 −0.604134
668668 −39.2545 −1.51880
669669 −12.9909 −0.502258
670670 −21.7266 −0.839371
671671 −11.8397 −0.457066
672672 −3.48586 −0.134470
673673 31.5097 1.21461 0.607305 0.794468i 0.292250π-0.292250\pi
0.607305 + 0.794468i 0.292250π0.292250\pi
674674 12.1422 0.467699
675675 1.00000 0.0384900
676676 −48.6327 −1.87049
677677 −34.3502 −1.32019 −0.660093 0.751184i 0.729483π-0.729483\pi
−0.660093 + 0.751184i 0.729483π0.729483\pi
678678 2.44305 0.0938249
679679 −6.25526 −0.240055
680680 5.83502 0.223763
681681 −10.0565 −0.385368
682682 18.6692 0.714882
683683 8.11310 0.310439 0.155219 0.987880i 0.450392π-0.450392\pi
0.155219 + 0.987880i 0.450392π0.450392\pi
684684 8.64177 0.330426
685685 0.735663 0.0281082
686686 −2.51414 −0.0959902
687687 −4.82956 −0.184259
688688 72.6802 2.77091
689689 −3.53880 −0.134818
690690 16.6983 0.635694
691691 5.00907 0.190554 0.0952771 0.995451i 0.469626π-0.469626\pi
0.0952771 + 0.995451i 0.469626π0.469626\pi
692692 107.822 4.09876
693693 −1.70739 −0.0648584
694694 −41.5097 −1.57569
695695 1.12217 0.0425663
696696 −13.7074 −0.519577
697697 −6.00000 −0.227266
698698 53.6519 2.03075
699699 24.4996 0.926660
700700 4.32088 0.163314
701701 37.4532 1.41459 0.707294 0.706920i 0.249916π-0.249916\pi
0.707294 + 0.706920i 0.249916π0.249916\pi
702702 3.32088 0.125339
703703 4.00000 0.150863
704704 5.62177 0.211878
705705 −0.641769 −0.0241704
706706 −48.4815 −1.82462
707707 8.25526 0.310471
708708 32.8970 1.23635
709709 −18.1131 −0.680252 −0.340126 0.940380i 0.610470π-0.610470\pi
−0.340126 + 0.940380i 0.610470π0.610470\pi
710710 −20.9909 −0.787775
711711 6.38650 0.239513
712712 40.6802 1.52455
713713 −28.8861 −1.08179
714714 2.51414 0.0940892
715715 2.25526 0.0843421
716716 98.8882 3.69563
717717 −13.9253 −0.520050
718718 −26.4249 −0.986169
719719 6.97173 0.260002 0.130001 0.991514i 0.458502π-0.458502\pi
0.130001 + 0.991514i 0.458502π0.458502\pi
720720 6.02827 0.224661
721721 −2.93438 −0.109282
722722 37.7121 1.40350
723723 −4.40571 −0.163850
724724 58.6610 2.18012
725725 2.34916 0.0872456
726726 20.3263 0.754382
727727 −39.3702 −1.46016 −0.730080 0.683361i 0.760517π-0.760517\pi
−0.730080 + 0.683361i 0.760517π0.760517\pi
728728 7.70739 0.285655
729729 1.00000 0.0370370
730730 −0.971726 −0.0359652
731731 −12.0565 −0.445928
732732 29.9627 1.10745
733733 −12.0373 −0.444610 −0.222305 0.974977i 0.571358π-0.571358\pi
−0.222305 + 0.974977i 0.571358π0.571358\pi
734734 −56.7367 −2.09419
735735 1.00000 0.0368856
736736 23.1523 0.853405
737737 −14.7549 −0.543502
738738 −15.0848 −0.555280
739739 −21.6700 −0.797145 −0.398573 0.917137i 0.630494π-0.630494\pi
−0.398573 + 0.917137i 0.630494π0.630494\pi
740740 8.64177 0.317678
741741 −2.64177 −0.0970478
742742 −6.73566 −0.247274
743743 21.3966 0.784966 0.392483 0.919759i 0.371616π-0.371616\pi
0.392483 + 0.919759i 0.371616π0.371616\pi
744744 −25.3774 −0.930382
745745 0.641769 0.0235126
746746 78.4633 2.87275
747747 −6.00000 −0.219529
748748 7.37743 0.269746
749749 −19.9253 −0.728055
750750 −2.51414 −0.0918033
751751 −13.7266 −0.500890 −0.250445 0.968131i 0.580577π-0.580577\pi
−0.250445 + 0.968131i 0.580577π0.580577\pi
752752 −3.86876 −0.141079
