18.2.c.a |
18 |
2 |
18.c |
9.c |
3 |
2 |
1 |
0.144 |
Q(−3) |
None |
|
✓ |
✓ |
✓ |
18.2.c.a |
2 |
0 |
−1 |
−3 |
0 |
−2 |
|
1 |
SU(2)[C3] |
q−ζ6q2+(−2+ζ6)q3+(−1+ζ6)q4+⋯ |
18.3.b.a |
18 |
3 |
18.b |
3.b |
2 |
2 |
2 |
0.490 |
Q(−2) |
None |
|
✓ |
✓ |
✓ |
18.3.b.a |
2 |
0 |
0 |
0 |
0 |
−8 |
|
1 |
SU(2)[C2] |
q+βq2−2q4−3βq5−4q7−2βq8+⋯ |
18.3.d.a |
18 |
3 |
18.d |
9.d |
6 |
4 |
2 |
0.490 |
Q(−2,−3) |
None |
|
✓ |
✓ |
✓ |
18.3.d.a |
2 |
0 |
0 |
0 |
−18 |
2 |
|
1 |
SU(2)[C6] |
q+β1q2+(1−2β1−2β2+β3)q3+⋯ |
18.4.a.a |
18 |
4 |
18.a |
1.a |
1 |
1 |
1 |
1.062 |
Q |
None |
✓ |
|
✓ |
✓ |
6.4.a.a |
1 |
0 |
2 |
0 |
−6 |
−16 |
+ |
1 |
SU(2) |
q+2q2+4q4−6q5−24q7+8q8+⋯ |
18.4.c.a |
18 |
4 |
18.c |
9.c |
3 |
2 |
1 |
1.062 |
Q(−3) |
None |
|
✓ |
|
|
18.4.c.a |
2 |
0 |
−2 |
0 |
9 |
31 |
|
1 |
SU(2)[C3] |
q−2ζ6q2+(3−6ζ6)q3+(−4+4ζ6)q4+⋯ |
18.4.c.b |
18 |
4 |
18.c |
9.c |
3 |
4 |
2 |
1.062 |
Q(−3,−35) |
None |
|
✓ |
✓ |
|
18.4.c.b |
2 |
0 |
4 |
3 |
9 |
−19 |
|
3 |
SU(2)[C3] |
q−2β1q2+(−β1−β3)q3+(−4−4β1+⋯)q4+⋯ |
18.5.d.a |
18 |
5 |
18.d |
9.d |
6 |
8 |
4 |
1.861 |
8.0.⋯.4 |
None |
|
✓ |
✓ |
✓ |
18.5.d.a |
2 |
0 |
0 |
6 |
18 |
−26 |
|
24⋅34 |
SU(2)[C6] |
q−β3q2+(2+β1−3β2−β5)q3+⋯ |
18.6.a.a |
18 |
6 |
18.a |
1.a |
1 |
1 |
1 |
2.887 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.6.a.a |
1 |
1 |
−4 |
0 |
−96 |
−148 |
+ |
1 |
SU(2) |
q−4q2+24q4−96q5−148q7+⋯ |
18.6.a.b |
18 |
6 |
18.a |
1.a |
1 |
1 |
1 |
2.887 |
Q |
None |
✓ |
|
✓ |
✓ |
6.6.a.a |
1 |
0 |
−4 |
0 |
66 |
176 |
− |
1 |
SU(2) |
q−4q2+24q4+66q5+176q7+⋯ |
18.6.a.c |
18 |
6 |
18.a |
1.a |
1 |
1 |
1 |
2.887 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.6.a.a |
1 |
0 |
4 |
0 |
96 |
−148 |
− |
1 |
SU(2) |
q+4q2+24q4+96q5−148q7+⋯ |
18.6.c.a |
18 |
6 |
18.c |
9.c |
3 |
4 |
2 |
2.887 |
Q(−2,−3) |
None |
|
✓ |
|
|
18.6.c.a |
2 |
0 |
8 |
0 |
−54 |
74 |
|
22⋅33 |
SU(2)[C3] |
q+4β1q2+(−3+6β1+β3)q3+(−24+⋯)q4+⋯ |
18.6.c.b |
18 |
6 |
18.c |
9.c |
3 |
6 |
3 |
2.887 |
6.0.⋯.3 |
None |
|
✓ |
✓ |
|
18.6.c.b |
2 |
0 |
−12 |
9 |
−54 |
−132 |
|
22⋅34 |
SU(2)[C3] |
q−4β1q2+(1+β1+β2−β3)q3+⋯ |
18.7.b.a |
18 |
7 |
18.b |
3.b |
2 |
2 |
2 |
4.141 |
Q(−2) |
None |
|
✓ |
✓ |
✓ |
18.7.b.a |
2 |
0 |
0 |
0 |
0 |
−968 |
|
1 |
SU(2)[C2] |
q+4βq2−25q4+123βq5−222q7+⋯ |
