Properties

Label 180.3.m.c.107.6
Level $180$
Weight $3$
Character 180.107
Analytic conductor $4.905$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [180,3,Mod(107,180)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(180, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("180.107");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 180 = 2^{2} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 180.m (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.90464475849\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 107.6
Character \(\chi\) \(=\) 180.107
Dual form 180.3.m.c.143.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34709 - 1.47830i) q^{2} +(-0.370713 + 3.98278i) q^{4} +(-4.91198 - 0.934037i) q^{5} +(6.91072 - 6.91072i) q^{7} +(6.38711 - 4.81713i) q^{8} +(5.23609 + 8.51959i) q^{10} -11.7722 q^{11} +(-15.8648 + 15.8648i) q^{13} +(-19.5254 - 0.906743i) q^{14} +(-15.7251 - 2.95294i) q^{16} +(2.08802 - 2.08802i) q^{17} -25.8603 q^{19} +(5.54100 - 19.2171i) q^{20} +(15.8582 + 17.4028i) q^{22} +(-16.6596 + 16.6596i) q^{23} +(23.2552 + 9.17595i) q^{25} +(44.8240 + 2.08159i) q^{26} +(24.9620 + 30.0858i) q^{28} -16.1888 q^{29} -24.3646i q^{31} +(16.8178 + 27.2243i) q^{32} +(-5.89944 - 0.273965i) q^{34} +(-40.4002 + 27.4905i) q^{35} +(-17.7235 - 17.7235i) q^{37} +(34.8361 + 38.2292i) q^{38} +(-35.8728 + 17.6959i) q^{40} -4.72832i q^{41} +(-29.6654 - 29.6654i) q^{43} +(4.36410 - 46.8861i) q^{44} +(47.0698 + 2.18588i) q^{46} +(10.1392 + 10.1392i) q^{47} -46.5162i q^{49} +(-17.7620 - 46.7388i) q^{50} +(-57.3047 - 69.0672i) q^{52} +(47.9481 + 47.9481i) q^{53} +(57.8248 + 10.9957i) q^{55} +(10.8497 - 77.4294i) q^{56} +(21.8078 + 23.9319i) q^{58} -45.7297i q^{59} +26.7308 q^{61} +(-36.0181 + 32.8213i) q^{62} +(17.5904 - 61.5352i) q^{64} +(92.7457 - 63.1092i) q^{65} +(41.7043 - 41.7043i) q^{67} +(7.54206 + 9.09017i) q^{68} +(95.0617 + 22.6914i) q^{70} -68.0054 q^{71} +(22.7380 - 22.7380i) q^{73} +(-2.32547 + 50.0758i) q^{74} +(9.58676 - 102.996i) q^{76} +(-81.3543 + 81.3543i) q^{77} -102.115 q^{79} +(74.4835 + 29.1927i) q^{80} +(-6.98985 + 6.36945i) q^{82} +(79.1393 - 79.1393i) q^{83} +(-12.2066 + 8.30601i) q^{85} +(-3.89235 + 83.8162i) q^{86} +(-75.1903 + 56.7082i) q^{88} -87.2500 q^{89} +219.274i q^{91} +(-60.1757 - 72.5275i) q^{92} +(1.33035 - 28.6471i) q^{94} +(127.026 + 24.1545i) q^{95} +(-22.6466 - 22.6466i) q^{97} +(-68.7646 + 62.6613i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 16 q^{10} - 40 q^{13} + 184 q^{16} + 112 q^{22} + 32 q^{28} - 264 q^{37} + 40 q^{40} - 160 q^{46} - 328 q^{52} - 720 q^{58} - 128 q^{61} + 464 q^{70} - 664 q^{73} + 576 q^{76} + 320 q^{82} + 608 q^{85}+ \cdots + 360 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/180\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(91\) \(101\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34709 1.47830i −0.673544 0.739148i