753753 3.22699 0.117598
754754 7.80128 0.284106
755755 16.1131 0.586416
756756 4.32088 0.157149
757757 −33.5279 −1.21859 −0.609296 0.792943i 0.708548π-0.708548\pi
−0.609296 + 0.792943i 0.708548π0.708548\pi
758758 −12.3574 −0.448842
759759 11.3401 0.411619
760760 −11.6700 −0.423317
761761 24.8296 0.900071 0.450035 0.893011i 0.351411π-0.351411\pi
0.450035 + 0.893011i 0.351411π0.351411\pi
762762 −5.02827 −0.182155
763763 7.35823 0.266386
764764 −11.9819 −0.433488
765765 −1.00000 −0.0361551
766766 48.4815 1.75171
767767 −10.0565 −0.363121
768768 −31.7549 −1.14585
769769 −17.2654 −0.622606 −0.311303 0.950311i 0.600765π-0.600765\pi
−0.311303 + 0.950311i 0.600765π0.600765\pi
770770 4.29261 0.154695
771771 17.3401 0.624488
772772 −38.1987 −1.37480
773773 12.6418 0.454693 0.227346 0.973814i 0.426995π-0.426995\pi
0.227346 + 0.973814i 0.426995π0.426995\pi
774774 −30.3118 −1.08954
775775 4.34916 0.156226
776776 36.4996 1.31026
777777 2.00000 0.0717496
778778 15.0848 0.540817
779779 12.0000 0.429945
780780 −5.70739 −0.204357
781781 −14.2553 −0.510093
782782 −16.6983 −0.597131
783783 2.34916 0.0839521
784784 6.02827 0.215295
785785 −23.3774 −0.834376
786786 −21.2270 −0.757142
787787 1.35823 0.0484157 0.0242079 0.999707i 0.492294π-0.492294\pi
0.0242079 + 0.999707i 0.492294π0.492294\pi
788788 −10.5561 −0.376047
789789 22.2745 0.792992
790790 −16.0565 −0.571266
791791 −0.971726 −0.0345506
792792 9.96265 0.354007
793793 −9.15951 −0.325264
794794 −0.971726 −0.0344853
795795 2.67912 0.0950184
796796 50.3419 1.78432
797797 −11.1704 −0.395677 −0.197839 0.980235i 0.563392π-0.563392\pi
−0.197839 + 0.980235i 0.563392π0.563392\pi
798798 −5.02827 −0.177999
799799 0.641769 0.0227042
800800 −3.48586 −0.123244
801801 −6.97173 −0.246334
802802 22.1323 0.781519
803803 −0.659914 −0.0232879
804804 37.3401 1.31688
805805 −6.64177 −0.234092
806806 14.4431 0.508735
807807 20.7549 0.730606
808808 −48.1696 −1.69460
809809 −32.8031 −1.15330 −0.576648 0.816992i 0.695640π-0.695640\pi
−0.576648 + 0.816992i 0.695640π0.695640\pi
810810 −2.51414 −0.0883378
811811 28.3492 0.995474 0.497737 0.867328i 0.334165π-0.334165\pi
0.497737 + 0.867328i 0.334165π0.334165\pi
812812 10.1504 0.356211
813813 5.22699 0.183319
814814 8.58522 0.300912
815815 6.05655 0.212152
816816 −6.02827 −0.211032
817817 24.1131 0.843610
818818 5.21606 0.182375
819819 −1.32088 −0.0461554
820820 25.9253 0.905351
821821 −27.8205 −0.970942 −0.485471 0.874253i 0.661352π-0.661352\pi
−0.485471 + 0.874253i 0.661352π0.661352\pi
822822 −1.84956 −0.0645107
823823 19.4039 0.676376 0.338188 0.941079i 0.390186π-0.390186\pi
0.338188 + 0.941079i 0.390186π0.390186\pi
824824 17.1222 0.596479
825825 −1.70739 −0.0594437
826826 −19.1414 −0.666013
827827 −39.8506 −1.38574 −0.692871 0.721062i 0.743654π-0.743654\pi
−0.692871 + 0.721062i 0.743654π0.743654\pi
828828 −28.6983 −0.997335
829829 55.3219 1.92141 0.960705 0.277571i 0.0895293π-0.0895293\pi
0.960705 + 0.277571i 0.0895293π0.0895293\pi
830830 15.0848 0.523602
831831 12.0565 0.418237
832832 4.34916 0.150780
833833 −1.00000 −0.0346479
834834 −2.82128 −0.0976931
835835 −9.08482 −0.314393
836836 −14.7549 −0.510308
