Properties

Label 1785.2.a.z.1.3
Level 17851785
Weight 22
Character 1785.1
Self dual yes
Analytic conductor 14.25314.253
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1785,2,Mod(1,1785)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1785, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1785.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1785=35717 1785 = 3 \cdot 5 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1785.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.253296760814.2532967608
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.8468.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x35x2+3x+4 x^{4} - x^{3} - 5x^{2} + 3x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 0.704624-0.704624 of defining polynomial
Character χ\chi == 1785.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.704624q21.00000q31.50350q4+1.00000q50.704624q6+1.00000q72.46865q8+1.00000q9+0.704624q105.17328q11+1.50350q12+4.03157q13+0.704624q141.00000q15+1.26753q161.00000q17+0.704624q18+5.94432q191.50350q201.00000q213.64522q224.66977q23+2.46865q24+1.00000q25+2.84074q261.00000q271.50350q2810.3688q290.704624q30+5.51051q31+5.83045q32+5.17328q330.704624q34+1.00000q351.50350q368.21185q37+4.18851q384.03157q392.46865q407.67678q410.704624q420.937309q43+7.77805q44+1.00000q453.29044q4611.4631q471.26753q48+1.00000q49+0.704624q50+1.00000q516.06148q52+6.18029q530.704624q545.17328q552.46865q565.94432q577.30611q58+7.61178q59+1.50350q604.69202q61+3.88284q62+1.00000q63+1.57320q64+4.03157q65+3.64522q661.40925q67+1.50350q68+4.66977q69+0.704624q709.17328q712.46865q723.29044q735.78627q741.00000q758.93731q765.17328q772.84074q7812.0140q79+1.26753q80+1.00000q815.40925q8214.7535q83+1.50350q841.00000q850.660451q86+10.3688q87+12.7710q88+9.00044q89+0.704624q90+4.03157q91+7.02103q925.51051q938.07715q94+5.94432q955.83045q968.15805q97+0.704624q985.17328q99+O(q100)q+0.704624 q^{2} -1.00000 q^{3} -1.50350 q^{4} +1.00000 q^{5} -0.704624 q^{6} +1.00000 q^{7} -2.46865 q^{8} +1.00000 q^{9} +0.704624 q^{10} -5.17328 q^{11} +1.50350 q^{12} +4.03157 q^{13} +0.704624 q^{14} -1.00000 q^{15} +1.26753 q^{16} -1.00000 q^{17} +0.704624 q^{18} +5.94432 q^{19} -1.50350 q^{20} -1.00000 q^{21} -3.64522 q^{22} -4.66977 q^{23} +2.46865 q^{24} +1.00000 q^{25} +2.84074 q^{26} -1.00000 q^{27} -1.50350 q^{28} -10.3688 q^{29} -0.704624 q^{30} +5.51051 q^{31} +5.83045 q^{32} +5.17328 q^{33} -0.704624 q^{34} +1.00000 q^{35} -1.50350 q^{36} -8.21185 q^{37} +4.18851 q^{38} -4.03157 q^{39} -2.46865 q^{40} -7.67678 q^{41} -0.704624 q^{42} -0.937309 q^{43} +7.77805 q^{44} +1.00000 q^{45} -3.29044 q^{46} -11.4631 q^{47} -1.26753 q^{48} +1.00000 q^{49} +0.704624 q^{50} +1.00000 q^{51} -6.06148 q^{52} +6.18029 q^{53} -0.704624 q^{54} -5.17328 q^{55} -2.46865 q^{56} -5.94432 q^{57} -7.30611 q^{58} +7.61178 q^{59} +1.50350 q^{60} -4.69202 q^{61} +3.88284 q^{62} +1.00000 q^{63} +1.57320 q^{64} +4.03157 q^{65} +3.64522 q^{66} -1.40925 q^{67} +1.50350 q^{68} +4.66977 q^{69} +0.704624 q^{70} -9.17328 q^{71} -2.46865 q^{72} -3.29044 q^{73} -5.78627 q^{74} -1.00000 q^{75} -8.93731 q^{76} -5.17328 q^{77} -2.84074 q^{78} -12.0140 q^{79} +1.26753 q^{80} +1.00000 q^{81} -5.40925 q^{82} -14.7535 q^{83} +1.50350 q^{84} -1.00000 q^{85} -0.660451 q^{86} +10.3688 q^{87} +12.7710 q^{88} +9.00044 q^{89} +0.704624 q^{90} +4.03157 q^{91} +7.02103 q^{92} -5.51051 q^{93} -8.07715 q^{94} +5.94432 q^{95} -5.83045 q^{96} -8.15805 q^{97} +0.704624 q^{98} -5.17328 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4qq24q3+3q4+4q5+q6+4q73q8+4q9q1010q113q12+q13q144q157q164q17q188q19+3q204q21+10q99+O(q100) 4 q - q^{2} - 4 q^{3} + 3 q^{4} + 4 q^{5} + q^{6} + 4 q^{7} - 3 q^{8} + 4 q^{9} - q^{10} - 10 q^{11} - 3 q^{12} + q^{13} - q^{14} - 4 q^{15} - 7 q^{16} - 4 q^{17} - q^{18} - 8 q^{19} + 3 q^{20} - 4 q^{21}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.704624 0.498245 0.249122 0.968472i 0.419858π-0.419858\pi
0.249122 + 0.968472i 0.419858π0.419858\pi
33 −1.00000 −0.577350
44 −1.50350 −0.751752
55 1.00000 0.447214
66 −0.704624 −0.287662
77 1.00000 0.377964
88 −2.46865 −0.872801
99 1.00000 0.333333
1010 0.704624 0.222822
1111 −5.17328 −1.55980 −0.779901 0.625903i 0.784731π-0.784731\pi
−0.779901 + 0.625903i 0.784731π0.784731\pi
1212 1.50350 0.434024
1313 4.03157 1.11815 0.559077 0.829115i 0.311155π-0.311155\pi
0.559077 + 0.829115i 0.311155π0.311155\pi
1414 0.704624 0.188319
1515 −1.00000 −0.258199
1616 1.26753 0.316884
1717 −1.00000 −0.242536
1818 0.704624 0.166082
1919 5.94432 1.36372 0.681860 0.731483i 0.261171π-0.261171\pi
0.681860 + 0.731483i 0.261171π0.261171\pi
2020 −1.50350 −0.336194
2121 −1.00000 −0.218218
2222 −3.64522 −0.777163
2323 −4.66977 −0.973715 −0.486858 0.873481i 0.661857π-0.661857\pi
−0.486858 + 0.873481i 0.661857π0.661857\pi
2424 2.46865 0.503912
2525 1.00000 0.200000
2626 2.84074 0.557115
2727 −1.00000 −0.192450
2828 −1.50350 −0.284136
2929 −10.3688 −1.92544 −0.962719 0.270504i 0.912810π-0.912810\pi
−0.962719 + 0.270504i 0.912810π0.912810\pi
3030 −0.704624 −0.128646
3131 5.51051 0.989717 0.494859 0.868973i 0.335220π-0.335220\pi
0.494859 + 0.868973i 0.335220π0.335220\pi
3232 5.83045 1.03069
3333 5.17328 0.900552
3434 −0.704624 −0.120842
3535 1.00000 0.169031
3636 −1.50350 −0.250584
3737 −8.21185 −1.35002 −0.675010 0.737808i 0.735861π-0.735861\pi
−0.675010 + 0.737808i 0.735861π0.735861\pi