\(3\) 0 0
\(4\) −0.370713 + 3.98278i −0.0926783 + 0.995696i
\(5\) −4.91198 0.934037i −0.982397 0.186807i
\(6\) 0 0
\(7\) 6.91072 6.91072i 0.987246 0.987246i −0.0126736 0.999920i \(-0.504034\pi\)
0.999920 + 0.0126736i \(0.00403425\pi\)
\(8\) 6.38711 4.81713i 0.798389 0.602142i
\(9\) 0 0
\(10\) 5.23609 + 8.51959i 0.523609 + 0.851959i
\(11\) −11.7722 −1.07020 −0.535099 0.844789i \(-0.679726\pi\)
−0.535099 + 0.844789i \(0.679726\pi\)
\(12\) 0 0
\(13\) −15.8648 + 15.8648i −1.22037 + 1.22037i −0.252865 + 0.967502i \(0.581373\pi\)
−0.967502 + 0.252865i \(0.918627\pi\)
\(14\) −19.5254 0.906743i −1.39467 0.0647673i
\(15\) 0 0
\(16\) −15.7251 2.95294i −0.982821 0.184559i
\(17\) 2.08802 2.08802i 0.122824 0.122824i −0.643023 0.765847i \(-0.722320\pi\)
0.765847 + 0.643023i \(0.222320\pi\)
\(18\) 0 0
\(19\) −25.8603 −1.36107 −0.680535 0.732715i \(-0.738253\pi\)
−0.680535 + 0.732715i \(0.738253\pi\)
\(20\) 5.54100 19.2171i 0.277050 0.960855i
\(21\) 0 0
\(22\) 15.8582 + 17.4028i 0.720825 + 0.791034i
\(23\) −16.6596 + 16.6596i −0.724331 + 0.724331i −0.969484 0.245154i \(-0.921162\pi\)
0.245154 + 0.969484i \(0.421162\pi\)
\(24\) 0 0
\(25\) 23.2552 + 9.17595i 0.930206 + 0.367038i
\(26\) 44.8240 + 2.08159i 1.72400 + 0.0800610i
\(27\) 0 0
\(28\) 24.9620 + 30.0858i 0.891501 + 1.07449i
\(29\) −16.1888 −0.558236 −0.279118 0.960257i \(-0.590042\pi\)
−0.279118 + 0.960257i \(0.590042\pi\)
\(30\) 0 0
\(31\) 24.3646i 0.785955i −0.919548 0.392978i \(-0.871445\pi\)
0.919548 0.392978i \(-0.128555\pi\)
\(32\) 16.8178 + 27.2243i 0.525557 + 0.850758i
\(33\) 0 0
\(34\) −5.89944 0.273965i −0.173513 0.00805778i
\(35\) −40.4002 + 27.4905i −1.15429 + 0.785442i
\(36\) 0 0
\(37\) −17.7235 17.7235i −0.479015 0.479015i 0.425802 0.904817i \(-0.359992\pi\)
−0.904817 + 0.425802i \(0.859992\pi\)
\(38\) 34.8361 + 38.2292i 0.916740 + 1.00603i
\(39\) 0 0
\(40\) −35.8728 + 17.6959i −0.896819 + 0.442397i
\(41\) 4.72832i 0.115325i −0.998336 0.0576624i \(-0.981635\pi\)
0.998336 0.0576624i \(-0.0183647\pi\)
\(42\) 0 0
\(43\) −29.6654 29.6654i −0.689894 0.689894i 0.272314 0.962208i \(-0.412211\pi\)
−0.962208 + 0.272314i \(0.912211\pi\)
\(44\) 4.36410 46.8861i 0.0991841 1.06559i
\(45\) 0 0
\(46\) 47.0698 + 2.18588i 1.02326 + 0.0475190i
\(47\) 10.1392 + 10.1392i 0.215728 + 0.215728i 0.806695 0.590968i \(-0.201254\pi\)
−0.590968 + 0.806695i \(0.701254\pi\)
\(48\) 0 0
\(49\) 46.5162i 0.949310i
\(50\) −17.7620 46.7388i −0.355239 0.934775i