837837 4.34916 0.150329
838838 75.0211 2.59156
839839 −36.4815 −1.25948 −0.629740 0.776806i 0.716839π-0.716839\pi
−0.629740 + 0.776806i 0.716839π0.716839\pi
840840 −5.83502 −0.201327
841841 −23.4815 −0.809705
842842 73.2654 2.52489
843843 −11.3582 −0.391198
844844 −24.2553 −0.834901
845845 −11.2553 −0.387193
846846 1.61350 0.0554731
847847 −8.08482 −0.277798
848848 16.1504 0.554608
849849 4.58522 0.157364
850850 2.51414 0.0862342
851851 −13.2835 −0.455354
852852 36.0757 1.23593
853853 52.8970 1.81116 0.905580 0.424176i 0.139436π-0.139436\pi
0.905580 + 0.424176i 0.139436π0.139436\pi
854854 −17.4340 −0.596579
855855 2.00000 0.0683986
856856 116.265 3.97384
857857 −10.0109 −0.341967 −0.170983 0.985274i 0.554694π-0.554694\pi
−0.170983 + 0.985274i 0.554694π0.554694\pi
858858 −5.67004 −0.193572
859859 −0.567076 −0.0193484 −0.00967419 0.999953i 0.503079π-0.503079\pi
−0.00967419 + 0.999953i 0.503079π0.503079\pi
860860 52.0950 1.77642
861861 6.00000 0.204479
862862 −15.6327 −0.532452
863863 32.8031 1.11663 0.558316 0.829628i 0.311448π-0.311448\pi
0.558316 + 0.829628i 0.311448π0.311448\pi
864864 −3.48586 −0.118591
865865 24.9536 0.848447
866866 6.54787 0.222506
867867 1.00000 0.0339618
868868 18.7922 0.637849
869869 −10.9043 −0.369901
870870 −5.90611 −0.200236
871871 −11.4148 −0.386775
872872 −42.9354 −1.45398
873873 −6.25526 −0.211709
874874 33.3966 1.12966
875875 1.00000 0.0338062
876876 1.67004 0.0564255
877877 −52.1696 −1.76164 −0.880822 0.473448i 0.843009π-0.843009\pi
−0.880822 + 0.473448i 0.843009π0.843009\pi
878878 34.7466 1.17264
879879 17.3401 0.584867
880880 −10.2926 −0.346964
881881 −40.6802 −1.37055 −0.685275 0.728284i 0.740318π-0.740318\pi
−0.685275 + 0.728284i 0.740318π0.740318\pi
882882 −2.51414 −0.0846554
883883 −42.1131 −1.41722 −0.708609 0.705601i 0.750677π-0.750677\pi
−0.708609 + 0.705601i 0.750677π0.750677\pi
884884 5.70739 0.191960
885885 7.61350 0.255925
886886 −45.1331 −1.51628
887887 54.1696 1.81884 0.909419 0.415880i 0.136527π-0.136527\pi
0.909419 + 0.415880i 0.136527π0.136527\pi
888888 −11.6700 −0.391621
889889 2.00000 0.0670778
890890 17.5279 0.587536
891891 −1.70739 −0.0571997
892892 −56.1323 −1.87945
893893 −1.28354 −0.0429520
894894 −1.61350 −0.0539633
895895 22.8861 0.764998
896896 15.2498 0.509460
897897 8.77301 0.292922
898898 100.114 3.34085
899899 10.2169 0.340751
900900 4.32088 0.144029
901901 −2.67912 −0.0892543
902902 25.7557 0.857570
903903 12.0565 0.401217
904904 5.67004 0.188583
905905 13.5761 0.451286
906906 −40.5105 −1.34587
907907 36.8223 1.22267 0.611333 0.791374i 0.290634π-0.290634\pi
0.611333 + 0.791374i 0.290634π0.290634\pi
908908 −43.4532 −1.44204
909909 8.25526 0.273810
910910 3.32088 0.110086
911911 −1.70739 −0.0565683 −0.0282842 0.999600i 0.509004π-0.509004\pi
−0.0282842 + 0.999600i 0.509004π0.509004\pi
912912 12.0565 0.399232
913913 10.2443 0.339038
914914 −65.3676 −2.16217
915915 6.93438 0.229244
916916 −20.8680 −0.689497
917917 8.44305 0.278814
918918 2.51414 0.0829789
919919 23.8506 0.786759 0.393380 0.919376i 0.371306π-0.371306\pi
0.393380 + 0.919376i 0.371306π0.371306\pi
920920 38.7549 1.27771
921921 −8.48040 −0.279439
