Defining parameters
Level: | \( N \) | \(=\) | \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 180.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(180, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 8 | 76 |
Cusp forms | 60 | 8 | 52 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(180, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
180.2.i.a | $2$ | $1.437$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-1\) | \(1\) | \(q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(1-\zeta_{6})q^{7}+\cdots\) |
180.2.i.b | $6$ | $1.437$ | 6.0.954288.1 | None | \(0\) | \(-1\) | \(3\) | \(-3\) | \(q-\beta _{1}q^{3}+(1+\beta _{2})q^{5}+(\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(180, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(180, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)