\(51\) 0 0
\(52\) −57.3047 69.0672i −1.10201 1.32822i
\(53\) 47.9481 + 47.9481i 0.904682 + 0.904682i 0.995837 0.0911547i \(-0.0290558\pi\)
−0.0911547 + 0.995837i \(0.529056\pi\)
\(54\) 0 0
\(55\) 57.8248 + 10.9957i 1.05136 + 0.199921i
\(56\) 10.8497 77.4294i 0.193745 1.38267i
\(57\) 0 0
\(58\) 21.8078 + 23.9319i 0.375996 + 0.412618i
\(59\) 45.7297i 0.775079i −0.921853 0.387540i \(-0.873325\pi\)
0.921853 0.387540i \(-0.126675\pi\)
\(60\) 0 0
\(61\) 26.7308 0.438210 0.219105 0.975701i \(-0.429686\pi\)
0.219105 + 0.975701i \(0.429686\pi\)
\(62\) −36.0181 + 32.8213i −0.580937 + 0.529375i
\(63\) 0 0
\(64\) 17.5904 61.5352i 0.274851 0.961487i
\(65\) 92.7457 63.1092i 1.42686 0.970910i
\(66\) 0 0
\(67\) 41.7043 41.7043i 0.622453 0.622453i −0.323705 0.946158i \(-0.604929\pi\)
0.946158 + 0.323705i \(0.104929\pi\)
\(68\) 7.54206 + 9.09017i 0.110913 + 0.133679i
\(69\) 0 0
\(70\) 95.0617 + 22.6914i 1.35802 + 0.324163i
\(71\) −68.0054 −0.957823 −0.478911 0.877863i \(-0.658969\pi\)
−0.478911 + 0.877863i \(0.658969\pi\)
\(72\) 0 0
\(73\) 22.7380 22.7380i 0.311479 0.311479i −0.534003 0.845482i \(-0.679313\pi\)
0.845482 + 0.534003i \(0.179313\pi\)
\(74\) −2.32547 + 50.0758i −0.0314253 + 0.676700i
\(75\) 0 0
\(76\) 9.58676 102.996i 0.126142 1.35521i
\(77\) −81.3543 + 81.3543i −1.05655 + 1.05655i
\(78\) 0 0
\(79\) −102.115 −1.29259 −0.646297 0.763086i \(-0.723683\pi\)
−0.646297 + 0.763086i \(0.723683\pi\)
\(80\) 74.4835 + 29.1927i 0.931044 + 0.364908i
\(81\) 0 0
\(82\) −6.98985 + 6.36945i −0.0852420 + 0.0776763i
\(83\) 79.1393 79.1393i 0.953486 0.953486i −0.0454796 0.998965i \(-0.514482\pi\)
0.998965 + 0.0454796i \(0.0144816\pi\)
\(84\) 0 0
\(85\) −12.2066 + 8.30601i −0.143607 + 0.0977178i
\(86\) −3.89235 + 83.8162i −0.0452599 + 0.974607i
\(87\) 0 0
\(88\) −75.1903 + 56.7082i −0.854435 + 0.644411i
\(89\) −87.2500 −0.980337 −0.490168 0.871628i \(-0.663065\pi\)
−0.490168 + 0.871628i \(0.663065\pi\)
\(90\) 0 0
\(91\) 219.274i 2.40960i
\(92\) −60.1757 72.5275i −0.654084 0.788343i
\(93\) 0 0
\(94\) 1.33035 28.6471i 0.0141526 0.304757i
\(95\) 127.026 + 24.1545i 1.33711 + 0.254258i
\(96\) 0 0
\(97\) −22.6466 22.6466i −0.233470 0.233470i 0.580669 0.814140i \(-0.302791\pi\)
−0.814140 + 0.580669i \(0.802791\pi\)
\(98\) −68.7646 + 62.6613i −0.701680 + 0.639401i
\(99\) 0 0
\(100\) −45.1668 + 89.2186i −0.451668 + 0.892186i
\(101\) 135.581i 1.34238i −0.741284 0.671191i \(-0.765783\pi\)
0.741284 0.671191i \(-0.234217\pi\)
\(102\) 0 0
\(103\) 10.3775 + 10.3775i 0.100753 + 0.100753i 0.755686 0.654934i \(-0.227303\pi\)
−0.654934 + 0.755686i \(0.727303\pi\)
\(104\) −24.9074 + 177.753i −0.239494 + 1.70916i
\(105\) 0 0
\(106\) 6.29119 135.472i 0.0593508 1.27804i
