Properties

Label 1785.2.a.z.1.3
Level $1785$
Weight $2$
Character 1785.1
Self dual yes
Analytic conductor $14.253$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1785.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.2532967608\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.704624\) of defining polynomial
Character \(\chi\) \(=\) 1785.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.704624 q^{2} -1.00000 q^{3} -1.50350 q^{4} +1.00000 q^{5} -0.704624 q^{6} +1.00000 q^{7} -2.46865 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+0.704624 q^{2} -1.00000 q^{3} -1.50350 q^{4} +1.00000 q^{5} -0.704624 q^{6} +1.00000 q^{7} -2.46865 q^{8} +1.00000 q^{9} +0.704624 q^{10} -5.17328 q^{11} +1.50350 q^{12} +4.03157 q^{13} +0.704624 q^{14} -1.00000 q^{15} +1.26753 q^{16} -1.00000 q^{17} +0.704624 q^{18} +5.94432 q^{19} -1.50350 q^{20} -1.00000 q^{21} -3.64522 q^{22} -4.66977 q^{23} +2.46865 q^{24} +1.00000 q^{25} +2.84074 q^{26} -1.00000 q^{27} -1.50350 q^{28} -10.3688 q^{29} -0.704624 q^{30} +5.51051 q^{31} +5.83045 q^{32} +5.17328 q^{33} -0.704624 q^{34} +1.00000 q^{35} -1.50350 q^{36} -8.21185 q^{37} +4.18851 q^{38} -4.03157 q^{39} -2.46865 q^{40} -7.67678 q^{41} -0.704624 q^{42} -0.937309 q^{43} +7.77805 q^{44} +1.00000 q^{45} -3.29044 q^{46} -11.4631 q^{47} -1.26753 q^{48} +1.00000 q^{49} +0.704624 q^{50} +1.00000 q^{51} -6.06148 q^{52} +6.18029 q^{53} -0.704624 q^{54} -5.17328 q^{55} -2.46865 q^{56} -5.94432 q^{57} -7.30611 q^{58} +7.61178 q^{59} +1.50350 q^{60} -4.69202 q^{61} +3.88284 q^{62} +1.00000 q^{63} +1.57320 q^{64} +4.03157 q^{65} +3.64522 q^{66} -1.40925 q^{67} +1.50350 q^{68} +4.66977 q^{69} +0.704624 q^{70} -9.17328 q^{71} -2.46865 q^{72} -3.29044 q^{73} -5.78627 q^{74} -1.00000 q^{75} -8.93731 q^{76} -5.17328 q^{77} -2.84074 q^{78} -12.0140 q^{79} +1.26753 q^{80} +1.00000 q^{81} -5.40925 q^{82} -14.7535 q^{83} +1.50350 q^{84} -1.00000 q^{85} -0.660451 q^{86} +10.3688 q^{87} +12.7710 q^{88} +9.00044 q^{89} +0.704624 q^{90} +4.03157 q^{91} +7.02103 q^{92} -5.51051 q^{93} -8.07715 q^{94} +5.94432 q^{95} -5.83045 q^{96} -8.15805 q^{97} +0.704624 q^{98} -5.17328 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 4 q^{3} + 3 q^{4} + 4 q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} - 4 q^{3} + 3 q^{4} + 4 q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} - q^{10} - 10 q^{11} - 3 q^{12} + q^{13} - q^{14} - 4 q^{15} - 7 q^{16} - 4 q^{17} - q^{18} - 8 q^{19} + 3 q^{20} - 4 q^{21} - 10 q^{22} - 17 q^{23} + 3 q^{24} + 4 q^{25} - 14 q^{26} - 4 q^{27} + 3 q^{28} - 10 q^{29} + q^{30} - 5 q^{31} + 3 q^{32} + 10 q^{33} + q^{34} + 4 q^{35} + 3 q^{36} + 11 q^{37} + 14 q^{38} - q^{39} - 3 q^{40} - 11 q^{41} + q^{42} + 10 q^{43} - 8 q^{44} + 4 q^{45} - 4 q^{46} - 13 q^{47} + 7 q^{48} + 4 q^{49} - q^{50} + 4 q^{51} + 6 q^{52} - 4 q^{53} + q^{54} - 10 q^{55} - 3 q^{56} + 8 q^{57} + 16 q^{58} - 16 q^{59} - 3 q^{60} - 7 q^{61} + 14 q^{62} + 4 q^{63} - 7 q^{64} + q^{65} + 10 q^{66} + 2 q^{67} - 3 q^{68} + 17 q^{69} - q^{70} - 26 q^{71} - 3 q^{72} - 4 q^{73} - 10 q^{74} - 4 q^{75} - 22 q^{76} - 10 q^{77} + 14 q^{78} - 12 q^{79} - 7 q^{80} + 4 q^{81} - 14 q^{82} - 17 q^{83} - 3 q^{84} - 4 q^{85} - 6 q^{86} + 10 q^{87} + 30 q^{88} - 8 q^{89} - q^{90} + q^{91} - 26 q^{92} + 5 q^{93} + 34 q^{94} - 8 q^{95} - 3 q^{96} - 14 q^{97} - q^{98} - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.704624 0.498245 0.249122 0.968472i \(-0.419858\pi\)
0.249122 + 0.968472i \(0.419858\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.50350 −0.751752
\(5\) 1.00000 0.447214
\(6\) −0.704624 −0.287662
\(7\) 1.00000 0.377964
\(8\) −2.46865 −0.872801
\(9\) 1.00000 0.333333
\(10\) 0.704624 0.222822
\(11\) −5.17328 −1.55980 −0.779901 0.625903i \(-0.784731\pi\)
−0.779901 + 0.625903i \(0.784731\pi\)
\(12\) 1.50350 0.434024
\(13\) 4.03157 1.11815 0.559077 0.829115i \(-0.311155\pi\)
0.559077 + 0.829115i \(0.311155\pi\)
\(14\) 0.704624 0.188319
\(15\) −1.00000 −0.258199
\(16\) 1.26753 0.316884
\(17\) −1.00000 −0.242536
\(18\) 0.704624 0.166082
\(19\) 5.94432 1.36372 0.681860 0.731483i \(-0.261171\pi\)
0.681860 + 0.731483i \(0.261171\pi\)
\(20\) −1.50350 −0.336194
\(21\) −1.00000 −0.218218
\(22\) −3.64522 −0.777163
\(23\) −4.66977 −0.973715 −0.486858 0.873481i \(-0.661857\pi\)
−0.486858 + 0.873481i \(0.661857\pi\)
\(24\) 2.46865 0.503912
\(25\) 1.00000 0.200000
\(26\) 2.84074 0.557115
\(27\) −1.00000 −0.192450
\(28\) −1.50350 −0.284136
\(29\) −10.3688 −1.92544 −0.962719 0.270504i \(-0.912810\pi\)
−0.962719 + 0.270504i \(0.912810\pi\)
\(30\) −0.704624 −0.128646
\(31\) 5.51051 0.989717 0.494859 0.868973i \(-0.335220\pi\)
0.494859 + 0.868973i \(0.335220\pi\)
\(32\) 5.83045 1.03069
\(33\) 5.17328 0.900552
\(34\) −0.704624 −0.120842
\(35\) 1.00000 0.169031
\(36\) −1.50350 −0.250584
\(37\) −8.21185 −1.35002 −0.675010 0.737808i \(-0.735861\pi\)
−0.675010 + 0.737808i \(0.735861\pi\)
\(38\) 4.18851 0.679466
\(39\) −4.03157 −0.645567
\(40\) −2.46865 −0.390329
\(41\) −7.67678 −1.19891 −0.599456 0.800408i \(-0.704616\pi\)
−0.599456 + 0.800408i \(0.704616\pi\)
\(42\) −0.704624 −0.108726
\(43\) −0.937309 −0.142938 −0.0714692 0.997443i \(-0.522769\pi\)
−0.0714692 + 0.997443i \(0.522769\pi\)
\(44\) 7.77805 1.17258
\(45\) 1.00000 0.149071