3838 4.18851 0.679466
3939 −4.03157 −0.645567
4040 −2.46865 −0.390329
4141 −7.67678 −1.19891 −0.599456 0.800408i 0.704616π-0.704616\pi
−0.599456 + 0.800408i 0.704616π0.704616\pi
4242 −0.704624 −0.108726
4343 −0.937309 −0.142938 −0.0714692 0.997443i 0.522769π-0.522769\pi
−0.0714692 + 0.997443i 0.522769π0.522769\pi
4444 7.77805 1.17258
4545 1.00000 0.149071
4646 −3.29044 −0.485148
4747 −11.4631 −1.67206 −0.836029 0.548685i 0.815129π-0.815129\pi
−0.836029 + 0.548685i 0.815129π0.815129\pi
4848 −1.26753 −0.182953
4949 1.00000 0.142857
5050 0.704624 0.0996489
5151 1.00000 0.140028
5252 −6.06148 −0.840576
5353 6.18029 0.848928 0.424464 0.905445i 0.360463π-0.360463\pi
0.424464 + 0.905445i 0.360463π0.360463\pi
5454 −0.704624 −0.0958872
5555 −5.17328 −0.697565
5656 −2.46865 −0.329888
5757 −5.94432 −0.787344
5858 −7.30611 −0.959339
5959 7.61178 0.990969 0.495485 0.868617i 0.334991π-0.334991\pi
0.495485 + 0.868617i 0.334991π0.334991\pi
6060 1.50350 0.194102
6161 −4.69202 −0.600751 −0.300376 0.953821i 0.597112π-0.597112\pi
−0.300376 + 0.953821i 0.597112π0.597112\pi
6262 3.88284 0.493121
6363 1.00000 0.125988
6464 1.57320 0.196651
6565 4.03157 0.500054
6666 3.64522 0.448695
6767 −1.40925 −0.172167 −0.0860836 0.996288i 0.527435π-0.527435\pi
−0.0860836 + 0.996288i 0.527435π0.527435\pi
6868 1.50350 0.182327
6969 4.66977 0.562175
7070 0.704624 0.0842187
7171 −9.17328 −1.08867 −0.544334 0.838869i 0.683218π-0.683218\pi
−0.544334 + 0.838869i 0.683218π0.683218\pi
7272 −2.46865 −0.290934
7373 −3.29044 −0.385117 −0.192558 0.981286i 0.561678π-0.561678\pi
−0.192558 + 0.981286i 0.561678π0.561678\pi
7474 −5.78627 −0.672640
7575 −1.00000 −0.115470
7676 −8.93731 −1.02518
7777 −5.17328 −0.589550
7878 −2.84074 −0.321650
7979 −12.0140 −1.35168 −0.675841 0.737047i 0.736220π-0.736220\pi
−0.675841 + 0.737047i 0.736220π0.736220\pi
8080 1.26753 0.141715
8181 1.00000 0.111111
8282 −5.40925 −0.597352
8383 −14.7535 −1.61941 −0.809703 0.586840i 0.800372π-0.800372\pi
−0.809703 + 0.586840i 0.800372π0.800372\pi
8484 1.50350 0.164046
8585 −1.00000 −0.108465
8686 −0.660451 −0.0712183
8787 10.3688 1.11165
8888 12.7710 1.36140
8989 9.00044 0.954045 0.477022 0.878891i 0.341716π-0.341716\pi
0.477022 + 0.878891i 0.341716π0.341716\pi
9090 0.704624 0.0742739
9191 4.03157 0.422623
9292 7.02103 0.731993
9393 −5.51051 −0.571414
9494 −8.07715 −0.833094
9595 5.94432 0.609874
9696 −5.83045 −0.595067
9797 −8.15805 −0.828324 −0.414162 0.910203i 0.635925π-0.635925\pi
−0.414162 + 0.910203i 0.635925π0.635925\pi
9898 0.704624 0.0711778
9999 −5.17328 −0.519934
100100 −1.50350 −0.150350
101101 −4.60477 −0.458192 −0.229096 0.973404i 0.573577π-0.573577\pi
−0.229096 + 0.973404i 0.573577π0.573577\pi
102102 0.704624 0.0697682
103103 4.39402 0.432955 0.216478 0.976288i 0.430543π-0.430543\pi
0.216478 + 0.976288i 0.430543π0.430543\pi
104104 −9.95254 −0.975927
105105 −1.00000 −0.0975900
106106 4.35478 0.422974
107107 −10.6838 −1.03284 −0.516421 0.856335i 0.672736π-0.672736\pi
−0.516421 + 0.856335i 0.672736π0.672736\pi
108108 1.50350 0.144675
109109 1.29044 0.123601 0.0618007 0.998089i 0.480316π-0.480316\pi
0.0618007 + 0.998089i 0.480316π0.480316\pi
110110 −3.64522 −0.347558
111111 8.21185 0.779435
112112 1.26753 0.119771
113113 15.4930 1.45746 0.728728 0.684803i 0.240112π-0.240112\pi
0.728728 + 0.684803i 0.240112π0.240112\pi
114114 −4.18851 −0.392290
115115 −4.66977 −0.435459
116116 15.5895 1.44745
117117 4.03157 0.372718
118118 5.36344 0.493745
119119 −1.00000 −0.0916698
120120 2.46865 0.225356
121121 15.7628 1.43298
122122 −3.30611 −0.299321
123123 7.67678 0.692192
124124 −8.28508 −0.744022
125125 1.00000 0.0894427
126126 0.704624 0.0627729
127127 −19.0907 −1.69403 −0.847014 0.531571i 0.821602π-0.821602\pi
−0.847014 + 0.531571i 0.821602π0.821602\pi
128128 −10.5524 −0.932707
129129 0.937309 0.0825255
130130 2.84074 0.249149
131131 2.87230 0.250954 0.125477 0.992097i 0.459954π-0.459954\pi
0.125477 + 0.992097i 0.459954π0.459954\pi
132132 −7.77805 −0.676992
133133 5.94432 0.515438
134134 −0.992991 −0.0857814
135135 −1.00000 −0.0860663
136136 2.46865 0.211685
137137 12.9988 1.11056 0.555281 0.831663i 0.312611π-0.312611\pi
0.555281 + 0.831663i 0.312611π0.312611\pi
138138 3.29044 0.280101
139139 −18.1803 −1.54203 −0.771016 0.636816i 0.780251π-0.780251\pi
−0.771016 + 0.636816i 0.780251π0.780251\pi
140140 −1.50350 −0.127069
141141 11.4631 0.965363
142142 −6.46372 −0.542423
143143 −20.8564 −1.74410
144144 1.26753 0.105628
145145 −10.3688 −0.861082
146146 −2.31852 −0.191882
147147 −1.00000 −0.0824786
148148 12.3466 1.01488
149149 −11.0468 −0.904989 −0.452494 0.891767i 0.649466π-0.649466\pi
−0.452494 + 0.891767i 0.649466π0.649466\pi
150150 −0.704624 −0.0575323
151151 −11.3934 −0.927178 −0.463589 0.886050i 0.653439π-0.653439\pi
−0.463589 + 0.886050i 0.653439π0.653439\pi
152152 −14.6745 −1.19026
153153 −1.00000 −0.0808452
154154 −3.64522 −0.293740
155155 5.51051 0.442615
156156 6.06148 0.485306
157157 −3.51984 −0.280914 −0.140457 0.990087i 0.544857π-0.544857\pi
−0.140457 + 0.990087i 0.544857π0.544857\pi
158158 −8.46537 −0.673469
159159 −6.18029 −0.490129
160160 5.83045 0.460937
161161 −4.66977 −0.368030
162162 0.704624 0.0553605
163163 18.3513 1.43738 0.718691 0.695330i 0.244742π-0.244742\pi
0.718691 + 0.695330i 0.244742π0.244742\pi
164164 11.5421 0.901285
165165 5.17328 0.402739
166166 −10.3957 −0.806860
167167 −16.4794 −1.27521 −0.637607 0.770362i 0.720075π-0.720075\pi