\(107\) 84.1811 + 84.1811i 0.786739 + 0.786739i 0.980958 0.194219i \(-0.0622172\pi\)
−0.194219 + 0.980958i \(0.562217\pi\)
\(108\) 0 0
\(109\) 110.196i 1.01097i 0.862835 + 0.505486i \(0.168687\pi\)
−0.862835 + 0.505486i \(0.831313\pi\)
\(110\) −61.6402 100.294i −0.560365 0.911765i
\(111\) 0 0
\(112\) −129.079 + 88.2652i −1.15249 + 0.788082i
\(113\) 82.8202 + 82.8202i 0.732922 + 0.732922i 0.971198 0.238276i \(-0.0765821\pi\)
−0.238276 + 0.971198i \(0.576582\pi\)
\(114\) 0 0
\(115\) 97.3924 66.2710i 0.846890 0.576270i
\(116\) 6.00141 64.4766i 0.0517363 0.555833i
\(117\) 0 0
\(118\) −67.6020 + 61.6019i −0.572898 + 0.522050i
\(119\) 28.8594i 0.242516i
\(120\) 0 0
\(121\) 17.5843 0.145324
\(122\) −36.0087 39.5160i −0.295153 0.323902i
\(123\) 0 0
\(124\) 97.0390 + 9.03228i 0.782573 + 0.0728410i
\(125\) −105.658 66.7933i −0.845266 0.534346i
\(126\) 0 0
\(127\) −34.4553 + 34.4553i −0.271302 + 0.271302i −0.829624 0.558322i \(-0.811445\pi\)
0.558322 + 0.829624i \(0.311445\pi\)
\(128\) −114.663 + 56.8894i −0.895805 + 0.444448i
\(129\) 0 0
\(130\) −218.231 52.0920i −1.67870 0.400708i
\(131\) 26.7519 0.204213 0.102106 0.994773i \(-0.467442\pi\)
0.102106 + 0.994773i \(0.467442\pi\)
\(132\) 0 0
\(133\) −178.714 + 178.714i −1.34371 + 1.34371i
\(134\) −117.831 5.47195i −0.879334 0.0408354i
\(135\) 0 0
\(136\) 3.27814 23.3946i 0.0241040 0.172019i
\(137\) 32.5529 32.5529i 0.237612 0.237612i −0.578248 0.815861i \(-0.696264\pi\)
0.815861 + 0.578248i \(0.196264\pi\)
\(138\) 0 0
\(139\) 184.999 1.33093 0.665464 0.746430i \(-0.268234\pi\)
0.665464 + 0.746430i \(0.268234\pi\)
\(140\) −94.5118 171.096i −0.675084 1.22212i
\(141\) 0 0
\(142\) 91.6092 + 100.532i 0.645135 + 0.707972i
\(143\) 186.763 186.763i 1.30603 1.30603i
\(144\) 0 0
\(145\) 79.5193 + 15.1210i 0.548409 + 0.104283i
\(146\) −64.2435 2.98341i −0.440024 0.0204343i
\(147\) 0 0
\(148\) 77.1594 64.0187i 0.521347 0.432559i
\(149\) −34.5249 −0.231711 −0.115855 0.993266i \(-0.536961\pi\)
−0.115855 + 0.993266i \(0.536961\pi\)
\(150\) 0 0
\(151\) 254.057i 1.68250i 0.540648 + 0.841249i \(0.318179\pi\)
−0.540648 + 0.841249i \(0.681821\pi\)
\(152\) −165.173 + 124.573i −1.08666 + 0.819557i
\(153\) 0 0
\(154\) 229.857 + 10.6743i 1.49258 + 0.0693139i
\(155\) −22.7574 + 119.679i −0.146822 + 0.772120i
\(156\) 0 0
\(157\) 66.8034 + 66.8034i 0.425500 + 0.425500i 0.887092 0.461592i \(-0.152722\pi\)
−0.461592 + 0.887092i \(0.652722\pi\)
\(158\) 137.558 + 150.956i 0.870618 + 0.955417i
\(159\) 0 0
\(160\) −57.1804 149.434i −0.357377 0.933960i
\(161\) 230.260i 1.43019i
\(162\) 0 0
\(163\) −195.020 195.020i −1.19644 1.19644i −0.975224 0.221218i \(-0.928997\pi\)