\(46\) −3.29044 −0.485148
\(47\) −11.4631 −1.67206 −0.836029 0.548685i \(-0.815129\pi\)
−0.836029 + 0.548685i \(0.815129\pi\)
\(48\) −1.26753 −0.182953
\(49\) 1.00000 0.142857
\(50\) 0.704624 0.0996489
\(51\) 1.00000 0.140028
\(52\) −6.06148 −0.840576
\(53\) 6.18029 0.848928 0.424464 0.905445i \(-0.360463\pi\)
0.424464 + 0.905445i \(0.360463\pi\)
\(54\) −0.704624 −0.0958872
\(55\) −5.17328 −0.697565
\(56\) −2.46865 −0.329888
\(57\) −5.94432 −0.787344
\(58\) −7.30611 −0.959339
\(59\) 7.61178 0.990969 0.495485 0.868617i \(-0.334991\pi\)
0.495485 + 0.868617i \(0.334991\pi\)
\(60\) 1.50350 0.194102
\(61\) −4.69202 −0.600751 −0.300376 0.953821i \(-0.597112\pi\)
−0.300376 + 0.953821i \(0.597112\pi\)
\(62\) 3.88284 0.493121
\(63\) 1.00000 0.125988
\(64\) 1.57320 0.196651
\(65\) 4.03157 0.500054
\(66\) 3.64522 0.448695
\(67\) −1.40925 −0.172167 −0.0860836 0.996288i \(-0.527435\pi\)
−0.0860836 + 0.996288i \(0.527435\pi\)
\(68\) 1.50350 0.182327
\(69\) 4.66977 0.562175
\(70\) 0.704624 0.0842187
\(71\) −9.17328 −1.08867 −0.544334 0.838869i \(-0.683218\pi\)
−0.544334 + 0.838869i \(0.683218\pi\)
\(72\) −2.46865 −0.290934
\(73\) −3.29044 −0.385117 −0.192558 0.981286i \(-0.561678\pi\)
−0.192558 + 0.981286i \(0.561678\pi\)
\(74\) −5.78627 −0.672640
\(75\) −1.00000 −0.115470
\(76\) −8.93731 −1.02518
\(77\) −5.17328 −0.589550
\(78\) −2.84074 −0.321650
\(79\) −12.0140 −1.35168 −0.675841 0.737047i \(-0.736220\pi\)
−0.675841 + 0.737047i \(0.736220\pi\)
\(80\) 1.26753 0.141715
\(81\) 1.00000 0.111111
\(82\) −5.40925 −0.597352
\(83\) −14.7535 −1.61941 −0.809703 0.586840i \(-0.800372\pi\)
−0.809703 + 0.586840i \(0.800372\pi\)
\(84\) 1.50350 0.164046
\(85\) −1.00000 −0.108465
\(86\) −0.660451 −0.0712183
\(87\) 10.3688 1.11165
\(88\) 12.7710 1.36140
\(89\) 9.00044 0.954045 0.477022 0.878891i \(-0.341716\pi\)
0.477022 + 0.878891i \(0.341716\pi\)
\(90\) 0.704624 0.0742739
\(91\) 4.03157 0.422623
\(92\) 7.02103 0.731993
\(93\) −5.51051 −0.571414
\(94\) −8.07715 −0.833094
\(95\) 5.94432 0.609874
\(96\) −5.83045 −0.595067
\(97\) −8.15805 −0.828324 −0.414162 0.910203i \(-0.635925\pi\)
−0.414162 + 0.910203i \(0.635925\pi\)
\(98\) 0.704624 0.0711778
\(99\) −5.17328 −0.519934
\(100\) −1.50350 −0.150350
\(101\) −4.60477 −0.458192 −0.229096 0.973404i \(-0.573577\pi\)
−0.229096 + 0.973404i \(0.573577\pi\)
\(102\) 0.704624 0.0697682
\(103\) 4.39402 0.432955 0.216478 0.976288i \(-0.430543\pi\)
0.216478 + 0.976288i \(0.430543\pi\)
\(104\) −9.95254 −0.975927
\(105\) −1.00000 −0.0975900
\(106\) 4.35478 0.422974
\(107\) −10.6838 −1.03284 −0.516421 0.856335i \(-0.672736\pi\)
−0.516421 + 0.856335i \(0.672736\pi\)
\(108\) 1.50350 0.144675
\(109\) 1.29044 0.123601 0.0618007 0.998089i \(-0.480316\pi\)
0.0618007 + 0.998089i \(0.480316\pi\)
\(110\) −3.64522 −0.347558
\(111\) 8.21185 0.779435
\(112\) 1.26753 0.119771
\(113\) 15.4930 1.45746 0.728728 0.684803i \(-0.240112\pi\)
0.728728 + 0.684803i \(0.240112\pi\)
\(114\) −4.18851 −0.392290
\(115\) −4.66977 −0.435459
\(116\) 15.5895 1.44745
\(117\) 4.03157 0.372718
\(118\) 5.36344 0.493745
\(119\) −1.00000 −0.0916698
\(120\) 2.46865 0.225356
\(121\) 15.7628 1.43298
\(122\) −3.30611 −0.299321
\(123\) 7.67678 0.692192
\(124\) −8.28508 −0.744022
\(125\) 1.00000 0.0894427
\(126\) 0.704624 0.0627729
\(127\) −19.0907 −1.69403 −0.847014 0.531571i \(-0.821602\pi\)
−0.847014 + 0.531571i \(0.821602\pi\)
\(128\) −10.5524 −0.932707
\(129\) 0.937309 0.0825255
\(130\) 2.84074 0.249149
\(131\) 2.87230 0.250954 0.125477 0.992097i \(-0.459954\pi\)
0.125477 + 0.992097i \(0.459954\pi\)
\(132\) −7.77805 −0.676992
\(133\) 5.94432 0.515438
\(134\) −0.992991 −0.0857814
\(135\) −1.00000 −0.0860663
\(136\) 2.46865 0.211685
\(137\) 12.9988 1.11056 0.555281 0.831663i \(-0.312611\pi\)
0.555281 + 0.831663i \(0.312611\pi\)
\(138\) 3.29044 0.280101
\(139\) −18.1803 −1.54203 −0.771016 0.636816i \(-0.780251\pi\)
−0.771016 + 0.636816i \(0.780251\pi\)
\(140\) −1.50350 −0.127069
\(141\) 11.4631 0.965363
\(142\) −6.46372 −0.542423
\(143\) −20.8564 −1.74410
\(144\) 1.26753 0.105628
\(145\) −10.3688 −0.861082
\(146\) −2.31852 −0.191882
\(147\) −1.00000 −0.0824786
\(148\) 12.3466 1.01488
\(149\) −11.0468 −0.904989 −0.452494 0.891767i \(-0.649466\pi\)
−0.452494 + 0.891767i \(0.649466\pi\)
\(150\) −0.704624 −0.0575323
\(151\) −11.3934 −0.927178 −0.463589 0.886050i \(-0.653439\pi\)
−0.463589 + 0.886050i \(0.653439\pi\)
\(152\) −14.6745 −1.19026
\(153\) −1.00000 −0.0808452
\(154\) −3.64522 −0.293740
\(155\) 5.51051 0.442615
\(156\) 6.06148 0.485306
\(157\) −3.51984 −0.280914 −0.140457 0.990087i \(-0.544857\pi\)
−0.140457 + 0.990087i \(0.544857\pi\)
\(158\) −8.46537 −0.673469
\(159\) −6.18029 −0.490129
\(160\) 5.83045 0.460937
\(161\) −4.66977 −0.368030
\(162\) 0.704624 0.0553605
\(163\) 18.3513 1.43738 0.718691 0.695330i \(-0.244742\pi\)
0.718691 + 0.695330i \(0.244742\pi\)
\(164\) 11.5421 0.901285
\(165\) 5.17328 0.402739
\(166\) −10.3957 −0.806860
\(167\) −16.4794 −1.27521 −0.637607 0.770362i \(-0.720075\pi\)
−0.637607 + 0.770362i \(0.720075\pi\)
\(168\) 2.46865 0.190461
\(169\) 3.25352 0.250271
\(170\) −0.704624 −0.0540422
\(171\) 5.94432 0.454573
\(172\) 1.40925 0.107454
\(173\) 16.4303 1.24917 0.624585 0.780957i \(-0.285268\pi\)
0.624585 + 0.780957i \(0.285268\pi\)