−0.637607 + 0.770362i 0.720075π0.720075\pi
168168 2.46865 0.190461
169169 3.25352 0.250271
170170 −0.704624 −0.0540422
171171 5.94432 0.454573
172172 1.40925 0.107454
173173 16.4303 1.24917 0.624585 0.780957i 0.285268π-0.285268\pi
0.624585 + 0.780957i 0.285268π0.285268\pi
174174 7.30611 0.553875
175175 1.00000 0.0755929
176176 −6.55731 −0.494276
177177 −7.61178 −0.572136
178178 6.34193 0.475348
179179 −24.5332 −1.83370 −0.916849 0.399235i 0.869276π-0.869276\pi
−0.916849 + 0.399235i 0.869276π0.869276\pi
180180 −1.50350 −0.112065
181181 −6.66155 −0.495149 −0.247575 0.968869i 0.579634π-0.579634\pi
−0.247575 + 0.968869i 0.579634π0.579634\pi
182182 2.84074 0.210570
183183 4.69202 0.346844
184184 11.5281 0.849860
185185 −8.21185 −0.603747
186186 −3.88284 −0.284704
187187 5.17328 0.378308
188188 17.2348 1.25697
189189 −1.00000 −0.0727393
190190 4.18851 0.303867
191191 22.6772 1.64087 0.820433 0.571742i 0.193732π-0.193732\pi
0.820433 + 0.571742i 0.193732π0.193732\pi
192192 −1.57320 −0.113536
193193 17.9677 1.29334 0.646670 0.762770i 0.276161π-0.276161\pi
0.646670 + 0.762770i 0.276161π0.276161\pi
194194 −5.74836 −0.412708
195195 −4.03157 −0.288706
196196 −1.50350 −0.107393
197197 7.02103 0.500227 0.250114 0.968216i 0.419532π-0.419532\pi
0.250114 + 0.968216i 0.419532π0.419532\pi
198198 −3.64522 −0.259054
199199 −11.8337 −0.838871 −0.419435 0.907785i 0.637772π-0.637772\pi
−0.419435 + 0.907785i 0.637772π0.637772\pi
200200 −2.46865 −0.174560
201201 1.40925 0.0994007
202202 −3.24463 −0.228292
203203 −10.3688 −0.727747
204204 −1.50350 −0.105266
205205 −7.67678 −0.536170
206206 3.09613 0.215718
207207 −4.66977 −0.324572
208208 5.11015 0.354325
209209 −30.7516 −2.12713
210210 −0.704624 −0.0486237
211211 1.62298 0.111730 0.0558652 0.998438i 0.482208π-0.482208\pi
0.0558652 + 0.998438i 0.482208π0.482208\pi
212212 −9.29209 −0.638183
213213 9.17328 0.628543
214214 −7.52806 −0.514608
215215 −0.937309 −0.0639240
216216 2.46865 0.167971
217217 5.51051 0.374078
218218 0.909273 0.0615838
219219 3.29044 0.222347
220220 7.77805 0.524396
221221 −4.03157 −0.271192
222222 5.78627 0.388349
223223 7.39170 0.494985 0.247492 0.968890i 0.420393π-0.420393\pi
0.247492 + 0.968890i 0.420393π0.420393\pi
224224 5.83045 0.389563
225225 1.00000 0.0666667
226226 10.9167 0.726170
227227 24.4237 1.62106 0.810529 0.585698i 0.199180π-0.199180\pi
0.810529 + 0.585698i 0.199180π0.199180\pi
228228 8.93731 0.591888
229229 15.9027 1.05088 0.525438 0.850832i 0.323901π-0.323901\pi
0.525438 + 0.850832i 0.323901π0.323901\pi
230230 −3.29044 −0.216965
231231 5.17328 0.340377
232232 25.5970 1.68052
233233 17.3629 1.13748 0.568740 0.822517i 0.307431π-0.307431\pi
0.568740 + 0.822517i 0.307431π0.307431\pi
234234 2.84074 0.185705
235235 −11.4631 −0.747767
236236 −11.4443 −0.744963
237237 12.0140 0.780394
238238 −0.704624 −0.0456740
239239 −12.5019 −0.808677 −0.404339 0.914609i 0.632498π-0.632498\pi
−0.404339 + 0.914609i 0.632498π0.632498\pi
240240 −1.26753 −0.0818190
241241 5.16396 0.332640 0.166320 0.986072i 0.446812π-0.446812\pi
0.166320 + 0.986072i 0.446812π0.446812\pi
242242 11.1069 0.713976
243243 −1.00000 −0.0641500
244244 7.05447 0.451616
245245 1.00000 0.0638877
246246 5.40925 0.344881
247247 23.9649 1.52485
248248 −13.6036 −0.863827
249249 14.7535 0.934965
250250 0.704624 0.0445644
251251 14.2516 0.899556 0.449778 0.893140i 0.351503π-0.351503\pi
0.449778 + 0.893140i 0.351503π0.351503\pi
252252 −1.50350 −0.0947119
253253 24.1580 1.51880
254254 −13.4518 −0.844040
255255 1.00000 0.0626224
256256 −10.5819 −0.661367
257257 18.2259 1.13690 0.568449 0.822718i 0.307544π-0.307544\pi
0.568449 + 0.822718i 0.307544π0.307544\pi
258258 0.660451 0.0411179
259259 −8.21185 −0.510260
260260 −6.06148 −0.375917
261261 −10.3688 −0.641813
262262 2.02390 0.125037
263263 −25.2430 −1.55655 −0.778274 0.627924i 0.783905π-0.783905\pi
−0.778274 + 0.627924i 0.783905π0.783905\pi
264264 −12.7710 −0.786003
265265 6.18029 0.379652
266266 4.18851 0.256814
267267 −9.00044 −0.550818
268268 2.11881 0.129427
269269 23.7679 1.44916 0.724579 0.689192i 0.242034π-0.242034\pi
0.724579 + 0.689192i 0.242034π0.242034\pi
270270 −0.704624 −0.0428821
271271 −4.30732 −0.261651 −0.130826 0.991405i 0.541763π-0.541763\pi
−0.130826 + 0.991405i 0.541763π0.541763\pi
272272 −1.26753 −0.0768556
273273 −4.03157 −0.244001
274274 9.15926 0.553331
275275 −5.17328 −0.311960
276276 −7.02103 −0.422616
277277 −3.03035 −0.182076 −0.0910381 0.995847i 0.529018π-0.529018\pi
−0.0910381 + 0.995847i 0.529018π0.529018\pi
278278 −12.8103 −0.768309
279279 5.51051 0.329906
280280 −2.46865 −0.147530
281281 −14.9672 −0.892870 −0.446435 0.894816i 0.647307π-0.647307\pi
−0.446435 + 0.894816i 0.647307π0.647307\pi
282282 8.07715 0.480987
283283 −3.38866 −0.201435 −0.100717 0.994915i 0.532114π-0.532114\pi
−0.100717 + 0.994915i 0.532114π0.532114\pi
284284 13.7921 0.818409
285285 −5.94432 −0.352111
286286 −14.6959 −0.868989
287287 −7.67678 −0.453146
288288 5.83045 0.343562
289289 1.00000 0.0588235
290290 −7.30611 −0.429029
291291 8.15805 0.478233
292292 4.94719 0.289512
293293 1.16748 0.0682052 0.0341026 0.999418i 0.489143π-0.489143\pi
0.0341026 + 0.999418i 0.489143π0.489143\pi
294294 −0.704624 −0.0410945
295295 7.61178 0.443175
296296 20.2722 1.17830
297297 5.17328 0.300184
298298 −7.78384 −0.450906
299299 −18.8265 −1.08876
300300 1.50350 0.0868049