−0.221218 0.975224i \(-0.571003\pi\)
\(164\) 18.8319 + 1.75285i 0.114828 + 0.0106881i
\(165\) 0 0
\(166\) −223.599 10.3837i −1.34698 0.0625525i
\(167\) −109.011 109.011i −0.652759 0.652759i 0.300898 0.953656i \(-0.402714\pi\)
−0.953656 + 0.300898i \(0.902714\pi\)
\(168\) 0 0
\(169\) 334.381i 1.97859i
\(170\) 28.7221 + 6.85601i 0.168953 + 0.0403294i
\(171\) 0 0
\(172\) 129.148 107.154i 0.750863 0.622987i
\(173\) −188.178 188.178i −1.08773 1.08773i −0.995762 0.0919721i \(-0.970683\pi\)
−0.0919721 0.995762i \(-0.529317\pi\)
\(174\) 0 0
\(175\) 224.122 97.2975i 1.28070 0.555986i
\(176\) 185.119 + 34.7625i 1.05181 + 0.197514i
\(177\) 0 0
\(178\) 117.533 + 128.981i 0.660299 + 0.724613i
\(179\) 117.394i 0.655830i −0.944707 0.327915i \(-0.893654\pi\)
0.944707 0.327915i \(-0.106346\pi\)
\(180\) 0 0
\(181\) −3.27275 −0.0180815 −0.00904073 0.999959i \(-0.502878\pi\)
−0.00904073 + 0.999959i \(0.502878\pi\)
\(182\) 324.152 295.381i 1.78105 1.62297i
\(183\) 0 0
\(184\) −26.1552 + 186.658i −0.142148 + 1.01445i
\(185\) 70.5033 + 103.612i 0.381099 + 0.560066i
\(186\) 0 0
\(187\) −24.5805 + 24.5805i −0.131447 + 0.131447i
\(188\) −44.1410 + 36.6235i −0.234792 + 0.194806i
\(189\) 0 0
\(190\) −135.407 220.319i −0.712668 1.15958i
\(191\) −309.425 −1.62002 −0.810012 0.586413i \(-0.800539\pi\)
−0.810012 + 0.586413i \(0.800539\pi\)
\(192\) 0 0
\(193\) 132.348 132.348i 0.685740 0.685740i −0.275548 0.961287i \(-0.588859\pi\)
0.961287 + 0.275548i \(0.0888592\pi\)
\(194\) −2.97142 + 63.9854i −0.0153166 + 0.329822i
\(195\) 0 0
\(196\) 185.264 + 17.2442i 0.945224 + 0.0879804i
\(197\) 154.159 154.159i 0.782534 0.782534i −0.197724 0.980258i \(-0.563355\pi\)
0.980258 + 0.197724i \(0.0633550\pi\)
\(198\) 0 0
\(199\) −350.828 −1.76296 −0.881478 0.472226i \(-0.843451\pi\)
−0.881478 + 0.472226i \(0.843451\pi\)
\(200\) 192.735 53.4154i 0.963675 0.267077i
\(201\) 0 0
\(202\) −200.428 + 182.639i −0.992218 + 0.904153i
\(203\) −111.877 + 111.877i −0.551116 + 0.551116i
\(204\) 0 0
\(205\) −4.41642 + 23.2254i −0.0215435 + 0.113295i
\(206\) 1.36161 29.3204i 0.00660977 0.142332i
\(207\) 0 0
\(208\) 296.323 202.628i 1.42463 0.974173i
\(209\) 304.433 1.45662
\(210\) 0 0
\(211\) 54.5636i 0.258595i 0.991606 + 0.129298i \(0.0412723\pi\)
−0.991606 + 0.129298i \(0.958728\pi\)
\(212\) −208.742 + 173.192i −0.984633 + 0.816944i
\(213\) 0 0
\(214\) 11.0452 237.844i 0.0516133 1.11142i
\(215\) 118.008 + 173.425i 0.548872 + 0.806627i
\(216\) 0 0
\(217\) −168.377 168.377i −0.775931 0.775931i
\(218\) 162.902 148.444i 0.747258 0.680934i
\(219\) 0 0
\(220\) −65.2297 + 226.227i −0.296499 + 1.02831i
\(221\) 66.2518i 0.299782i
\(222\) 0 0
\(223\) −106.514 106.514i −0.477642 0.477642i 0.426735 0.904377i \(-0.359664\pi\)