\(174\) 7.30611 0.553875
\(175\) 1.00000 0.0755929
\(176\) −6.55731 −0.494276
\(177\) −7.61178 −0.572136
\(178\) 6.34193 0.475348
\(179\) −24.5332 −1.83370 −0.916849 0.399235i \(-0.869276\pi\)
−0.916849 + 0.399235i \(0.869276\pi\)
\(180\) −1.50350 −0.112065
\(181\) −6.66155 −0.495149 −0.247575 0.968869i \(-0.579634\pi\)
−0.247575 + 0.968869i \(0.579634\pi\)
\(182\) 2.84074 0.210570
\(183\) 4.69202 0.346844
\(184\) 11.5281 0.849860
\(185\) −8.21185 −0.603747
\(186\) −3.88284 −0.284704
\(187\) 5.17328 0.378308
\(188\) 17.2348 1.25697
\(189\) −1.00000 −0.0727393
\(190\) 4.18851 0.303867
\(191\) 22.6772 1.64087 0.820433 0.571742i \(-0.193732\pi\)
0.820433 + 0.571742i \(0.193732\pi\)
\(192\) −1.57320 −0.113536
\(193\) 17.9677 1.29334 0.646670 0.762770i \(-0.276161\pi\)
0.646670 + 0.762770i \(0.276161\pi\)
\(194\) −5.74836 −0.412708
\(195\) −4.03157 −0.288706
\(196\) −1.50350 −0.107393
\(197\) 7.02103 0.500227 0.250114 0.968216i \(-0.419532\pi\)
0.250114 + 0.968216i \(0.419532\pi\)
\(198\) −3.64522 −0.259054
\(199\) −11.8337 −0.838871 −0.419435 0.907785i \(-0.637772\pi\)
−0.419435 + 0.907785i \(0.637772\pi\)
\(200\) −2.46865 −0.174560
\(201\) 1.40925 0.0994007
\(202\) −3.24463 −0.228292
\(203\) −10.3688 −0.727747
\(204\) −1.50350 −0.105266
\(205\) −7.67678 −0.536170
\(206\) 3.09613 0.215718
\(207\) −4.66977 −0.324572
\(208\) 5.11015 0.354325
\(209\) −30.7516 −2.12713
\(210\) −0.704624 −0.0486237
\(211\) 1.62298 0.111730 0.0558652 0.998438i \(-0.482208\pi\)
0.0558652 + 0.998438i \(0.482208\pi\)
\(212\) −9.29209 −0.638183
\(213\) 9.17328 0.628543
\(214\) −7.52806 −0.514608
\(215\) −0.937309 −0.0639240
\(216\) 2.46865 0.167971
\(217\) 5.51051 0.374078
\(218\) 0.909273 0.0615838
\(219\) 3.29044 0.222347
\(220\) 7.77805 0.524396
\(221\) −4.03157 −0.271192
\(222\) 5.78627 0.388349
\(223\) 7.39170 0.494985 0.247492 0.968890i \(-0.420393\pi\)
0.247492 + 0.968890i \(0.420393\pi\)
\(224\) 5.83045 0.389563
\(225\) 1.00000 0.0666667
\(226\) 10.9167 0.726170
\(227\) 24.4237 1.62106 0.810529 0.585698i \(-0.199180\pi\)
0.810529 + 0.585698i \(0.199180\pi\)
\(228\) 8.93731 0.591888
\(229\) 15.9027 1.05088 0.525438 0.850832i \(-0.323901\pi\)
0.525438 + 0.850832i \(0.323901\pi\)
\(230\) −3.29044 −0.216965
\(231\) 5.17328 0.340377
\(232\) 25.5970 1.68052
\(233\) 17.3629 1.13748 0.568740 0.822517i \(-0.307431\pi\)
0.568740 + 0.822517i \(0.307431\pi\)
\(234\) 2.84074 0.185705
\(235\) −11.4631 −0.747767
\(236\) −11.4443 −0.744963
\(237\) 12.0140 0.780394
\(238\) −0.704624 −0.0456740
\(239\) −12.5019 −0.808677 −0.404339 0.914609i \(-0.632498\pi\)
−0.404339 + 0.914609i \(0.632498\pi\)
\(240\) −1.26753 −0.0818190
\(241\) 5.16396 0.332640 0.166320 0.986072i \(-0.446812\pi\)
0.166320 + 0.986072i \(0.446812\pi\)
\(242\) 11.1069 0.713976
\(243\) −1.00000 −0.0641500
\(244\) 7.05447 0.451616
\(245\) 1.00000 0.0638877
\(246\) 5.40925 0.344881
\(247\) 23.9649 1.52485
\(248\) −13.6036 −0.863827
\(249\) 14.7535 0.934965
\(250\) 0.704624 0.0445644
\(251\) 14.2516 0.899556 0.449778 0.893140i \(-0.351503\pi\)
0.449778 + 0.893140i \(0.351503\pi\)
\(252\) −1.50350 −0.0947119
\(253\) 24.1580 1.51880
\(254\) −13.4518 −0.844040
\(255\) 1.00000 0.0626224
\(256\) −10.5819 −0.661367
\(257\) 18.2259 1.13690 0.568449 0.822718i \(-0.307544\pi\)
0.568449 + 0.822718i \(0.307544\pi\)
\(258\) 0.660451 0.0411179
\(259\) −8.21185 −0.510260
\(260\) −6.06148 −0.375917
\(261\) −10.3688 −0.641813
\(262\) 2.02390 0.125037
\(263\) −25.2430 −1.55655 −0.778274 0.627924i \(-0.783905\pi\)
−0.778274 + 0.627924i \(0.783905\pi\)
\(264\) −12.7710 −0.786003
\(265\) 6.18029 0.379652
\(266\) 4.18851 0.256814
\(267\) −9.00044 −0.550818
\(268\) 2.11881 0.129427
\(269\) 23.7679 1.44916 0.724579 0.689192i \(-0.242034\pi\)
0.724579 + 0.689192i \(0.242034\pi\)
\(270\) −0.704624 −0.0428821
\(271\) −4.30732 −0.261651 −0.130826 0.991405i \(-0.541763\pi\)
−0.130826 + 0.991405i \(0.541763\pi\)
\(272\) −1.26753 −0.0768556
\(273\) −4.03157 −0.244001
\(274\) 9.15926 0.553331
\(275\) −5.17328 −0.311960
\(276\) −7.02103 −0.422616
\(277\) −3.03035 −0.182076 −0.0910381 0.995847i \(-0.529018\pi\)
−0.0910381 + 0.995847i \(0.529018\pi\)
\(278\) −12.8103 −0.768309
\(279\) 5.51051 0.329906
\(280\) −2.46865 −0.147530
\(281\) −14.9672 −0.892870 −0.446435 0.894816i \(-0.647307\pi\)
−0.446435 + 0.894816i \(0.647307\pi\)
\(282\) 8.07715 0.480987
\(283\) −3.38866 −0.201435 −0.100717 0.994915i \(-0.532114\pi\)
−0.100717 + 0.994915i \(0.532114\pi\)
\(284\) 13.7921 0.818409
\(285\) −5.94432 −0.352111
\(286\) −14.6959 −0.868989
\(287\) −7.67678 −0.453146
\(288\) 5.83045 0.343562
\(289\) 1.00000 0.0588235
\(290\) −7.30611 −0.429029
\(291\) 8.15805 0.478233
\(292\) 4.94719 0.289512
\(293\) 1.16748 0.0682052 0.0341026 0.999418i \(-0.489143\pi\)
0.0341026 + 0.999418i \(0.489143\pi\)
\(294\) −0.704624 −0.0410945
\(295\) 7.61178 0.443175
\(296\) 20.2722 1.17830
\(297\) 5.17328 0.300184
\(298\) −7.78384 −0.450906
\(299\) −18.8265 −1.08876
\(300\) 1.50350 0.0868049
\(301\) −0.937309 −0.0540256
\(302\) −8.02804 −0.461962
\(303\) 4.60477 0.264537
\(304\) 7.53463 0.432141
\(305\) −4.69202 −0.268664
\(306\) −0.704624 −0.0402807
\(307\) −8.43850 −0.481611 −0.240805 0.970573i \(-0.577412\pi\)
−0.240805 + 0.970573i \(0.577412\pi\)