301301 −0.937309 −0.0540256
302302 −8.02804 −0.461962
303303 4.60477 0.264537
304304 7.53463 0.432141
305305 −4.69202 −0.268664
306306 −0.704624 −0.0402807
307307 −8.43850 −0.481611 −0.240805 0.970573i 0.577412π-0.577412\pi
−0.240805 + 0.970573i 0.577412π0.577412\pi
308308 7.77805 0.443195
309309 −4.39402 −0.249967
310310 3.88284 0.220531
311311 7.75636 0.439823 0.219911 0.975520i 0.429423π-0.429423\pi
0.219911 + 0.975520i 0.429423π0.429423\pi
312312 9.95254 0.563452
313313 25.2562 1.42757 0.713783 0.700367i 0.246980π-0.246980\pi
0.713783 + 0.700367i 0.246980π0.246980\pi
314314 −2.48016 −0.139964
315315 1.00000 0.0563436
316316 18.0631 1.01613
317317 20.5584 1.15468 0.577338 0.816505i 0.304092π-0.304092\pi
0.577338 + 0.816505i 0.304092π0.304092\pi
318318 −4.35478 −0.244204
319319 53.6407 3.00330
320320 1.57320 0.0879448
321321 10.6838 0.596311
322322 −3.29044 −0.183369
323323 −5.94432 −0.330751
324324 −1.50350 −0.0835280
325325 4.03157 0.223631
326326 12.9307 0.716167
327327 −1.29044 −0.0713613
328328 18.9513 1.04641
329329 −11.4631 −0.631979
330330 3.64522 0.200663
331331 8.59351 0.472342 0.236171 0.971712i 0.424107π-0.424107\pi
0.236171 + 0.971712i 0.424107π0.424107\pi
332332 22.1819 1.21739
333333 −8.21185 −0.450007
334334 −11.6118 −0.635368
335335 −1.40925 −0.0769955
336336 −1.26753 −0.0691497
337337 28.2797 1.54049 0.770246 0.637747i 0.220133π-0.220133\pi
0.770246 + 0.637747i 0.220133π0.220133\pi
338338 2.29251 0.124696
339339 −15.4930 −0.841462
340340 1.50350 0.0815390
341341 −28.5074 −1.54376
342342 4.18851 0.226489
343343 1.00000 0.0539949
344344 2.31389 0.124757
345345 4.66977 0.251412
346346 11.5772 0.622393
347347 4.00000 0.214731 0.107366 0.994220i 0.465758π-0.465758\pi
0.107366 + 0.994220i 0.465758π0.465758\pi
348348 −15.5895 −0.835687
349349 16.1721 0.865671 0.432835 0.901473i 0.357513π-0.357513\pi
0.432835 + 0.901473i 0.357513π0.357513\pi
350350 0.704624 0.0376638
351351 −4.03157 −0.215189
352352 −30.1625 −1.60767
353353 16.7787 0.893041 0.446520 0.894774i 0.352663π-0.352663\pi
0.446520 + 0.894774i 0.352663π0.352663\pi
354354 −5.36344 −0.285064
355355 −9.17328 −0.486867
356356 −13.5322 −0.717205
357357 1.00000 0.0529256
358358 −17.2867 −0.913630
359359 −20.8026 −1.09792 −0.548960 0.835849i 0.684976π-0.684976\pi
−0.548960 + 0.835849i 0.684976π0.684976\pi
360360 −2.46865 −0.130110
361361 16.3349 0.859733
362362 −4.69389 −0.246705
363363 −15.7628 −0.827333
364364 −6.06148 −0.317708
365365 −3.29044 −0.172229
366366 3.30611 0.172813
367367 −26.6885 −1.39313 −0.696564 0.717495i 0.745289π-0.745289\pi
−0.696564 + 0.717495i 0.745289π0.745289\pi
368368 −5.91910 −0.308555
369369 −7.67678 −0.399637
370370 −5.78627 −0.300814
371371 6.18029 0.320865
372372 8.28508 0.429561
373373 −13.1193 −0.679289 −0.339645 0.940554i 0.610307π-0.610307\pi
−0.339645 + 0.940554i 0.610307π0.610307\pi
374374 3.64522 0.188490
375375 −1.00000 −0.0516398
376376 28.2983 1.45937
377377 −41.8025 −2.15294
378378 −0.704624 −0.0362420
379379 37.0210 1.90164 0.950821 0.309740i 0.100242π-0.100242\pi
0.950821 + 0.309740i 0.100242π0.100242\pi
380380 −8.93731 −0.458474
381381 19.0907 0.978048
382382 15.9789 0.817553
383383 −6.00745 −0.306966 −0.153483 0.988151i 0.549049π-0.549049\pi
−0.153483 + 0.988151i 0.549049π0.549049\pi
384384 10.5524 0.538498
385385 −5.17328 −0.263655
386386 12.6605 0.644400
387387 −0.937309 −0.0476461
388388 12.2657 0.622695
389389 22.0865 1.11983 0.559914 0.828551i 0.310834π-0.310834\pi
0.559914 + 0.828551i 0.310834π0.310834\pi
390390 −2.84074 −0.143846
391391 4.66977 0.236161
392392 −2.46865 −0.124686
393393 −2.87230 −0.144889
394394 4.94719 0.249236
395395 −12.0140 −0.604491
396396 7.77805 0.390862
397397 −20.3288 −1.02027 −0.510136 0.860094i 0.670405π-0.670405\pi
−0.510136 + 0.860094i 0.670405π0.670405\pi
398398 −8.33833 −0.417963
399399 −5.94432 −0.297588
400400 1.26753 0.0633767
401401 −3.11015 −0.155313 −0.0776567 0.996980i 0.524744π-0.524744\pi
−0.0776567 + 0.996980i 0.524744π0.524744\pi
402402 0.992991 0.0495259
403403 22.2160 1.10666
404404 6.92329 0.344447
405405 1.00000 0.0496904
406406 −7.30611 −0.362596
407407 42.4822 2.10576
408408 −2.46865 −0.122217
409409 −25.8124 −1.27634 −0.638170 0.769896i 0.720308π-0.720308\pi
−0.638170 + 0.769896i 0.720308π0.720308\pi
410410 −5.40925 −0.267144
411411 −12.9988 −0.641183
412412 −6.60642 −0.325475
413413 7.61178 0.374551
414414 −3.29044 −0.161716
415415 −14.7535 −0.724220
416416 23.5058 1.15247
417417 18.1803 0.890293
418418 −21.6683 −1.05983
419419 −34.0678 −1.66432 −0.832161 0.554534i 0.812897π-0.812897\pi
−0.832161 + 0.554534i 0.812897π0.812897\pi
420420 1.50350 0.0733635
421421 −26.7053 −1.30153 −0.650767 0.759277i 0.725553π-0.725553\pi
−0.650767 + 0.759277i 0.725553π0.725553\pi
422422 1.14359 0.0556690
423423 −11.4631 −0.557353
424424 −15.2570 −0.740945
425425 −1.00000 −0.0485071
426426 6.46372 0.313168
427427 −4.69202 −0.227063
428428 16.0631 0.776441
429429 20.8564 1.00696
430430 −0.660451 −0.0318498
431431 −14.8865 −0.717060 −0.358530 0.933518i 0.616722π-0.616722\pi
−0.358530 + 0.933518i 0.616722π0.616722\pi
432432 −1.26753 −0.0609843
433433 −33.1966 −1.59533 −0.797664 0.603102i 0.793931π-0.793931\pi
−0.797664 + 0.603102i 0.793931π0.793931\pi
434434 3.88284 0.186382
435435 10.3688 0.497146
436436 −1.94018 −0.0929177
437437 −27.7586 −1.32788
438438 2.31852 0.110783
439439 −6.29165 −0.300284 −0.150142 0.988664i 0.547973π-0.547973\pi