−0.904377 + 0.426735i \(0.859664\pi\)
\(224\) 304.363 + 71.9161i 1.35876 + 0.321054i
\(225\) 0 0
\(226\) 10.8667 233.999i 0.0480827 1.03539i
\(227\) 140.653 + 140.653i 0.619619 + 0.619619i 0.945434 0.325815i \(-0.105639\pi\)
−0.325815 + 0.945434i \(0.605639\pi\)
\(228\) 0 0
\(229\) 297.192i 1.29778i 0.760882 + 0.648890i \(0.224766\pi\)
−0.760882 + 0.648890i \(0.775234\pi\)
\(230\) −229.164 54.7019i −0.996366 0.237834i
\(231\) 0 0
\(232\) −103.400 + 77.9838i −0.445689 + 0.336137i
\(233\) 83.8970 + 83.8970i 0.360073 + 0.360073i 0.863840 0.503767i \(-0.168053\pi\)
−0.503767 + 0.863840i \(0.668053\pi\)
\(234\) 0 0
\(235\) −40.3332 59.2740i −0.171631 0.252230i
\(236\) 182.131 + 16.9526i 0.771744 + 0.0718330i
\(237\) 0 0
\(238\) −42.6627 + 38.8761i −0.179255 + 0.163345i
\(239\) 245.015i 1.02517i 0.858638 + 0.512583i \(0.171311\pi\)
−0.858638 + 0.512583i \(0.828689\pi\)
\(240\) 0 0
\(241\) 75.3232 0.312545 0.156272 0.987714i \(-0.450052\pi\)
0.156272 + 0.987714i \(0.450052\pi\)
\(242\) −23.6875 25.9947i −0.0978823 0.107416i
\(243\) 0 0
\(244\) −9.90946 + 106.463i −0.0406125 + 0.436324i
\(245\) −43.4478 + 228.487i −0.177338 + 0.932598i
\(246\) 0 0
\(247\) 410.268 410.268i 1.66100 1.66100i
\(248\) −117.368 155.620i −0.473256 0.627498i
\(249\) 0 0
\(250\) 43.5907 + 246.170i 0.174363 + 0.984681i
\(251\) −354.214 −1.41121 −0.705605 0.708605i \(-0.749325\pi\)
−0.705605 + 0.708605i \(0.749325\pi\)
\(252\) 0 0
\(253\) 196.120 196.120i 0.775177 0.775177i
\(254\) 97.3494 + 4.52081i 0.383265 + 0.0177985i
\(255\) 0 0
\(256\) 238.560 + 92.8708i 0.931876 + 0.362777i
\(257\) −81.5733 + 81.5733i −0.317406 + 0.317406i −0.847770 0.530364i \(-0.822055\pi\)
0.530364 + 0.847770i \(0.322055\pi\)
\(258\) 0 0
\(259\) −244.965 −0.945811
\(260\) 216.968 + 392.782i 0.834493 + 1.51070i
\(261\) 0 0
\(262\) −36.0371 39.5472i −0.137546 0.150944i
\(263\) −165.965 + 165.965i −0.631045 + 0.631045i −0.948330 0.317285i \(-0.897229\pi\)
0.317285 + 0.948330i \(0.397229\pi\)
\(264\) 0 0
\(265\) −190.735 280.306i −0.719755 1.05776i
\(266\) 504.934 + 23.4487i 1.89825 + 0.0881529i
\(267\) 0 0
\(268\) 150.639 + 181.560i 0.562086 + 0.677462i
\(269\) −54.9394 −0.204236 −0.102118 0.994772i \(-0.532562\pi\)
−0.102118 + 0.994772i \(0.532562\pi\)
\(270\) 0 0
\(271\) 188.837i 0.696815i −0.937343 0.348408i \(-0.886722\pi\)
0.937343 0.348408i \(-0.113278\pi\)
\(272\) −39.0001 + 26.6686i −0.143383 + 0.0980462i
\(273\) 0 0
\(274\) −91.9743 4.27120i −0.335673 0.0155883i
\(275\) −273.764 108.021i −0.995505 0.392803i
\(276\) 0 0
\(277\) 255.844 + 255.844i 0.923624 + 0.923624i 0.997283 0.0736592i \(-0.0234677\pi\)
−0.0736592 + 0.997283i \(0.523468\pi\)