\(308\) 7.77805 0.443195
\(309\) −4.39402 −0.249967
\(310\) 3.88284 0.220531
\(311\) 7.75636 0.439823 0.219911 0.975520i \(-0.429423\pi\)
0.219911 + 0.975520i \(0.429423\pi\)
\(312\) 9.95254 0.563452
\(313\) 25.2562 1.42757 0.713783 0.700367i \(-0.246980\pi\)
0.713783 + 0.700367i \(0.246980\pi\)
\(314\) −2.48016 −0.139964
\(315\) 1.00000 0.0563436
\(316\) 18.0631 1.01613
\(317\) 20.5584 1.15468 0.577338 0.816505i \(-0.304092\pi\)
0.577338 + 0.816505i \(0.304092\pi\)
\(318\) −4.35478 −0.244204
\(319\) 53.6407 3.00330
\(320\) 1.57320 0.0879448
\(321\) 10.6838 0.596311
\(322\) −3.29044 −0.183369
\(323\) −5.94432 −0.330751
\(324\) −1.50350 −0.0835280
\(325\) 4.03157 0.223631
\(326\) 12.9307 0.716167
\(327\) −1.29044 −0.0713613
\(328\) 18.9513 1.04641
\(329\) −11.4631 −0.631979
\(330\) 3.64522 0.200663
\(331\) 8.59351 0.472342 0.236171 0.971712i \(-0.424107\pi\)
0.236171 + 0.971712i \(0.424107\pi\)
\(332\) 22.1819 1.21739
\(333\) −8.21185 −0.450007
\(334\) −11.6118 −0.635368
\(335\) −1.40925 −0.0769955
\(336\) −1.26753 −0.0691497
\(337\) 28.2797 1.54049 0.770246 0.637747i \(-0.220133\pi\)
0.770246 + 0.637747i \(0.220133\pi\)
\(338\) 2.29251 0.124696
\(339\) −15.4930 −0.841462
\(340\) 1.50350 0.0815390
\(341\) −28.5074 −1.54376
\(342\) 4.18851 0.226489
\(343\) 1.00000 0.0539949
\(344\) 2.31389 0.124757
\(345\) 4.66977 0.251412
\(346\) 11.5772 0.622393
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) −15.5895 −0.835687
\(349\) 16.1721 0.865671 0.432835 0.901473i \(-0.357513\pi\)
0.432835 + 0.901473i \(0.357513\pi\)
\(350\) 0.704624 0.0376638
\(351\) −4.03157 −0.215189
\(352\) −30.1625 −1.60767
\(353\) 16.7787 0.893041 0.446520 0.894774i \(-0.352663\pi\)
0.446520 + 0.894774i \(0.352663\pi\)
\(354\) −5.36344 −0.285064
\(355\) −9.17328 −0.486867
\(356\) −13.5322 −0.717205
\(357\) 1.00000 0.0529256
\(358\) −17.2867 −0.913630
\(359\) −20.8026 −1.09792 −0.548960 0.835849i \(-0.684976\pi\)
−0.548960 + 0.835849i \(0.684976\pi\)
\(360\) −2.46865 −0.130110
\(361\) 16.3349 0.859733
\(362\) −4.69389 −0.246705
\(363\) −15.7628 −0.827333
\(364\) −6.06148 −0.317708
\(365\) −3.29044 −0.172229
\(366\) 3.30611 0.172813
\(367\) −26.6885 −1.39313 −0.696564 0.717495i \(-0.745289\pi\)
−0.696564 + 0.717495i \(0.745289\pi\)
\(368\) −5.91910 −0.308555
\(369\) −7.67678 −0.399637
\(370\) −5.78627 −0.300814
\(371\) 6.18029 0.320865
\(372\) 8.28508 0.429561
\(373\) −13.1193 −0.679289 −0.339645 0.940554i \(-0.610307\pi\)
−0.339645 + 0.940554i \(0.610307\pi\)
\(374\) 3.64522 0.188490
\(375\) −1.00000 −0.0516398
\(376\) 28.2983 1.45937
\(377\) −41.8025 −2.15294
\(378\) −0.704624 −0.0362420
\(379\) 37.0210 1.90164 0.950821 0.309740i \(-0.100242\pi\)
0.950821 + 0.309740i \(0.100242\pi\)
\(380\) −8.93731 −0.458474
\(381\) 19.0907 0.978048
\(382\) 15.9789 0.817553
\(383\) −6.00745 −0.306966 −0.153483 0.988151i \(-0.549049\pi\)
−0.153483 + 0.988151i \(0.549049\pi\)
\(384\) 10.5524 0.538498
\(385\) −5.17328 −0.263655
\(386\) 12.6605 0.644400
\(387\) −0.937309 −0.0476461
\(388\) 12.2657 0.622695
\(389\) 22.0865 1.11983 0.559914 0.828551i \(-0.310834\pi\)
0.559914 + 0.828551i \(0.310834\pi\)
\(390\) −2.84074 −0.143846
\(391\) 4.66977 0.236161
\(392\) −2.46865 −0.124686
\(393\) −2.87230 −0.144889
\(394\) 4.94719 0.249236
\(395\) −12.0140 −0.604491
\(396\) 7.77805 0.390862
\(397\) −20.3288 −1.02027 −0.510136 0.860094i \(-0.670405\pi\)
−0.510136 + 0.860094i \(0.670405\pi\)
\(398\) −8.33833 −0.417963
\(399\) −5.94432 −0.297588
\(400\) 1.26753 0.0633767
\(401\) −3.11015 −0.155313 −0.0776567 0.996980i \(-0.524744\pi\)
−0.0776567 + 0.996980i \(0.524744\pi\)
\(402\) 0.992991 0.0495259
\(403\) 22.2160 1.10666
\(404\) 6.92329 0.344447
\(405\) 1.00000 0.0496904
\(406\) −7.30611 −0.362596
\(407\) 42.4822 2.10576
\(408\) −2.46865 −0.122217
\(409\) −25.8124 −1.27634 −0.638170 0.769896i \(-0.720308\pi\)
−0.638170 + 0.769896i \(0.720308\pi\)
\(410\) −5.40925 −0.267144
\(411\) −12.9988 −0.641183
\(412\) −6.60642 −0.325475
\(413\) 7.61178 0.374551
\(414\) −3.29044 −0.161716
\(415\) −14.7535 −0.724220
\(416\) 23.5058 1.15247
\(417\) 18.1803 0.890293
\(418\) −21.6683 −1.05983
\(419\) −34.0678 −1.66432 −0.832161 0.554534i \(-0.812897\pi\)
−0.832161 + 0.554534i \(0.812897\pi\)
\(420\) 1.50350 0.0733635
\(421\) −26.7053 −1.30153 −0.650767 0.759277i \(-0.725553\pi\)
−0.650767 + 0.759277i \(0.725553\pi\)
\(422\) 1.14359 0.0556690
\(423\) −11.4631 −0.557353
\(424\) −15.2570 −0.740945
\(425\) −1.00000 −0.0485071
\(426\) 6.46372 0.313168
\(427\) −4.69202 −0.227063
\(428\) 16.0631 0.776441
\(429\) 20.8564 1.00696
\(430\) −0.660451 −0.0318498
\(431\) −14.8865 −0.717060 −0.358530 0.933518i \(-0.616722\pi\)
−0.358530 + 0.933518i \(0.616722\pi\)
\(432\) −1.26753 −0.0609843
\(433\) −33.1966 −1.59533 −0.797664 0.603102i \(-0.793931\pi\)
−0.797664 + 0.603102i \(0.793931\pi\)
\(434\) 3.88284 0.186382
\(435\) 10.3688 0.497146
\(436\) −1.94018 −0.0929177
\(437\) −27.7586 −1.32788
\(438\) 2.31852 0.110783
\(439\) −6.29165 −0.300284 −0.150142 0.988664i \(-0.547973\pi\)
−0.150142 + 0.988664i \(0.547973\pi\)
\(440\) 12.7710 0.608835
\(441\) 1.00000 0.0476190
\(442\) −2.84074 −0.135120
\(443\) 29.7463 1.41329 0.706644 0.707569i \(-0.250208\pi\)
0.706644 + 0.707569i \(0.250208\pi\)