−0.150142 + 0.988664i 0.547973π0.547973\pi
440440 12.7710 0.608835
441441 1.00000 0.0476190
442442 −2.84074 −0.135120
443443 29.7463 1.41329 0.706644 0.707569i 0.250208π-0.250208\pi
0.706644 + 0.707569i 0.250208π0.250208\pi
444444 −12.3466 −0.585942
445445 9.00044 0.426662
446446 5.20837 0.246624
447447 11.0468 0.522496
448448 1.57320 0.0743269
449449 3.34777 0.157991 0.0789956 0.996875i 0.474829π-0.474829\pi
0.0789956 + 0.996875i 0.474829π0.474829\pi
450450 0.704624 0.0332163
451451 39.7141 1.87007
452452 −23.2937 −1.09565
453453 11.3934 0.535307
454454 17.2095 0.807684
455455 4.03157 0.189003
456456 14.6745 0.687195
457457 −25.4930 −1.19251 −0.596255 0.802795i 0.703345π-0.703345\pi
−0.596255 + 0.802795i 0.703345π0.703345\pi
458458 11.2054 0.523594
459459 1.00000 0.0466760
460460 7.02103 0.327357
461461 −34.0986 −1.58813 −0.794065 0.607832i 0.792039π-0.792039\pi
−0.794065 + 0.607832i 0.792039π0.792039\pi
462462 3.64522 0.169591
463463 24.5252 1.13978 0.569891 0.821720i 0.306985π-0.306985\pi
0.569891 + 0.821720i 0.306985π0.306985\pi
464464 −13.1428 −0.610140
465465 −5.51051 −0.255544
466466 12.2343 0.566744
467467 0.0463582 0.00214520 0.00107260 0.999999i 0.499659π-0.499659\pi
0.00107260 + 0.999999i 0.499659π0.499659\pi
468468 −6.06148 −0.280192
469469 −1.40925 −0.0650731
470470 −8.07715 −0.372571
471471 3.51984 0.162186
472472 −18.7909 −0.864919
473473 4.84896 0.222956
474474 8.46537 0.388827
475475 5.94432 0.272744
476476 1.50350 0.0689130
477477 6.18029 0.282976
478478 −8.80911 −0.402919
479479 40.2866 1.84074 0.920370 0.391048i 0.127887π-0.127887\pi
0.920370 + 0.391048i 0.127887π0.127887\pi
480480 −5.83045 −0.266122
481481 −33.1066 −1.50953
482482 3.63865 0.165736
483483 4.66977 0.212482
484484 −23.6995 −1.07725
485485 −8.15805 −0.370438
486486 −0.704624 −0.0319624
487487 −19.6112 −0.888669 −0.444335 0.895861i 0.646560π-0.646560\pi
−0.444335 + 0.895861i 0.646560π0.646560\pi
488488 11.5830 0.524336
489489 −18.3513 −0.829872
490490 0.704624 0.0318317
491491 −7.52994 −0.339821 −0.169911 0.985459i 0.554348π-0.554348\pi
−0.169911 + 0.985459i 0.554348π0.554348\pi
492492 −11.5421 −0.520357
493493 10.3688 0.466987
494494 16.8863 0.759749
495495 −5.17328 −0.232522
496496 6.98477 0.313625
497497 −9.17328 −0.411478
498498 10.3957 0.465841
499499 −34.5186 −1.54527 −0.772633 0.634853i 0.781061π-0.781061\pi
−0.772633 + 0.634853i 0.781061π0.781061\pi
500500 −1.50350 −0.0672388
501501 16.4794 0.736245
502502 10.0421 0.448199
503503 1.44716 0.0645258 0.0322629 0.999479i 0.489729π-0.489729\pi
0.0322629 + 0.999479i 0.489729π0.489729\pi
504504 −2.46865 −0.109963
505505 −4.60477 −0.204910
506506 17.0223 0.756736
507507 −3.25352 −0.144494
508508 28.7030 1.27349
509509 5.89764 0.261408 0.130704 0.991421i 0.458276π-0.458276\pi
0.130704 + 0.991421i 0.458276π0.458276\pi
510510 0.704624 0.0312013
511511 −3.29044 −0.145560
512512 13.6485 0.603184
513513 −5.94432 −0.262448
514514 12.8424 0.566454
515515 4.39402 0.193623
516516 −1.40925 −0.0620387
517517 59.3016 2.60808
518518 −5.78627 −0.254234
519519 −16.4303 −0.721209
520520 −9.95254 −0.436448
521521 −36.9283 −1.61786 −0.808929 0.587906i 0.799953π-0.799953\pi
−0.808929 + 0.587906i 0.799953π0.799953\pi
522522 −7.30611 −0.319780
523523 13.8332 0.604883 0.302441 0.953168i 0.402198π-0.402198\pi
0.302441 + 0.953168i 0.402198π0.402198\pi
524524 −4.31852 −0.188656
525525 −1.00000 −0.0436436
526526 −17.7868 −0.775542
527527 −5.51051 −0.240042
528528 6.55731 0.285370
529529 −1.19321 −0.0518785
530530 4.35478 0.189160
531531 7.61178 0.330323
532532 −8.93731 −0.387481
533533 −30.9495 −1.34057
534534 −6.34193 −0.274442
535535 −10.6838 −0.461901
536536 3.47895 0.150268
537537 24.5332 1.05869
538538 16.7475 0.722035
539539 −5.17328 −0.222829
540540 1.50350 0.0647005
541541 −6.89565 −0.296467 −0.148233 0.988952i 0.547359π-0.547359\pi
−0.148233 + 0.988952i 0.547359π0.547359\pi
542542 −3.03504 −0.130366
543543 6.66155 0.285875
544544 −5.83045 −0.249978
545545 1.29044 0.0552762
546546 −2.84074 −0.121572
547547 4.31859 0.184649 0.0923247 0.995729i 0.470570π-0.470570\pi
0.0923247 + 0.995729i 0.470570π0.470570\pi
548548 −19.5437 −0.834867
549549 −4.69202 −0.200250
550550 −3.64522 −0.155433
551551 −61.6354 −2.62576
552552 −11.5281 −0.490667
553553 −12.0140 −0.510888
554554 −2.13526 −0.0907185
555555 8.21185 0.348574
556556 27.3341 1.15923
557557 35.5198 1.50502 0.752512 0.658579i 0.228842π-0.228842\pi
0.752512 + 0.658579i 0.228842π0.228842\pi
558558 3.88284 0.164374
559559 −3.77882 −0.159827
560560 1.26753 0.0535631
561561 −5.17328 −0.218416
562562 −10.5463 −0.444867
563563 26.3282 1.10960 0.554801 0.831983i 0.312794π-0.312794\pi
0.554801 + 0.831983i 0.312794π0.312794\pi
564564 −17.2348 −0.725714
565565 15.4930 0.651794
566566 −2.38773 −0.100364
567567 1.00000 0.0419961
568568 22.6457 0.950191
569569 −4.63931 −0.194490 −0.0972450 0.995260i 0.531003π-0.531003\pi
−0.0972450 + 0.995260i 0.531003π0.531003\pi
570570 −4.18851 −0.175437
571571 −22.2492 −0.931101 −0.465550 0.885021i 0.654144π-0.654144\pi
−0.465550 + 0.885021i 0.654144π0.654144\pi
572572 31.3577 1.31113
573573 −22.6772 −0.947355
574574 −5.40925 −0.225778
575575 −4.66977 −0.194743
576576 1.57320 0.0655502
577577 −25.4389 −1.05904 −0.529518 0.848298i 0.677627π-0.677627\pi
−0.529518 + 0.848298i 0.677627π0.677627\pi
578578 0.704624 0.0293085
579579 −17.9677 −0.746710