\(278\) −249.210 273.483i −0.896437 0.983752i
\(279\) 0 0
\(280\) −125.615 + 370.198i −0.448627 + 1.32214i
\(281\) 294.157i 1.04682i −0.852080 0.523411i \(-0.824659\pi\)
0.852080 0.523411i \(-0.175341\pi\)
\(282\) 0 0
\(283\) −11.2182 11.2182i −0.0396404 0.0396404i 0.687009 0.726649i \(-0.258923\pi\)
−0.726649 + 0.687009i \(0.758923\pi\)
\(284\) 25.2105 270.851i 0.0887694 0.953701i
\(285\) 0 0
\(286\) −527.676 24.5048i −1.84502 0.0856811i
\(287\) −32.6761 32.6761i −0.113854 0.113854i
\(288\) 0 0
\(289\) 280.280i 0.969828i
\(290\) −84.7661 137.922i −0.292297 0.475594i
\(291\) 0 0
\(292\) 82.1312 + 98.9898i 0.281271 + 0.339006i
\(293\) −365.061 365.061i −1.24594 1.24594i −0.957496 0.288447i \(-0.906861\pi\)
−0.288447 0.957496i \(-0.593139\pi\)
\(294\) 0 0
\(295\) −42.7132 + 224.623i −0.144791 + 0.761435i
\(296\) −198.579 27.8256i −0.670875 0.0940054i
\(297\) 0 0
\(298\) 46.5081 + 51.0380i 0.156067 + 0.171268i
\(299\) 528.601i 1.76790i
\(300\) 0 0
\(301\) −410.019 −1.36219
\(302\) 375.571 342.237i 1.24361 1.13324i
\(303\) 0 0
\(304\) 406.658 + 76.3640i 1.33769 + 0.251197i
\(305\) −131.301 24.9676i −0.430496 0.0818608i
\(306\) 0 0
\(307\) −169.301 + 169.301i −0.551470 + 0.551470i −0.926865 0.375395i \(-0.877507\pi\)
0.375395 + 0.926865i \(0.377507\pi\)
\(308\) −293.857 354.176i −0.954083 1.14992i
\(309\) 0 0
\(310\) 207.576 127.575i 0.669602 0.411533i
\(311\) 256.859 0.825912 0.412956 0.910751i \(-0.364496\pi\)
0.412956 + 0.910751i \(0.364496\pi\)
\(312\) 0 0
\(313\) 93.6725 93.6725i 0.299273 0.299273i −0.541456 0.840729i \(-0.682127\pi\)
0.840729 + 0.541456i \(0.182127\pi\)
\(314\) 8.76515 188.745i 0.0279145 0.601100i
\(315\) 0 0
\(316\) 37.8553 406.702i 0.119795 1.28703i
\(317\) −70.8818 + 70.8818i −0.223602 + 0.223602i −0.810013 0.586411i \(-0.800540\pi\)
0.586411 + 0.810013i \(0.300540\pi\)
\(318\) 0 0
\(319\) 190.578 0.597423
\(320\) −143.880 + 285.830i −0.449625 + 0.893217i
\(321\) 0 0
\(322\) 340.392 310.180i 1.05712 0.963292i
\(323\) −53.9968 + 53.9968i −0.167173 + 0.167173i
\(324\) 0 0
\(325\) −514.512 + 223.363i −1.58311 + 0.687272i
\(326\) −25.5882 + 551.006i −0.0784915 + 1.69020i
\(327\) 0 0
\(328\) −22.7769 30.2003i −0.0694419 0.0920741i
\(329\) 140.138 0.425953
\(330\) 0 0
\(331\) 130.072i 0.392967i −0.980507 0.196483i \(-0.937048\pi\)
0.980507 0.196483i \(-0.0629522\pi\)
\(332\) 285.857 + 344.533i 0.861015 + 1.03775i
\(333\) 0 0
\(334\) −14.3031 + 307.997i −0.0428236 + 0.922147i
\(335\) −243.804 + 165.898i −0.727774 + 0.495217i
\(336\) 0 0
\(337\) 127.319 + 127.319i 0.377802 + 0.377802i 0.870309 0.492507i \(-0.163919\pi\)
−0.492507 + 0.870309i \(0.663919\pi\)