922922 −4.52867 −0.149144
923923 −11.0283 −0.363000
924924 −7.37743 −0.242700
925925 2.00000 0.0657596
926926 −29.8397 −0.980593
927927 −2.93438 −0.0963777
928928 −8.18884 −0.268812
929929 −8.75486 −0.287238 −0.143619 0.989633i 0.545874π-0.545874\pi
−0.143619 + 0.989633i 0.545874π0.545874\pi
930930 −10.9344 −0.358552
931931 2.00000 0.0655474
932932 105.860 3.46756
933933 −24.9536 −0.816944
934934 45.2545 1.48077
935935 1.70739 0.0558376
936936 7.70739 0.251924
937937 −16.5479 −0.540596 −0.270298 0.962777i 0.587122π-0.587122\pi
−0.270298 + 0.962777i 0.587122π0.587122\pi
938938 −21.7266 −0.709398
939939 −21.8578 −0.713303
940940 −2.77301 −0.0904456
941941 6.00000 0.195594 0.0977972 0.995206i 0.468820π-0.468820\pi
0.0977972 + 0.995206i 0.468820π0.468820\pi
942942 58.7741 1.91496
943943 −39.8506 −1.29771
944944 45.8962 1.49380
945945 1.00000 0.0325300
946946 51.7541 1.68267
947947 −7.92531 −0.257538 −0.128769 0.991675i 0.541103π-0.541103\pi
−0.128769 + 0.991675i 0.541103π0.541103\pi
948948 27.5953 0.896255
949949 −0.510528 −0.0165724
950950 −5.02827 −0.163139
951951 −34.5561 −1.12056
952952 5.83502 0.189114
953953 2.20699 0.0714914 0.0357457 0.999361i 0.488619π-0.488619\pi
0.0357457 + 0.999361i 0.488619π0.488619\pi
954954 −6.73566 −0.218075
955955 −2.77301 −0.0897325
956956 −60.1696 −1.94603
957957 −4.01093 −0.129655
958958 −7.28354 −0.235320
959959 0.735663 0.0237558
960960 −3.29261 −0.106269
961961 −12.0848 −0.389833
962962 6.64177 0.214139
963963 −19.9253 −0.642084
964964 −19.0365 −0.613126
965965 −8.84049 −0.284585
966966 16.6983 0.537260
967967 −33.9637 −1.09220 −0.546100 0.837720i 0.683888π-0.683888\pi
−0.546100 + 0.837720i 0.683888π0.683888\pi
968968 47.1751 1.51627
969969 −2.00000 −0.0642493
970970 15.7266 0.504950
971971 −57.8962 −1.85798 −0.928989 0.370107i 0.879321π-0.879321\pi
−0.928989 + 0.370107i 0.879321π0.879321\pi
972972 4.32088 0.138592
973973 1.12217 0.0359751
974974 40.2262 1.28893
975975 −1.32088 −0.0423022
976976 41.8023 1.33806
977977 −52.9619 −1.69440 −0.847200 0.531274i 0.821713π-0.821713\pi
−0.847200 + 0.531274i 0.821713π0.821713\pi
978978 −15.2270 −0.486905
979979 11.9035 0.380436
980980 4.32088 0.138026
981981 7.35823 0.234930
982982 −77.4641 −2.47198
983983 −38.8789 −1.24004 −0.620022 0.784584i 0.712876π-0.712876\pi
−0.620022 + 0.784584i 0.712876π0.712876\pi
984984 −35.0101 −1.11608
985985 −2.44305 −0.0778421
986986 5.90611 0.188089
987987 −0.641769 −0.0204277
988988 −11.4148 −0.363152
989989 −80.0768 −2.54629
990990 4.29261 0.136428
991991 −22.4996 −0.714723 −0.357362 0.933966i 0.616324π-0.616324\pi
−0.357362 + 0.933966i 0.616324π0.616324\pi
992992 −15.1606 −0.481349
993993 −10.8296 −0.343666
994994 −20.9909 −0.665792
995995 11.6508 0.369357
996996 −25.9253 −0.821475
997997 18.5561 0.587679 0.293840 0.955855i 0.405067π-0.405067\pi
0.293840 + 0.955855i 0.405067π0.405067\pi
998998 84.6055 2.67814
999999 2.00000 0.0632772
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.a.x.1.1 3
3.2 odd 2 5355.2.a.bd.1.3 3
5.4 even 2 8925.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.x.1.1 3 1.1 even 1 trivial
5355.2.a.bd.1.3 3 3.2 odd 2
8925.2.a.bp.1.3 3 5.4 even 2