Properties

Label 180.2.i
Level 180180
Weight 22
Character orbit 180.i
Rep. character χ180(61,)\chi_{180}(61,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 88
Newform subspaces 22
Sturm bound 7272
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 180=22325 180 = 2^{2} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 180.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 11
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M2(180,[χ])M_{2}(180, [\chi]).

Total New Old
Modular forms 84 8 76
Cusp forms 60 8 52
Eisenstein series 24 0 24

Trace form

8q+2q3+2q52q7+8q92q132q1512q17+16q1920q21+6q234q25+2q27+4q31+12q338q35+4q378q3912q41++12q99+O(q100) 8 q + 2 q^{3} + 2 q^{5} - 2 q^{7} + 8 q^{9} - 2 q^{13} - 2 q^{15} - 12 q^{17} + 16 q^{19} - 20 q^{21} + 6 q^{23} - 4 q^{25} + 2 q^{27} + 4 q^{31} + 12 q^{33} - 8 q^{35} + 4 q^{37} - 8 q^{39} - 12 q^{41}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(180,[χ])S_{2}^{\mathrm{new}}(180, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
180.2.i.a 180.i 9.c 22 1.4371.437 Q(3)\Q(\sqrt{-3}) None 180.2.i.a 00 33 1-1 11 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(2ζ6)q3ζ6q5+(1ζ6)q7+q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(1-\zeta_{6})q^{7}+\cdots
180.2.i.b 180.i 9.c 66 1.4371.437 6.0.954288.1 None 180.2.i.b 00 1-1 33 3-3 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ1q3+(1+β2)q5+(β2β3β4+)q7+q-\beta _{1}q^{3}+(1+\beta _{2})q^{5}+(\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{7}+\cdots

Decomposition of S2old(180,[χ])S_{2}^{\mathrm{old}}(180, [\chi]) into lower level spaces

S2old(180,[χ]) S_{2}^{\mathrm{old}}(180, [\chi]) \simeq S2new(18,[χ])S_{2}^{\mathrm{new}}(18, [\chi])4^{\oplus 4}\oplusS2new(36,[χ])S_{2}^{\mathrm{new}}(36, [\chi])2^{\oplus 2}\oplusS2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])3^{\oplus 3}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])2^{\oplus 2}