\(444\) −12.3466 −0.585942
\(445\) 9.00044 0.426662
\(446\) 5.20837 0.246624
\(447\) 11.0468 0.522496
\(448\) 1.57320 0.0743269
\(449\) 3.34777 0.157991 0.0789956 0.996875i \(-0.474829\pi\)
0.0789956 + 0.996875i \(0.474829\pi\)
\(450\) 0.704624 0.0332163
\(451\) 39.7141 1.87007
\(452\) −23.2937 −1.09565
\(453\) 11.3934 0.535307
\(454\) 17.2095 0.807684
\(455\) 4.03157 0.189003
\(456\) 14.6745 0.687195
\(457\) −25.4930 −1.19251 −0.596255 0.802795i \(-0.703345\pi\)
−0.596255 + 0.802795i \(0.703345\pi\)
\(458\) 11.2054 0.523594
\(459\) 1.00000 0.0466760
\(460\) 7.02103 0.327357
\(461\) −34.0986 −1.58813 −0.794065 0.607832i \(-0.792039\pi\)
−0.794065 + 0.607832i \(0.792039\pi\)
\(462\) 3.64522 0.169591
\(463\) 24.5252 1.13978 0.569891 0.821720i \(-0.306985\pi\)
0.569891 + 0.821720i \(0.306985\pi\)
\(464\) −13.1428 −0.610140
\(465\) −5.51051 −0.255544
\(466\) 12.2343 0.566744
\(467\) 0.0463582 0.00214520 0.00107260 0.999999i \(-0.499659\pi\)
0.00107260 + 0.999999i \(0.499659\pi\)
\(468\) −6.06148 −0.280192
\(469\) −1.40925 −0.0650731
\(470\) −8.07715 −0.372571
\(471\) 3.51984 0.162186
\(472\) −18.7909 −0.864919
\(473\) 4.84896 0.222956
\(474\) 8.46537 0.388827
\(475\) 5.94432 0.272744
\(476\) 1.50350 0.0689130
\(477\) 6.18029 0.282976
\(478\) −8.80911 −0.402919
\(479\) 40.2866 1.84074 0.920370 0.391048i \(-0.127887\pi\)
0.920370 + 0.391048i \(0.127887\pi\)
\(480\) −5.83045 −0.266122
\(481\) −33.1066 −1.50953
\(482\) 3.63865 0.165736
\(483\) 4.66977 0.212482
\(484\) −23.6995 −1.07725
\(485\) −8.15805 −0.370438
\(486\) −0.704624 −0.0319624
\(487\) −19.6112 −0.888669 −0.444335 0.895861i \(-0.646560\pi\)
−0.444335 + 0.895861i \(0.646560\pi\)
\(488\) 11.5830 0.524336
\(489\) −18.3513 −0.829872
\(490\) 0.704624 0.0318317
\(491\) −7.52994 −0.339821 −0.169911 0.985459i \(-0.554348\pi\)
−0.169911 + 0.985459i \(0.554348\pi\)
\(492\) −11.5421 −0.520357
\(493\) 10.3688 0.466987
\(494\) 16.8863 0.759749
\(495\) −5.17328 −0.232522
\(496\) 6.98477 0.313625
\(497\) −9.17328 −0.411478
\(498\) 10.3957 0.465841
\(499\) −34.5186 −1.54527 −0.772633 0.634853i \(-0.781061\pi\)
−0.772633 + 0.634853i \(0.781061\pi\)
\(500\) −1.50350 −0.0672388
\(501\) 16.4794 0.736245
\(502\) 10.0421 0.448199
\(503\) 1.44716 0.0645258 0.0322629 0.999479i \(-0.489729\pi\)
0.0322629 + 0.999479i \(0.489729\pi\)
\(504\) −2.46865 −0.109963
\(505\) −4.60477 −0.204910
\(506\) 17.0223 0.756736
\(507\) −3.25352 −0.144494
\(508\) 28.7030 1.27349
\(509\) 5.89764 0.261408 0.130704 0.991421i \(-0.458276\pi\)
0.130704 + 0.991421i \(0.458276\pi\)
\(510\) 0.704624 0.0312013
\(511\) −3.29044 −0.145560
\(512\) 13.6485 0.603184
\(513\) −5.94432 −0.262448
\(514\) 12.8424 0.566454
\(515\) 4.39402 0.193623
\(516\) −1.40925 −0.0620387
\(517\) 59.3016 2.60808
\(518\) −5.78627 −0.254234
\(519\) −16.4303 −0.721209
\(520\) −9.95254 −0.436448
\(521\) −36.9283 −1.61786 −0.808929 0.587906i \(-0.799953\pi\)
−0.808929 + 0.587906i \(0.799953\pi\)
\(522\) −7.30611 −0.319780
\(523\) 13.8332 0.604883 0.302441 0.953168i \(-0.402198\pi\)
0.302441 + 0.953168i \(0.402198\pi\)
\(524\) −4.31852 −0.188656
\(525\) −1.00000 −0.0436436
\(526\) −17.7868 −0.775542
\(527\) −5.51051 −0.240042
\(528\) 6.55731 0.285370
\(529\) −1.19321 −0.0518785
\(530\) 4.35478 0.189160
\(531\) 7.61178 0.330323
\(532\) −8.93731 −0.387481
\(533\) −30.9495 −1.34057
\(534\) −6.34193 −0.274442
\(535\) −10.6838 −0.461901
\(536\) 3.47895 0.150268
\(537\) 24.5332 1.05869
\(538\) 16.7475 0.722035
\(539\) −5.17328 −0.222829
\(540\) 1.50350 0.0647005
\(541\) −6.89565 −0.296467 −0.148233 0.988952i \(-0.547359\pi\)
−0.148233 + 0.988952i \(0.547359\pi\)
\(542\) −3.03504 −0.130366
\(543\) 6.66155 0.285875
\(544\) −5.83045 −0.249978
\(545\) 1.29044 0.0552762
\(546\) −2.84074 −0.121572
\(547\) 4.31859 0.184649 0.0923247 0.995729i \(-0.470570\pi\)
0.0923247 + 0.995729i \(0.470570\pi\)
\(548\) −19.5437 −0.834867
\(549\) −4.69202 −0.200250
\(550\) −3.64522 −0.155433
\(551\) −61.6354 −2.62576
\(552\) −11.5281 −0.490667
\(553\) −12.0140 −0.510888
\(554\) −2.13526 −0.0907185
\(555\) 8.21185 0.348574
\(556\) 27.3341 1.15923
\(557\) 35.5198 1.50502 0.752512 0.658579i \(-0.228842\pi\)
0.752512 + 0.658579i \(0.228842\pi\)
\(558\) 3.88284 0.164374
\(559\) −3.77882 −0.159827
\(560\) 1.26753 0.0535631
\(561\) −5.17328 −0.218416
\(562\) −10.5463 −0.444867
\(563\) 26.3282 1.10960 0.554801 0.831983i \(-0.312794\pi\)
0.554801 + 0.831983i \(0.312794\pi\)
\(564\) −17.2348 −0.725714
\(565\) 15.4930 0.651794
\(566\) −2.38773 −0.100364
\(567\) 1.00000 0.0419961
\(568\) 22.6457 0.950191
\(569\) −4.63931 −0.194490 −0.0972450 0.995260i \(-0.531003\pi\)
−0.0972450 + 0.995260i \(0.531003\pi\)
\(570\) −4.18851 −0.175437
\(571\) −22.2492 −0.931101 −0.465550 0.885021i \(-0.654144\pi\)
−0.465550 + 0.885021i \(0.654144\pi\)
\(572\) 31.3577 1.31113
\(573\) −22.6772 −0.947355
\(574\) −5.40925 −0.225778
\(575\) −4.66977 −0.194743
\(576\) 1.57320 0.0655502
\(577\) −25.4389 −1.05904 −0.529518 0.848298i \(-0.677627\pi\)
−0.529518 + 0.848298i \(0.677627\pi\)
\(578\) 0.704624 0.0293085
\(579\) −17.9677 −0.746710
\(580\) 15.5895 0.647320
\(581\) −14.7535 −0.612078
\(582\) 5.74836 0.238277
\(583\) −31.9724 −1.32416
\(584\) 8.12295 0.336130
\(585\) 4.03157 0.166685
\(586\) 0.822638 0.0339829