580580 15.5895 0.647320
581581 −14.7535 −0.612078
582582 5.74836 0.238277
583583 −31.9724 −1.32416
584584 8.12295 0.336130
585585 4.03157 0.166685
586586 0.822638 0.0339829
587587 −2.93643 −0.121199 −0.0605997 0.998162i 0.519301π-0.519301\pi
−0.0605997 + 0.998162i 0.519301π0.519301\pi
588588 1.50350 0.0620035
589589 32.7562 1.34970
590590 5.36344 0.220810
591591 −7.02103 −0.288806
592592 −10.4088 −0.427799
593593 15.8662 0.651546 0.325773 0.945448i 0.394376π-0.394376\pi
0.325773 + 0.945448i 0.394376π0.394376\pi
594594 3.64522 0.149565
595595 −1.00000 −0.0409960
596596 16.6089 0.680327
597597 11.8337 0.484322
598598 −13.2656 −0.542471
599599 −31.2674 −1.27755 −0.638776 0.769393i 0.720559π-0.720559\pi
−0.638776 + 0.769393i 0.720559π0.720559\pi
600600 2.46865 0.100782
601601 −25.4436 −1.03786 −0.518932 0.854815i 0.673670π-0.673670\pi
−0.518932 + 0.854815i 0.673670π0.673670\pi
602602 −0.660451 −0.0269180
603603 −1.40925 −0.0573890
604604 17.1300 0.697008
605605 15.7628 0.640850
606606 3.24463 0.131804
607607 13.8301 0.561348 0.280674 0.959803i 0.409442π-0.409442\pi
0.280674 + 0.959803i 0.409442π0.409442\pi
608608 34.6580 1.40557
609609 10.3688 0.420165
610610 −3.30611 −0.133860
611611 −46.2141 −1.86962
612612 1.50350 0.0607756
613613 −17.4612 −0.705250 −0.352625 0.935765i 0.614711π-0.614711\pi
−0.352625 + 0.935765i 0.614711π0.614711\pi
614614 −5.94597 −0.239960
615615 7.67678 0.309558
616616 12.7710 0.514560
617617 −24.8592 −1.00079 −0.500396 0.865797i 0.666812π-0.666812\pi
−0.500396 + 0.865797i 0.666812π0.666812\pi
618618 −3.09613 −0.124545
619619 −10.6242 −0.427022 −0.213511 0.976941i 0.568490π-0.568490\pi
−0.213511 + 0.976941i 0.568490π0.568490\pi
620620 −8.28508 −0.332737
621621 4.66977 0.187392
622622 5.46532 0.219139
623623 9.00044 0.360595
624624 −5.11015 −0.204570
625625 1.00000 0.0400000
626626 17.7961 0.711277
627627 30.7516 1.22810
628628 5.29209 0.211177
629629 8.21185 0.327428
630630 0.704624 0.0280729
631631 33.2488 1.32361 0.661806 0.749675i 0.269790π-0.269790\pi
0.661806 + 0.749675i 0.269790π0.269790\pi
632632 29.6585 1.17975
633633 −1.62298 −0.0645075
634634 14.4860 0.575311
635635 −19.0907 −0.757592
636636 9.29209 0.368455
637637 4.03157 0.159736
638638 37.7965 1.49638
639639 −9.17328 −0.362889
640640 −10.5524 −0.417119
641641 −19.6134 −0.774684 −0.387342 0.921936i 0.626607π-0.626607\pi
−0.387342 + 0.921936i 0.626607π0.626607\pi
642642 7.52806 0.297109
643643 −20.9906 −0.827787 −0.413893 0.910325i 0.635831π-0.635831\pi
−0.413893 + 0.910325i 0.635831π0.635831\pi
644644 7.02103 0.276667
645645 0.937309 0.0369065
646646 −4.18851 −0.164795
647647 14.0206 0.551206 0.275603 0.961272i 0.411122π-0.411122\pi
0.275603 + 0.961272i 0.411122π0.411122\pi
648648 −2.46865 −0.0969779
649649 −39.3779 −1.54572
650650 2.84074 0.111423
651651 −5.51051 −0.215974
652652 −27.5912 −1.08055
653653 9.10993 0.356499 0.178250 0.983985i 0.442957π-0.442957\pi
0.178250 + 0.983985i 0.442957π0.442957\pi
654654 −0.909273 −0.0355554
655655 2.87230 0.112230
656656 −9.73059 −0.379916
657657 −3.29044 −0.128372
658658 −8.07715 −0.314880
659659 −4.69969 −0.183074 −0.0915369 0.995802i 0.529178π-0.529178\pi
−0.0915369 + 0.995802i 0.529178π0.529178\pi
660660 −7.77805 −0.302760
661661 −31.7797 −1.23609 −0.618044 0.786144i 0.712074π-0.712074\pi
−0.618044 + 0.786144i 0.712074π0.712074\pi
662662 6.05519 0.235342
663663 4.03157 0.156573
664664 36.4213 1.41342
665665 5.94432 0.230511
666666 −5.78627 −0.224213
667667 48.4200 1.87483
668668 24.7768 0.958644
669669 −7.39170 −0.285780
670670 −0.992991 −0.0383626
671671 24.2731 0.937053
672672 −5.83045 −0.224914
673673 11.2680 0.434348 0.217174 0.976133i 0.430316π-0.430316\pi
0.217174 + 0.976133i 0.430316π0.430316\pi
674674 19.9265 0.767542
675675 −1.00000 −0.0384900
676676 −4.89168 −0.188141
677677 6.08703 0.233943 0.116972 0.993135i 0.462681π-0.462681\pi
0.116972 + 0.993135i 0.462681π0.462681\pi
678678 −10.9167 −0.419254
679679 −8.15805 −0.313077
680680 2.46865 0.0946686
681681 −24.4237 −0.935918
682682 −20.0870 −0.769172
683683 −10.9579 −0.419292 −0.209646 0.977777i 0.567231π-0.567231\pi
−0.209646 + 0.977777i 0.567231π0.567231\pi
684684 −8.93731 −0.341727
685685 12.9988 0.496658
686686 0.704624 0.0269027
687687 −15.9027 −0.606724
688688 −1.18807 −0.0452948
689689 24.9162 0.949233
690690 3.29044 0.125265
691691 −11.9366 −0.454092 −0.227046 0.973884i 0.572907π-0.572907\pi
−0.227046 + 0.973884i 0.572907π0.572907\pi
692692 −24.7030 −0.939067
693693 −5.17328 −0.196517
694694 2.81850 0.106989
695695 −18.1803 −0.689618
696696 −25.5970 −0.970251
697697 7.67678 0.290779
698698 11.3952 0.431316
699699 −17.3629 −0.656725
700700 −1.50350 −0.0568271
701701 15.0913 0.569990 0.284995 0.958529i 0.408008π-0.408008\pi
0.284995 + 0.958529i 0.408008π0.408008\pi
702702 −2.84074 −0.107217
703703 −48.8139 −1.84105
704704 −8.13862 −0.306736
705705 11.4631 0.431724
706706 11.8227 0.444953
707707 −4.60477 −0.173180
708708 11.4443 0.430105
709709 28.2610 1.06137 0.530683 0.847571i 0.321936π-0.321936\pi
0.530683 + 0.847571i 0.321936π0.321936\pi
710710 −6.46372 −0.242579
711711 −12.0140 −0.450561
712712 −22.2190 −0.832691
713713 −25.7329 −0.963703
714714 0.704624 0.0263699
715715 −20.8564 −0.779986
716716 36.8858 1.37849
717717 12.5019 0.466890
718718 −14.6580 −0.547033
719719 23.2142 0.865745 0.432872 0.901455i 0.357500π-0.357500\pi
0.432872 + 0.901455i 0.357500π0.357500\pi