18.7.d.a |
18 |
7 |
18.d |
9.d |
6 |
12 |
6 |
4.141 |
Q[x]/(x12+⋯) |
None |
|
✓ |
✓ |
✓ |
18.7.d.a |
2 |
0 |
0 |
−42 |
432 |
240 |
|
210⋅310 |
SU(2)[C6] |
q−β3q2+(−6+4β1+β2−β3+β7+⋯)q3+⋯ |
18.8.a.a |
18 |
8 |
18.a |
1.a |
1 |
1 |
1 |
5.623 |
Q |
None |
✓ |
|
✓ |
✓ |
6.8.a.a |
1 |
1 |
−8 |
0 |
114 |
−1576 |
− |
1 |
SU(2) |
q−8q2+26q4+114q5−1576q7+⋯ |
18.8.a.b |
18 |
8 |
18.a |
1.a |
1 |
1 |
1 |
5.623 |
Q |
None |
✓ |
|
✓ |
✓ |
2.8.a.a |
1 |
0 |
8 |
0 |
210 |
1016 |
+ |
1 |
SU(2) |
q+8q2+26q4+210q5+1016q7+⋯ |
18.8.c.a |
18 |
8 |
18.c |
9.c |
3 |
6 |
3 |
5.623 |
6.0.⋯.1 |
None |
|
✓ |
|
|
18.8.c.a |
2 |
0 |
−24 |
−27 |
54 |
210 |
|
22⋅36 |
SU(2)[C3] |
q−8β1q2+(−14+19β1−β2−β4+⋯)q3+⋯ |
18.8.c.b |
18 |
8 |
18.c |
9.c |
3 |
8 |
4 |
5.623 |
Q[x]/(x8+⋯) |
None |
|
✓ |
✓ |
|
18.8.c.b |
2 |
0 |
32 |
−12 |
54 |
−44 |
|
24⋅310 |
SU(2)[C3] |
q+(8−8β1)q2+(−7+11β1+β3+⋯)q3+⋯ |
18.9.b.a |
18 |
9 |
18.b |
3.b |
2 |
2 |
2 |
7.333 |
Q(−2) |
None |
|
✓ |
|
|
18.9.b.a |
2 |
0 |
0 |
0 |
0 |
−7064 |
|
1 |
SU(2)[C2] |
q+8βq2−27q4+165βq5−3532q7+⋯ |
18.9.b.b |
18 |
9 |
18.b |
3.b |
2 |
2 |
2 |
7.333 |
Q(−2) |
None |
|
✓ |
|
|
18.9.b.b |
2 |
0 |
0 |
0 |
0 |
3304 |
|
1 |
SU(2)[C2] |
q+8βq2−27q4−645βq5+1652q7+⋯ |
18.9.d.a |
18 |
9 |
18.d |
9.d |
6 |
16 |
8 |
7.333 |
Q[x]/(x16−⋯) |
None |
|
✓ |
✓ |
✓ |
18.9.d.a |
2 |
0 |
0 |
126 |
−882 |
−1846 |
|
228⋅322 |
SU(2)[C6] |
q+β4q2+(7+2β1+β3+β4)q3+⋯ |
18.10.a.a |
18 |
10 |
18.a |
1.a |
1 |
1 |
1 |
9.271 |
Q |
None |
✓ |
|
✓ |
✓ |
2.10.a.a |
1 |
0 |
−16 |
0 |
−870 |
−952 |
− |
1 |
SU(2) |
q−24q2+28q4−870q5−952q7+⋯ |
18.10.a.b |
18 |
10 |
18.a |
1.a |
1 |
1 |
1 |
9.271 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.10.a.b |
1 |
1 |
−16 |
0 |
−384 |
5852 |
+ |
1 |
SU(2) |
q−24q2+28q4−384q5+5852q7+⋯ |
18.10.a.c |
18 |
10 |
18.a |
1.a |
1 |
1 |
1 |
9.271 |
Q |
None |
✓ |
|
✓ |
✓ |
6.10.a.a |
1 |
1 |
16 |
0 |
−2694 |
−3544 |
+ |
1 |
SU(2) |
q+24q2+28q4−2694q5−3544q7+⋯ |
18.10.a.d |
18 |
10 |
18.a |
1.a |
1 |
1 |
1 |
9.271 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.10.a.b |
1 |
0 |
16 |
0 |
384 |
5852 |
− |
1 |
SU(2) |
q+24q2+28q4+384q5+5852q7+⋯ |
18.10.c.a |
18 |
10 |
18.c |
9.c |
3 |
8 |
4 |
9.271 |
Q[x]/(x8+⋯) |
None |
|
✓ |
|
|
18.10.c.a |
2 |