\(587\) −2.93643 −0.121199 −0.0605997 0.998162i \(-0.519301\pi\)
−0.0605997 + 0.998162i \(0.519301\pi\)
\(588\) 1.50350 0.0620035
\(589\) 32.7562 1.34970
\(590\) 5.36344 0.220810
\(591\) −7.02103 −0.288806
\(592\) −10.4088 −0.427799
\(593\) 15.8662 0.651546 0.325773 0.945448i \(-0.394376\pi\)
0.325773 + 0.945448i \(0.394376\pi\)
\(594\) 3.64522 0.149565
\(595\) −1.00000 −0.0409960
\(596\) 16.6089 0.680327
\(597\) 11.8337 0.484322
\(598\) −13.2656 −0.542471
\(599\) −31.2674 −1.27755 −0.638776 0.769393i \(-0.720559\pi\)
−0.638776 + 0.769393i \(0.720559\pi\)
\(600\) 2.46865 0.100782
\(601\) −25.4436 −1.03786 −0.518932 0.854815i \(-0.673670\pi\)
−0.518932 + 0.854815i \(0.673670\pi\)
\(602\) −0.660451 −0.0269180
\(603\) −1.40925 −0.0573890
\(604\) 17.1300 0.697008
\(605\) 15.7628 0.640850
\(606\) 3.24463 0.131804
\(607\) 13.8301 0.561348 0.280674 0.959803i \(-0.409442\pi\)
0.280674 + 0.959803i \(0.409442\pi\)
\(608\) 34.6580 1.40557
\(609\) 10.3688 0.420165
\(610\) −3.30611 −0.133860
\(611\) −46.2141 −1.86962
\(612\) 1.50350 0.0607756
\(613\) −17.4612 −0.705250 −0.352625 0.935765i \(-0.614711\pi\)
−0.352625 + 0.935765i \(0.614711\pi\)
\(614\) −5.94597 −0.239960
\(615\) 7.67678 0.309558
\(616\) 12.7710 0.514560
\(617\) −24.8592 −1.00079 −0.500396 0.865797i \(-0.666812\pi\)
−0.500396 + 0.865797i \(0.666812\pi\)
\(618\) −3.09613 −0.124545
\(619\) −10.6242 −0.427022 −0.213511 0.976941i \(-0.568490\pi\)
−0.213511 + 0.976941i \(0.568490\pi\)
\(620\) −8.28508 −0.332737
\(621\) 4.66977 0.187392
\(622\) 5.46532 0.219139
\(623\) 9.00044 0.360595
\(624\) −5.11015 −0.204570
\(625\) 1.00000 0.0400000
\(626\) 17.7961 0.711277
\(627\) 30.7516 1.22810
\(628\) 5.29209 0.211177
\(629\) 8.21185 0.327428
\(630\) 0.704624 0.0280729
\(631\) 33.2488 1.32361 0.661806 0.749675i \(-0.269790\pi\)
0.661806 + 0.749675i \(0.269790\pi\)
\(632\) 29.6585 1.17975
\(633\) −1.62298 −0.0645075
\(634\) 14.4860 0.575311
\(635\) −19.0907 −0.757592
\(636\) 9.29209 0.368455
\(637\) 4.03157 0.159736
\(638\) 37.7965 1.49638
\(639\) −9.17328 −0.362889
\(640\) −10.5524 −0.417119
\(641\) −19.6134 −0.774684 −0.387342 0.921936i \(-0.626607\pi\)
−0.387342 + 0.921936i \(0.626607\pi\)
\(642\) 7.52806 0.297109
\(643\) −20.9906 −0.827787 −0.413893 0.910325i \(-0.635831\pi\)
−0.413893 + 0.910325i \(0.635831\pi\)
\(644\) 7.02103 0.276667
\(645\) 0.937309 0.0369065
\(646\) −4.18851 −0.164795
\(647\) 14.0206 0.551206 0.275603 0.961272i \(-0.411122\pi\)
0.275603 + 0.961272i \(0.411122\pi\)
\(648\) −2.46865 −0.0969779
\(649\) −39.3779 −1.54572
\(650\) 2.84074 0.111423
\(651\) −5.51051 −0.215974
\(652\) −27.5912 −1.08055
\(653\) 9.10993 0.356499 0.178250 0.983985i \(-0.442957\pi\)
0.178250 + 0.983985i \(0.442957\pi\)
\(654\) −0.909273 −0.0355554
\(655\) 2.87230 0.112230
\(656\) −9.73059 −0.379916
\(657\) −3.29044 −0.128372
\(658\) −8.07715 −0.314880
\(659\) −4.69969 −0.183074 −0.0915369 0.995802i \(-0.529178\pi\)
−0.0915369 + 0.995802i \(0.529178\pi\)
\(660\) −7.77805 −0.302760
\(661\) −31.7797 −1.23609 −0.618044 0.786144i \(-0.712074\pi\)
−0.618044 + 0.786144i \(0.712074\pi\)
\(662\) 6.05519 0.235342
\(663\) 4.03157 0.156573
\(664\) 36.4213 1.41342
\(665\) 5.94432 0.230511
\(666\) −5.78627 −0.224213
\(667\) 48.4200 1.87483
\(668\) 24.7768 0.958644
\(669\) −7.39170 −0.285780
\(670\) −0.992991 −0.0383626
\(671\) 24.2731 0.937053
\(672\) −5.83045 −0.224914
\(673\) 11.2680 0.434348 0.217174 0.976133i \(-0.430316\pi\)
0.217174 + 0.976133i \(0.430316\pi\)
\(674\) 19.9265 0.767542
\(675\) −1.00000 −0.0384900
\(676\) −4.89168 −0.188141
\(677\) 6.08703 0.233943 0.116972 0.993135i \(-0.462681\pi\)
0.116972 + 0.993135i \(0.462681\pi\)
\(678\) −10.9167 −0.419254
\(679\) −8.15805 −0.313077
\(680\) 2.46865 0.0946686
\(681\) −24.4237 −0.935918
\(682\) −20.0870 −0.769172
\(683\) −10.9579 −0.419292 −0.209646 0.977777i \(-0.567231\pi\)
−0.209646 + 0.977777i \(0.567231\pi\)
\(684\) −8.93731 −0.341727
\(685\) 12.9988 0.496658
\(686\) 0.704624 0.0269027
\(687\) −15.9027 −0.606724
\(688\) −1.18807 −0.0452948
\(689\) 24.9162 0.949233
\(690\) 3.29044 0.125265
\(691\) −11.9366 −0.454092 −0.227046 0.973884i \(-0.572907\pi\)
−0.227046 + 0.973884i \(0.572907\pi\)
\(692\) −24.7030 −0.939067
\(693\) −5.17328 −0.196517
\(694\) 2.81850 0.106989
\(695\) −18.1803 −0.689618
\(696\) −25.5970 −0.970251
\(697\) 7.67678 0.290779
\(698\) 11.3952 0.431316
\(699\) −17.3629 −0.656725
\(700\) −1.50350 −0.0568271
\(701\) 15.0913 0.569990 0.284995 0.958529i \(-0.408008\pi\)
0.284995 + 0.958529i \(0.408008\pi\)
\(702\) −2.84074 −0.107217
\(703\) −48.8139 −1.84105
\(704\) −8.13862 −0.306736
\(705\) 11.4631 0.431724
\(706\) 11.8227 0.444953
\(707\) −4.60477 −0.173180
\(708\) 11.4443 0.430105
\(709\) 28.2610 1.06137 0.530683 0.847571i \(-0.321936\pi\)
0.530683 + 0.847571i \(0.321936\pi\)
\(710\) −6.46372 −0.242579
\(711\) −12.0140 −0.450561
\(712\) −22.2190 −0.832691
\(713\) −25.7329 −0.963703
\(714\) 0.704624 0.0263699
\(715\) −20.8564 −0.779986
\(716\) 36.8858 1.37849
\(717\) 12.5019 0.466890
\(718\) −14.6580 −0.547033
\(719\) 23.2142 0.865745 0.432872 0.901455i \(-0.357500\pi\)
0.432872 + 0.901455i \(0.357500\pi\)
\(720\) 1.26753 0.0472382
\(721\) 4.39402 0.163642
\(722\) 11.5100 0.428357
\(723\) −5.16396 −0.192050
\(724\) 10.0157 0.372230