720720 1.26753 0.0472382
721721 4.39402 0.163642
722722 11.5100 0.428357
723723 −5.16396 −0.192050
724724 10.0157 0.372230
725725 −10.3688 −0.385088
726726 −11.1069 −0.412214
727727 40.9805 1.51988 0.759941 0.649992i 0.225228π-0.225228\pi
0.759941 + 0.649992i 0.225228π0.225228\pi
728728 −9.95254 −0.368866
729729 1.00000 0.0370370
730730 −2.31852 −0.0858124
731731 0.937309 0.0346676
732732 −7.05447 −0.260741
733733 26.6124 0.982953 0.491476 0.870891i 0.336457π-0.336457\pi
0.491476 + 0.870891i 0.336457π0.336457\pi
734734 −18.8054 −0.694118
735735 −1.00000 −0.0368856
736736 −27.2269 −1.00360
737737 7.29044 0.268547
738738 −5.40925 −0.199117
739739 −1.22074 −0.0449055 −0.0224528 0.999748i 0.507148π-0.507148\pi
−0.0224528 + 0.999748i 0.507148π0.507148\pi
740740 12.3466 0.453868
741741 −23.9649 −0.880373
742742 4.35478 0.159869
743743 28.0069 1.02747 0.513737 0.857948i 0.328261π-0.328261\pi
0.513737 + 0.857948i 0.328261π0.328261\pi
744744 13.6036 0.498731
745745 −11.0468 −0.404723
746746 −9.24414 −0.338452
747747 −14.7535 −0.539802
748748 −7.77805 −0.284394
749749 −10.6838 −0.390377
750750 −0.704624 −0.0257292
751751 −16.7071 −0.609652 −0.304826 0.952408i 0.598598π-0.598598\pi
−0.304826 + 0.952408i 0.598598π0.598598\pi
752752 −14.5298 −0.529848
753753 −14.2516 −0.519359
754754 −29.4551 −1.07269
755755 −11.3934 −0.414647
756756 1.50350 0.0546819
757757 9.46713 0.344089 0.172044 0.985089i 0.444963π-0.444963\pi
0.172044 + 0.985089i 0.444963π0.444963\pi
758758 26.0859 0.947483
759759 −24.1580 −0.876882
760760 −14.6745 −0.532299
761761 27.0982 0.982308 0.491154 0.871073i 0.336575π-0.336575\pi
0.491154 + 0.871073i 0.336575π0.336575\pi
762762 13.4518 0.487307
763763 1.29044 0.0467170
764764 −34.0953 −1.23352
765765 −1.00000 −0.0361551
766766 −4.23299 −0.152944
767767 30.6874 1.10806
768768 10.5819 0.381840
769769 −45.8684 −1.65406 −0.827029 0.562159i 0.809971π-0.809971\pi
−0.827029 + 0.562159i 0.809971π0.809971\pi
770770 −3.64522 −0.131365
771771 −18.2259 −0.656389
772772 −27.0145 −0.972272
773773 −26.0700 −0.937674 −0.468837 0.883285i 0.655327π-0.655327\pi
−0.468837 + 0.883285i 0.655327π0.655327\pi
774774 −0.660451 −0.0237394
775775 5.51051 0.197943
776776 20.1394 0.722962
777777 8.21185 0.294599
778778 15.5627 0.557949
779779 −45.6332 −1.63498
780780 6.06148 0.217036
781781 47.4559 1.69811
782782 3.29044 0.117666
783783 10.3688 0.370551
784784 1.26753 0.0452691
785785 −3.51984 −0.125628
786786 −2.02390 −0.0721900
787787 −11.0677 −0.394521 −0.197261 0.980351i 0.563205π-0.563205\pi
−0.197261 + 0.980351i 0.563205π0.563205\pi
788788 −10.5561 −0.376047
789789 25.2430 0.898674
790790 −8.46537 −0.301184
791791 15.4930 0.550866
792792 12.7710 0.453799
793793 −18.9162 −0.671733
794794 −14.3242 −0.508345
795795 −6.18029 −0.219192
796796 17.7921 0.630623
797797 2.49528 0.0883874 0.0441937 0.999023i 0.485928π-0.485928\pi
0.0441937 + 0.999023i 0.485928π0.485928\pi
798798 −4.18851 −0.148272
799799 11.4631 0.405534
800800 5.83045 0.206137
801801 9.00044 0.318015
802802 −2.19149 −0.0773841
803803 17.0223 0.600706
804804 −2.11881 −0.0747247
805805 −4.66977 −0.164588
806806 15.6539 0.551386
807807 −23.7679 −0.836671
808808 11.3676 0.399910
809809 −32.1671 −1.13094 −0.565468 0.824770i 0.691305π-0.691305\pi
−0.565468 + 0.824770i 0.691305π0.691305\pi
810810 0.704624 0.0247580
811811 21.7152 0.762525 0.381263 0.924467i 0.375489π-0.375489\pi
0.381263 + 0.924467i 0.375489π0.375489\pi
812812 15.5895 0.547085
813813 4.30732 0.151064
814814 29.9340 1.04919
815815 18.3513 0.642816
816816 1.26753 0.0443726
817817 −5.57166 −0.194928
818818 −18.1880 −0.635929
819819 4.03157 0.140874
820820 11.5421 0.403067
821821 26.5994 0.928324 0.464162 0.885750i 0.346356π-0.346356\pi
0.464162 + 0.885750i 0.346356π0.346356\pi
822822 −9.15926 −0.319466
823823 53.6454 1.86996 0.934980 0.354700i 0.115417π-0.115417\pi
0.934980 + 0.354700i 0.115417π0.115417\pi
824824 −10.8473 −0.377884
825825 5.17328 0.180110
826826 5.36344 0.186618
827827 12.5935 0.437919 0.218960 0.975734i 0.429734π-0.429734\pi
0.218960 + 0.975734i 0.429734π0.429734\pi
828828 7.02103 0.243998
829829 6.47194 0.224780 0.112390 0.993664i 0.464149π-0.464149\pi
0.112390 + 0.993664i 0.464149π0.464149\pi
830830 −10.3957 −0.360839
831831 3.03035 0.105122
832832 6.34248 0.219886
833833 −1.00000 −0.0346479
834834 12.8103 0.443584
835835 −16.4794 −0.570293
836836 46.2352 1.59908
837837 −5.51051 −0.190471
838838 −24.0050 −0.829240
839839 −2.69092 −0.0929007 −0.0464504 0.998921i 0.514791π-0.514791\pi
−0.0464504 + 0.998921i 0.514791π0.514791\pi
840840 2.46865 0.0851767
841841 78.5120 2.70731
842842 −18.8172 −0.648483
843843 14.9672 0.515498
844844 −2.44015 −0.0839935
845845 3.25352 0.111924
846846 −8.07715 −0.277698
847847 15.7628 0.541617
848848 7.83373 0.269011
849849 3.38866 0.116299
850850 −0.704624 −0.0241684
851851 38.3475 1.31454
852852 −13.7921 −0.472508
853853 48.3288 1.65475 0.827373 0.561653i 0.189834π-0.189834\pi
0.827373 + 0.561653i 0.189834π0.189834\pi
854854 −3.30611 −0.113133
855855 5.94432 0.203291
856856 26.3746 0.901465
857857 36.6070 1.25047 0.625235 0.780436i 0.285003π-0.285003\pi
0.625235 + 0.780436i 0.285003π0.285003\pi
858858 14.6959 0.501711
859859 52.4803 1.79060 0.895302 0.445460i 0.146960π-0.146960\pi
0.895302 + 0.445460i 0.146960π0.146960\pi
860860 1.40925 0.0480550
861861 7.67678 0.261624
862862 −10.4894 −0.357271