0 |
64 |
−81 |
171 |
7135 |
|
26⋅312 |
SU(2)[C3] |
q+(24−24β1)q2+(−21+22β1+β2+⋯)q3+⋯ |
18.10.c.b |
18 |
10 |
18.c |
9.c |
3 |
10 |
5 |
9.271 |
Q[x]/(x10+⋯) |
None |
|
✓ |
✓ |
|
18.10.c.b |
2 |
0 |
−80 |
156 |
171 |
−6451 |
|
28⋅316⋅52 |
SU(2)[C3] |
q−24β1q2+(29−33β1−β3−β4+⋯)q3+⋯ |
18.11.b.a |
18 |
11 |
18.b |
3.b |
2 |
2 |
2 |
11.436 |
Q(−2) |
None |
|
✓ |
✓ |
✓ |
18.11.b.a |
2 |
0 |
0 |
0 |
0 |
41272 |
|
1 |
SU(2)[C2] |
q+24βq2−29q4−1443βq5+20636q7+⋯ |
18.11.d.a |
18 |
11 |
18.d |
9.d |
6 |
20 |
10 |
11.436 |
Q[x]/(x20−⋯) |
None |
|
✓ |
✓ |
✓ |
18.11.d.a |
2 |
0 |
0 |
−84 |
−9918 |
12238 |
|
246⋅337 |
SU(2)[C6] |
q+β2q2+(−2−4β1+β3−β4)q3+⋯ |
18.12.a.a |
18 |
12 |
18.a |
1.a |
1 |
1 |
1 |
13.830 |
Q |
None |
✓ |
|
✓ |
✓ |
6.12.a.c |
1 |
1 |
−32 |
0 |
−3630 |
32936 |
− |
1 |
SU(2) |
q−25q2+210q4−3630q5+32936q7+⋯ |
18.12.a.b |
18 |
12 |
18.a |
1.a |
1 |
1 |
1 |
13.830 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.12.a.b |
1 |
0 |
−32 |
0 |
5280 |
−49036 |
+ |
1 |
SU(2) |
q−25q2+210q4+5280q5−49036q7+⋯ |
18.12.a.c |
18 |
12 |
18.a |
1.a |
1 |
1 |
1 |
13.830 |
Q |
None |
✓ |
|
|
|
6.12.a.a |
1 |
0 |
32 |
0 |
−5766 |
72464 |
+ |
1 |
SU(2) |
q+25q2+210q4−5766q5+72464q7+⋯ |
18.12.a.d |
18 |
12 |
18.a |
1.a |
1 |
1 |
1 |
13.830 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.12.a.b |
1 |
1 |
32 |
0 |
−5280 |
−49036 |
− |
1 |
SU(2) |
q+25q2+210q4−5280q5−49036q7+⋯ |
18.12.a.e |
18 |
12 |
18.a |
1.a |
1 |
1 |
1 |
13.830 |
Q |
None |
✓ |
|
|
|
6.12.a.b |
1 |
0 |
32 |
0 |
11730 |
−50008 |
+ |
1 |
SU(2) |
q+25q2+210q4+11730q5−50008q7+⋯ |
18.12.c.a |
18 |
12 |
18.c |
9.c |
3 |
10 |
5 |
13.830 |
Q[x]/(x10−⋯) |
None |
|
✓ |
|
|
18.12.c.a |
2 |
0 |
−160 |
−243 |
4104 |
44528 |
|
212⋅321⋅52 |
SU(2)[C3] |
q+25β1q2+(−55−62β1+β5)q3+⋯ |
18.12.c.b |
18 |
12 |
18.c |
9.c |
3 |
12 |
6 |
13.830 |
Q[x]/(x12−⋯) |
None |
|
✓ |
✓ |
|
18.12.c.b |
2 |
0 |
192 |
0 |
4104 |
−61554 |
|
214⋅325⋅52 |
SU(2)[C3] |
q−25β1q2+(−39−77β1−β3)q3+⋯ |
18.13.b.a |
18 |
13 |
18.b |
3.b |
2 |
2 |
2 |
16.452 |
Q(−2) |
None |
|
✓ |
|
|
18.13.b.a |
2 |
0 |
0 |
0 |
0 |
−98744 |
|
1 |
SU(2)[C2] |
q+25βq2−211q4+795βq5−49372q7+⋯ |
18.13.b.b |
18 |
13 |
18.b |
3.b |
2 |
2 |
2 |
16.452 |
Q(−2) |
None |
|
✓ |
|
|
18.13.b.b |