\(725\) −10.3688 −0.385088
\(726\) −11.1069 −0.412214
\(727\) 40.9805 1.51988 0.759941 0.649992i \(-0.225228\pi\)
0.759941 + 0.649992i \(0.225228\pi\)
\(728\) −9.95254 −0.368866
\(729\) 1.00000 0.0370370
\(730\) −2.31852 −0.0858124
\(731\) 0.937309 0.0346676
\(732\) −7.05447 −0.260741
\(733\) 26.6124 0.982953 0.491476 0.870891i \(-0.336457\pi\)
0.491476 + 0.870891i \(0.336457\pi\)
\(734\) −18.8054 −0.694118
\(735\) −1.00000 −0.0368856
\(736\) −27.2269 −1.00360
\(737\) 7.29044 0.268547
\(738\) −5.40925 −0.199117
\(739\) −1.22074 −0.0449055 −0.0224528 0.999748i \(-0.507148\pi\)
−0.0224528 + 0.999748i \(0.507148\pi\)
\(740\) 12.3466 0.453868
\(741\) −23.9649 −0.880373
\(742\) 4.35478 0.159869
\(743\) 28.0069 1.02747 0.513737 0.857948i \(-0.328261\pi\)
0.513737 + 0.857948i \(0.328261\pi\)
\(744\) 13.6036 0.498731
\(745\) −11.0468 −0.404723
\(746\) −9.24414 −0.338452
\(747\) −14.7535 −0.539802
\(748\) −7.77805 −0.284394
\(749\) −10.6838 −0.390377
\(750\) −0.704624 −0.0257292
\(751\) −16.7071 −0.609652 −0.304826 0.952408i \(-0.598598\pi\)
−0.304826 + 0.952408i \(0.598598\pi\)
\(752\) −14.5298 −0.529848
\(753\) −14.2516 −0.519359
\(754\) −29.4551 −1.07269
\(755\) −11.3934 −0.414647
\(756\) 1.50350 0.0546819
\(757\) 9.46713 0.344089 0.172044 0.985089i \(-0.444963\pi\)
0.172044 + 0.985089i \(0.444963\pi\)
\(758\) 26.0859 0.947483
\(759\) −24.1580 −0.876882
\(760\) −14.6745 −0.532299
\(761\) 27.0982 0.982308 0.491154 0.871073i \(-0.336575\pi\)
0.491154 + 0.871073i \(0.336575\pi\)
\(762\) 13.4518 0.487307
\(763\) 1.29044 0.0467170
\(764\) −34.0953 −1.23352
\(765\) −1.00000 −0.0361551
\(766\) −4.23299 −0.152944
\(767\) 30.6874 1.10806
\(768\) 10.5819 0.381840
\(769\) −45.8684 −1.65406 −0.827029 0.562159i \(-0.809971\pi\)
−0.827029 + 0.562159i \(0.809971\pi\)
\(770\) −3.64522 −0.131365
\(771\) −18.2259 −0.656389
\(772\) −27.0145 −0.972272
\(773\) −26.0700 −0.937674 −0.468837 0.883285i \(-0.655327\pi\)
−0.468837 + 0.883285i \(0.655327\pi\)
\(774\) −0.660451 −0.0237394
\(775\) 5.51051 0.197943
\(776\) 20.1394 0.722962
\(777\) 8.21185 0.294599
\(778\) 15.5627 0.557949
\(779\) −45.6332 −1.63498
\(780\) 6.06148 0.217036
\(781\) 47.4559 1.69811
\(782\) 3.29044 0.117666
\(783\) 10.3688 0.370551
\(784\) 1.26753 0.0452691
\(785\) −3.51984 −0.125628
\(786\) −2.02390 −0.0721900
\(787\) −11.0677 −0.394521 −0.197261 0.980351i \(-0.563205\pi\)
−0.197261 + 0.980351i \(0.563205\pi\)
\(788\) −10.5561 −0.376047
\(789\) 25.2430 0.898674
\(790\) −8.46537 −0.301184
\(791\) 15.4930 0.550866
\(792\) 12.7710 0.453799
\(793\) −18.9162 −0.671733
\(794\) −14.3242 −0.508345
\(795\) −6.18029 −0.219192
\(796\) 17.7921 0.630623
\(797\) 2.49528 0.0883874 0.0441937 0.999023i \(-0.485928\pi\)
0.0441937 + 0.999023i \(0.485928\pi\)
\(798\) −4.18851 −0.148272
\(799\) 11.4631 0.405534
\(800\) 5.83045 0.206137
\(801\) 9.00044 0.318015
\(802\) −2.19149 −0.0773841
\(803\) 17.0223 0.600706
\(804\) −2.11881 −0.0747247
\(805\) −4.66977 −0.164588
\(806\) 15.6539 0.551386
\(807\) −23.7679 −0.836671
\(808\) 11.3676 0.399910
\(809\) −32.1671 −1.13094 −0.565468 0.824770i \(-0.691305\pi\)
−0.565468 + 0.824770i \(0.691305\pi\)
\(810\) 0.704624 0.0247580
\(811\) 21.7152 0.762525 0.381263 0.924467i \(-0.375489\pi\)
0.381263 + 0.924467i \(0.375489\pi\)
\(812\) 15.5895 0.547085
\(813\) 4.30732 0.151064
\(814\) 29.9340 1.04919
\(815\) 18.3513 0.642816
\(816\) 1.26753 0.0443726
\(817\) −5.57166 −0.194928
\(818\) −18.1880 −0.635929
\(819\) 4.03157 0.140874
\(820\) 11.5421 0.403067
\(821\) 26.5994 0.928324 0.464162 0.885750i \(-0.346356\pi\)
0.464162 + 0.885750i \(0.346356\pi\)
\(822\) −9.15926 −0.319466
\(823\) 53.6454 1.86996 0.934980 0.354700i \(-0.115417\pi\)
0.934980 + 0.354700i \(0.115417\pi\)
\(824\) −10.8473 −0.377884
\(825\) 5.17328 0.180110
\(826\) 5.36344 0.186618
\(827\) 12.5935 0.437919 0.218960 0.975734i \(-0.429734\pi\)
0.218960 + 0.975734i \(0.429734\pi\)
\(828\) 7.02103 0.243998
\(829\) 6.47194 0.224780 0.112390 0.993664i \(-0.464149\pi\)
0.112390 + 0.993664i \(0.464149\pi\)
\(830\) −10.3957 −0.360839
\(831\) 3.03035 0.105122
\(832\) 6.34248 0.219886
\(833\) −1.00000 −0.0346479
\(834\) 12.8103 0.443584
\(835\) −16.4794 −0.570293
\(836\) 46.2352 1.59908
\(837\) −5.51051 −0.190471
\(838\) −24.0050 −0.829240
\(839\) −2.69092 −0.0929007 −0.0464504 0.998921i \(-0.514791\pi\)
−0.0464504 + 0.998921i \(0.514791\pi\)
\(840\) 2.46865 0.0851767
\(841\) 78.5120 2.70731
\(842\) −18.8172 −0.648483
\(843\) 14.9672 0.515498
\(844\) −2.44015 −0.0839935
\(845\) 3.25352 0.111924
\(846\) −8.07715 −0.277698
\(847\) 15.7628 0.541617
\(848\) 7.83373 0.269011
\(849\) 3.38866 0.116299
\(850\) −0.704624 −0.0241684
\(851\) 38.3475 1.31454
\(852\) −13.7921 −0.472508
\(853\) 48.3288 1.65475 0.827373 0.561653i \(-0.189834\pi\)
0.827373 + 0.561653i \(0.189834\pi\)
\(854\) −3.30611 −0.113133
\(855\) 5.94432 0.203291
\(856\) 26.3746 0.901465
\(857\) 36.6070 1.25047 0.625235 0.780436i \(-0.285003\pi\)
0.625235 + 0.780436i \(0.285003\pi\)
\(858\) 14.6959 0.501711
\(859\) 52.4803 1.79060 0.895302 0.445460i \(-0.146960\pi\)
0.895302 + 0.445460i \(0.146960\pi\)
\(860\) 1.40925 0.0480550
\(861\) 7.67678 0.261624
\(862\) −10.4894 −0.357271
\(863\) 7.75089 0.263843 0.131922 0.991260i \(-0.457885\pi\)