863863 7.75089 0.263843 0.131922 0.991260i 0.457885π-0.457885\pi
0.131922 + 0.991260i 0.457885π0.457885\pi
864864 −5.83045 −0.198356
865865 16.4303 0.558646
866866 −23.3911 −0.794864
867867 −1.00000 −0.0339618
868868 −8.28508 −0.281214
869869 62.1519 2.10836
870870 7.30611 0.247700
871871 −5.68148 −0.192510
872872 −3.18564 −0.107879
873873 −8.15805 −0.276108
874874 −19.5594 −0.661607
875875 1.00000 0.0338062
876876 −4.94719 −0.167150
877877 −9.94957 −0.335973 −0.167986 0.985789i 0.553727π-0.553727\pi
−0.167986 + 0.985789i 0.553727π0.553727\pi
878878 −4.43325 −0.149615
879879 −1.16748 −0.0393783
880880 −6.55731 −0.221047
881881 −17.4836 −0.589037 −0.294518 0.955646i 0.595159π-0.595159\pi
−0.294518 + 0.955646i 0.595159π0.595159\pi
882882 0.704624 0.0237259
883883 −39.5331 −1.33039 −0.665197 0.746668i 0.731652π-0.731652\pi
−0.665197 + 0.746668i 0.731652π0.731652\pi
884884 6.06148 0.203870
885885 −7.61178 −0.255867
886886 20.9599 0.704163
887887 −22.5771 −0.758066 −0.379033 0.925383i 0.623743π-0.623743\pi
−0.379033 + 0.925383i 0.623743π0.623743\pi
888888 −20.2722 −0.680291
889889 −19.0907 −0.640282
890890 6.34193 0.212582
891891 −5.17328 −0.173311
892892 −11.1135 −0.372106
893893 −68.1400 −2.28022
894894 7.78384 0.260331
895895 −24.5332 −0.820054
896896 −10.5524 −0.352530
897897 18.8265 0.628599
898898 2.35892 0.0787183
899899 −57.1374 −1.90564
900900 −1.50350 −0.0501168
901901 −6.18029 −0.205895
902902 27.9836 0.931750
903903 0.937309 0.0311917
904904 −38.2468 −1.27207
905905 −6.66155 −0.221437
906906 8.02804 0.266714
907907 14.4187 0.478765 0.239382 0.970925i 0.423055π-0.423055\pi
0.239382 + 0.970925i 0.423055π0.423055\pi
908908 −36.7212 −1.21863
909909 −4.60477 −0.152731
910910 2.84074 0.0941696
911911 2.04089 0.0676177 0.0338088 0.999428i 0.489236π-0.489236\pi
0.0338088 + 0.999428i 0.489236π0.489236\pi
912912 −7.53463 −0.249497
913913 76.3239 2.52595
914914 −17.9630 −0.594162
915915 4.69202 0.155113
916916 −23.9097 −0.789999
917917 2.87230 0.0948518
918918 0.704624 0.0232561
919919 −42.1403 −1.39008 −0.695040 0.718971i 0.744613π-0.744613\pi
−0.695040 + 0.718971i 0.744613π0.744613\pi
920920 11.5281 0.380069
921921 8.43850 0.278058
922922 −24.0267 −0.791278
923923 −36.9827 −1.21730
924924 −7.77805 −0.255879
925925 −8.21185 −0.270004
926926 17.2810 0.567890
927927 4.39402 0.144318
928928 −60.4547 −1.98452
929929 6.43215 0.211032 0.105516 0.994418i 0.466351π-0.466351\pi
0.105516 + 0.994418i 0.466351π0.466351\pi
930930 −3.88284 −0.127323
931931 5.94432 0.194817
932932 −26.1052 −0.855104
933933 −7.75636 −0.253932
934934 0.0326651 0.00106883
935935 5.17328 0.169184
936936 −9.95254 −0.325309
937937 −49.5407 −1.61843 −0.809213 0.587516i 0.800106π-0.800106\pi
−0.809213 + 0.587516i 0.800106π0.800106\pi
938938 −0.992991 −0.0324223
939939 −25.2562 −0.824206
940940 17.2348 0.562136
941941 −0.355003 −0.0115728 −0.00578638 0.999983i 0.501842π-0.501842\pi
−0.00578638 + 0.999983i 0.501842π0.501842\pi
942942 2.48016 0.0808081
943943 35.8488 1.16740
944944 9.64819 0.314022
945945 −1.00000 −0.0325300
946946 3.41670 0.111086
947947 45.4096 1.47561 0.737806 0.675012i 0.235862π-0.235862\pi
0.737806 + 0.675012i 0.235862π0.235862\pi
948948 −18.0631 −0.586663
949949 −13.2656 −0.430620
950950 4.18851 0.135893
951951 −20.5584 −0.666652
952952 2.46865 0.0800096
953953 −3.38044 −0.109503 −0.0547516 0.998500i 0.517437π-0.517437\pi
−0.0547516 + 0.998500i 0.517437π0.517437\pi
954954 4.35478 0.140991
955955 22.6772 0.733818
956956 18.7966 0.607925
957957 −53.6407 −1.73396
958958 28.3869 0.917139
959959 12.9988 0.419753
960960 −1.57320 −0.0507749
961961 −0.634241 −0.0204594
962962 −23.3277 −0.752116
963963 −10.6838 −0.344280
964964 −7.76403 −0.250063
965965 17.9677 0.578399
966966 3.29044 0.105868
967967 −7.94675 −0.255550 −0.127775 0.991803i 0.540784π-0.540784\pi
−0.127775 + 0.991803i 0.540784π0.540784\pi
968968 −38.9129 −1.25071
969969 5.94432 0.190959
970970 −5.74836 −0.184569
971971 −13.9419 −0.447417 −0.223708 0.974656i 0.571816π-0.571816\pi
−0.223708 + 0.974656i 0.571816π0.571816\pi
972972 1.50350 0.0482249
973973 −18.1803 −0.582833
974974 −13.8185 −0.442775
975975 −4.03157 −0.129113
976976 −5.94729 −0.190368
977977 −43.0222 −1.37640 −0.688201 0.725520i 0.741599π-0.741599\pi
−0.688201 + 0.725520i 0.741599π0.741599\pi
978978 −12.9307 −0.413479
979979 −46.5618 −1.48812
980980 −1.50350 −0.0480277
981981 1.29044 0.0412005
982982 −5.30578 −0.169314
983983 −36.8433 −1.17512 −0.587559 0.809181i 0.699911π-0.699911\pi
−0.587559 + 0.809181i 0.699911π0.699911\pi
984984 −18.9513 −0.604146
985985 7.02103 0.223709
986986 7.30611 0.232674
987987 11.4631 0.364873
988988 −36.0313 −1.14631
989989 4.37702 0.139181
990990 −3.64522 −0.115853
991991 −35.5256 −1.12851 −0.564254 0.825601i 0.690836π-0.690836\pi
−0.564254 + 0.825601i 0.690836π0.690836\pi
992992 32.1287 1.02009
993993 −8.59351 −0.272707
994994 −6.46372 −0.205017
995995 −11.8337 −0.375154
996996 −22.1819 −0.702862
997997 −49.2025 −1.55826 −0.779129 0.626864i 0.784338π-0.784338\pi
−0.779129 + 0.626864i 0.784338π0.784338\pi
998998 −24.3227 −0.769920
999999 8.21185 0.259812
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1785.2.a.z.1.3 4
3.2 odd 2 5355.2.a.bl.1.2 4
5.4 even 2 8925.2.a.bu.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.z.1.3 4 1.1 even 1 trivial
5355.2.a.bl.1.2 4 3.2 odd 2
8925.2.a.bu.1.2 4 5.4 even 2