Properties

Label 18.21.b
Level $18$
Weight $21$
Character orbit 18.b
Rep. character $\chi_{18}(17,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $2$
Sturm bound $63$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 18.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(63\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(18, [\chi])\).

Total New Old
Modular forms 64 8 56
Cusp forms 56 8 48
Eisenstein series 8 0 8

Trace form

\( 8 q - 4194304 q^{4} + 599424160 q^{7} - 13746831360 q^{10} - 258508597760 q^{13} + 2199023255552 q^{16} - 18413226146432 q^{19} + 947650560000 q^{22} - 581762885173000 q^{25} - 314270893998080 q^{28} - 30\!\cdots\!88 q^{31}+ \cdots - 48\!\cdots\!20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(18, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
18.21.b.a 18.b 3.b $4$ $45.632$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 18.21.b.a \(0\) \(0\) \(0\) \(196612688\) $\mathrm{SU}(2)[C_{2}]$ \(q+2^{9}\beta _{1}q^{2}-2^{19}q^{4}+(-793635\beta _{1}+\cdots)q^{5}+\cdots\)
18.21.b.b 18.b 3.b $4$ $45.632$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 18.21.b.b \(0\) \(0\) \(0\) \(402811472\) $\mathrm{SU}(2)[C_{2}]$ \(q-2^{9}\beta _{1}q^{2}-2^{19}q^{4}+(-4149795\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{21}^{\mathrm{old}}(18, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(18, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)