2 |
0 |
0 |
0 |
0 |
67144 |
|
1 |
SU(2)[C2] |
q+25βq2−211q4+14565βq5+⋯ |
18.13.d.a |
18 |
13 |
18.d |
9.d |
6 |
24 |
12 |
16.452 |
|
None |
|
✓ |
✓ |
✓ |
18.13.d.a |
2 |
0 |
0 |
−780 |
31968 |
−68640 |
|
|
SU(2)[C6] |
|
18.14.a.a |
18 |
14 |
18.a |
1.a |
1 |
1 |
1 |
19.302 |
Q |
None |
✓ |
|
|
|
6.14.a.a |
1 |
0 |
−64 |
0 |
−54654 |
176336 |
− |
1 |
SU(2) |
q−26q2+212q4−54654q5+176336q7+⋯ |
18.14.a.b |
18 |
14 |
18.a |
1.a |
1 |
1 |
1 |
19.302 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.14.a.b |
1 |
1 |
−64 |
0 |
−15936 |
98252 |
+ |
1 |
SU(2) |
q−26q2+212q4−15936q5+98252q7+⋯ |
18.14.a.c |
18 |
14 |
18.a |
1.a |
1 |
1 |
1 |
19.302 |
Q |
None |
✓ |
|
|
|
2.14.a.b |
1 |
0 |
−64 |
0 |
57450 |
64232 |
− |
1 |
SU(2) |
q−26q2+212q4+57450q5+64232q7+⋯ |
18.14.a.d |
18 |
14 |
18.a |
1.a |
1 |
1 |
1 |
19.302 |
Q |
None |
✓ |
|
✓ |
✓ |
2.14.a.a |
1 |
1 |
64 |
0 |
−3990 |
−433432 |
+ |
1 |
SU(2) |
q+26q2+212q4−3990q5−433432q7+⋯ |
18.14.a.e |
18 |
14 |
18.a |
1.a |
1 |
1 |
1 |
19.302 |
Q |
None |
✓ |
✓ |
✓ |
✓ |
18.14.a.b |
1 |
0 |
64 |
0 |
15936 |
98252 |
− |
1 |
SU(2) |
q+26q2+212q4+15936q5+98252q7+⋯ |
18.14.c.a |
18 |
14 |
18.c |
9.c |
3 |
12 |
6 |
19.302 |
Q[x]/(x12−⋯) |
None |
|
✓ |
|
|
18.14.c.a |
2 |
0 |
384 |
1836 |
−36504 |
153942 |
|
216⋅331 |
SU(2)[C3] |
q+26β1q2+(191−76β1−β2−β3+⋯)q3+⋯ |
18.14.c.b |
18 |
14 |
18.c |
9.c |
3 |
14 |
7 |
19.302 |
Q[x]/(x14+⋯) |
None |
|
✓ |
✓ |
|
18.14.c.b |
2 |
0 |
−448 |
−507 |
−36504 |
33880 |
|
226⋅337 |
SU(2)[C3] |
q−26β1q2+(7−87β1−β4)q3+(−212+⋯)q4+⋯ |
18.15.b.a |
18 |
15 |
18.b |
3.b |
2 |
2 |
2 |
22.379 |
Q(−2) |
None |
|
✓ |
|
|
18.15.b.a |
2 |
0 |
0 |
0 |
0 |
−522152 |
|
1 |
SU(2)[C2] |
q−26βq2−213q4+9075βq5−261076q7+⋯ |
18.15.b.b |
18 |
15 |
18.b |
3.b |
2 |
4 |
4 |
22.379 |
Q[x]/(x4−⋯) |
None |
|
✓ |
✓ |
|
18.15.b.b |
2 |
0 |
0 |
0 |
0 |
2659664 |
|
27⋅38 |
SU(2)[C2] |
q+26β1q2−213q4+(−3081β1+⋯)q5+⋯ |
18.15.d.a |
18 |
15 |
18.d |
9.d |
6 |
28 |
14 |
22.379 |
|
None |
|
✓ |
✓ |
✓ |
18.15.d.a |
2 |
0 |
0 |
3276 |
215982 |
292658 |
|
|
SU(2)[C6] |
|
18.16.a.a |
18 |
16 |
18.a |
1.a |
1 |
1 |
1 |
25.685 |
Q |
None |
✓ |
|
|
|
6.16.a.c |
1 |
1 |
−128 |
0 |
−77646 |
762104 |
− |
1 |
SU(2) |
q−27q2+214q4−77646q5+762104q7+⋯ |