0.131922 + 0.991260i \(0.457885\pi\)
\(864\) −5.83045 −0.198356
\(865\) 16.4303 0.558646
\(866\) −23.3911 −0.794864
\(867\) −1.00000 −0.0339618
\(868\) −8.28508 −0.281214
\(869\) 62.1519 2.10836
\(870\) 7.30611 0.247700
\(871\) −5.68148 −0.192510
\(872\) −3.18564 −0.107879
\(873\) −8.15805 −0.276108
\(874\) −19.5594 −0.661607
\(875\) 1.00000 0.0338062
\(876\) −4.94719 −0.167150
\(877\) −9.94957 −0.335973 −0.167986 0.985789i \(-0.553727\pi\)
−0.167986 + 0.985789i \(0.553727\pi\)
\(878\) −4.43325 −0.149615
\(879\) −1.16748 −0.0393783
\(880\) −6.55731 −0.221047
\(881\) −17.4836 −0.589037 −0.294518 0.955646i \(-0.595159\pi\)
−0.294518 + 0.955646i \(0.595159\pi\)
\(882\) 0.704624 0.0237259
\(883\) −39.5331 −1.33039 −0.665197 0.746668i \(-0.731652\pi\)
−0.665197 + 0.746668i \(0.731652\pi\)
\(884\) 6.06148 0.203870
\(885\) −7.61178 −0.255867
\(886\) 20.9599 0.704163
\(887\) −22.5771 −0.758066 −0.379033 0.925383i \(-0.623743\pi\)
−0.379033 + 0.925383i \(0.623743\pi\)
\(888\) −20.2722 −0.680291
\(889\) −19.0907 −0.640282
\(890\) 6.34193 0.212582
\(891\) −5.17328 −0.173311
\(892\) −11.1135 −0.372106
\(893\) −68.1400 −2.28022
\(894\) 7.78384 0.260331
\(895\) −24.5332 −0.820054
\(896\) −10.5524 −0.352530
\(897\) 18.8265 0.628599
\(898\) 2.35892 0.0787183
\(899\) −57.1374 −1.90564
\(900\) −1.50350 −0.0501168
\(901\) −6.18029 −0.205895
\(902\) 27.9836 0.931750
\(903\) 0.937309 0.0311917
\(904\) −38.2468 −1.27207
\(905\) −6.66155 −0.221437
\(906\) 8.02804 0.266714
\(907\) 14.4187 0.478765 0.239382 0.970925i \(-0.423055\pi\)
0.239382 + 0.970925i \(0.423055\pi\)
\(908\) −36.7212 −1.21863
\(909\) −4.60477 −0.152731
\(910\) 2.84074 0.0941696
\(911\) 2.04089 0.0676177 0.0338088 0.999428i \(-0.489236\pi\)
0.0338088 + 0.999428i \(0.489236\pi\)
\(912\) −7.53463 −0.249497
\(913\) 76.3239 2.52595
\(914\) −17.9630 −0.594162
\(915\) 4.69202 0.155113
\(916\) −23.9097 −0.789999
\(917\) 2.87230 0.0948518
\(918\) 0.704624 0.0232561
\(919\) −42.1403 −1.39008 −0.695040 0.718971i \(-0.744613\pi\)
−0.695040 + 0.718971i \(0.744613\pi\)
\(920\) 11.5281 0.380069
\(921\) 8.43850 0.278058
\(922\) −24.0267 −0.791278
\(923\) −36.9827 −1.21730
\(924\) −7.77805 −0.255879
\(925\) −8.21185 −0.270004
\(926\) 17.2810 0.567890
\(927\) 4.39402 0.144318
\(928\) −60.4547 −1.98452
\(929\) 6.43215 0.211032 0.105516 0.994418i \(-0.466351\pi\)
0.105516 + 0.994418i \(0.466351\pi\)
\(930\) −3.88284 −0.127323
\(931\) 5.94432 0.194817
\(932\) −26.1052 −0.855104
\(933\) −7.75636 −0.253932
\(934\) 0.0326651 0.00106883
\(935\) 5.17328 0.169184
\(936\) −9.95254 −0.325309
\(937\) −49.5407 −1.61843 −0.809213 0.587516i \(-0.800106\pi\)
−0.809213 + 0.587516i \(0.800106\pi\)
\(938\) −0.992991 −0.0324223
\(939\) −25.2562 −0.824206
\(940\) 17.2348 0.562136
\(941\) −0.355003 −0.0115728 −0.00578638 0.999983i \(-0.501842\pi\)
−0.00578638 + 0.999983i \(0.501842\pi\)
\(942\) 2.48016 0.0808081
\(943\) 35.8488 1.16740
\(944\) 9.64819 0.314022
\(945\) −1.00000 −0.0325300
\(946\) 3.41670 0.111086
\(947\) 45.4096 1.47561 0.737806 0.675012i \(-0.235862\pi\)
0.737806 + 0.675012i \(0.235862\pi\)
\(948\) −18.0631 −0.586663
\(949\) −13.2656 −0.430620
\(950\) 4.18851 0.135893
\(951\) −20.5584 −0.666652
\(952\) 2.46865 0.0800096
\(953\) −3.38044 −0.109503 −0.0547516 0.998500i \(-0.517437\pi\)
−0.0547516 + 0.998500i \(0.517437\pi\)
\(954\) 4.35478 0.140991
\(955\) 22.6772 0.733818
\(956\) 18.7966 0.607925
\(957\) −53.6407 −1.73396
\(958\) 28.3869 0.917139
\(959\) 12.9988 0.419753
\(960\) −1.57320 −0.0507749
\(961\) −0.634241 −0.0204594
\(962\) −23.3277 −0.752116
\(963\) −10.6838 −0.344280
\(964\) −7.76403 −0.250063
\(965\) 17.9677 0.578399
\(966\) 3.29044 0.105868
\(967\) −7.94675 −0.255550 −0.127775 0.991803i \(-0.540784\pi\)
−0.127775 + 0.991803i \(0.540784\pi\)
\(968\) −38.9129 −1.25071
\(969\) 5.94432 0.190959
\(970\) −5.74836 −0.184569
\(971\) −13.9419 −0.447417 −0.223708 0.974656i \(-0.571816\pi\)
−0.223708 + 0.974656i \(0.571816\pi\)
\(972\) 1.50350 0.0482249
\(973\) −18.1803 −0.582833
\(974\) −13.8185 −0.442775
\(975\) −4.03157 −0.129113
\(976\) −5.94729 −0.190368
\(977\) −43.0222 −1.37640 −0.688201 0.725520i \(-0.741599\pi\)
−0.688201 + 0.725520i \(0.741599\pi\)
\(978\) −12.9307 −0.413479
\(979\) −46.5618 −1.48812
\(980\) −1.50350 −0.0480277
\(981\) 1.29044 0.0412005
\(982\) −5.30578 −0.169314
\(983\) −36.8433 −1.17512 −0.587559 0.809181i \(-0.699911\pi\)
−0.587559 + 0.809181i \(0.699911\pi\)
\(984\) −18.9513 −0.604146
\(985\) 7.02103 0.223709
\(986\) 7.30611 0.232674
\(987\) 11.4631 0.364873
\(988\) −36.0313 −1.14631
\(989\) 4.37702 0.139181
\(990\) −3.64522 −0.115853
\(991\) −35.5256 −1.12851 −0.564254 0.825601i \(-0.690836\pi\)
−0.564254 + 0.825601i \(0.690836\pi\)
\(992\) 32.1287 1.02009
\(993\) −8.59351 −0.272707
\(994\) −6.46372 −0.205017
\(995\) −11.8337 −0.375154
\(996\) −22.1819 −0.702862
\(997\) −49.2025 −1.55826 −0.779129 0.626864i \(-0.784338\pi\)
−0.779129 + 0.626864i \(0.784338\pi\)
\(998\) −24.3227 −0.769920
\(999\) 8.21185 0.259812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.a.z.1.3 4
3.2 odd 2 5355.2.a.bl.1.2 4
5.4 even 2 8925.2.a.bu.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.z.1.3 4 1.1 even 1 trivial
5355.2.a.bl.1.2 4 3.2 odd 2
8925.2.a.bu.1.2 4 5.4 even 2