\(338\) −494.314 + 450.441i −1.46247 + 1.33267i
\(339\) 0 0
\(340\) −28.5559 51.6953i −0.0839880 0.152045i
\(341\) 286.825i 0.841128i
\(342\) 0 0
\(343\) 17.1651 + 17.1651i 0.0500439 + 0.0500439i
\(344\) −332.379 46.5741i −0.966218 0.135390i
\(345\) 0 0
\(346\) −24.6905 + 531.675i −0.0713597 + 1.53663i
\(347\) −18.7320 18.7320i −0.0539827 0.0539827i 0.679600 0.733583i \(-0.262153\pi\)
−0.733583 + 0.679600i \(0.762153\pi\)
\(348\) 0 0
\(349\) 468.267i 1.34174i 0.741575 + 0.670870i \(0.234079\pi\)
−0.741575 + 0.670870i \(0.765921\pi\)
\(350\) −445.747 200.251i −1.27356 0.572145i
\(351\) 0 0
\(352\) −197.982 320.489i −0.562450 0.910480i
\(353\) 196.998 + 196.998i 0.558068 + 0.558068i 0.928757 0.370689i \(-0.120878\pi\)
−0.370689 + 0.928757i \(0.620878\pi\)
\(354\) 0 0
\(355\) 334.041 + 63.5196i 0.940962 + 0.178928i
\(356\) 32.3447 347.498i 0.0908559 0.976117i
\(357\) 0 0
\(358\) −173.542 + 158.139i −0.484755 + 0.441730i
\(359\) 34.7036i 0.0966673i −0.998831 0.0483336i \(-0.984609\pi\)
0.998831 0.0483336i \(-0.0153911\pi\)
\(360\) 0 0
\(361\) 307.757 0.852513
\(362\) 4.40867 + 4.83808i 0.0121787 + 0.0133649i
\(363\) 0 0
\(364\) −873.321 81.2877i −2.39923 0.223318i
\(365\) −132.927 + 90.4505i −0.364183 + 0.247810i
\(366\) 0 0
\(367\) −172.175 + 172.175i −0.469143 + 0.469143i −0.901637 0.432494i \(-0.857634\pi\)
0.432494 + 0.901637i \(0.357634\pi\)
\(368\) 311.170 212.780i 0.845569 0.578206i
\(369\) 0 0
\(370\) 58.1953 243.799i 0.157285 0.658917i
\(371\) 662.713 1.78629
\(372\) 0 0
\(373\) −64.3314 + 64.3314i −0.172470 + 0.172470i −0.788064 0.615594i \(-0.788916\pi\)
0.615594 + 0.788064i \(0.288916\pi\)
\(374\) 69.4493 + 3.22516i 0.185693 + 0.00862342i
\(375\) 0 0
\(376\) 113.602 + 15.9183i 0.302133 + 0.0423360i
\(377\) 256.832 256.832i 0.681252 0.681252i
\(378\) 0 0
\(379\) −103.138 −0.272132 −0.136066 0.990700i \(-0.543446\pi\)
−0.136066 + 0.990700i \(0.543446\pi\)
\(380\) −143.292 + 496.961i −0.377085 + 1.30779i
\(381\) 0 0
\(382\) 416.822 + 457.421i 1.09116 + 1.19744i
\(383\) 278.067 278.067i 0.726022 0.726022i −0.243803 0.969825i \(-0.578395\pi\)
0.969825 + 0.243803i \(0.0783949\pi\)
\(384\) 0 0
\(385\) 475.599 323.623i 1.23532 0.840579i
\(386\) −373.933 17.3651i −0.968738 0.0449873i
\(387\) 0 0
\(388\) 98.5920 81.8012i 0.254103 0.210828i
\(389\) −237.818 −0.611358 −0.305679 0.952135i \(-0.598883\pi\)
−0.305679 + 0.952135i \(0.598883\pi\)
\(390\) 0 0
\(391\) 69.5710i 0.177931i
\(392\) −224.075 297.104i −0.571619 0.757919i
\(393\) 0 0
\(394\) −435.558 20.2269i −1.10548 0.0513374i
\(395\) 501.587 + 95.3791i 1.26984 + 0.241466i
\(396\) 0 0
\(397\) −29.8329 29.8329i −0.0751459 0.0751459i 0.668535 0.743681i \(-0.266922\pi\)
−0.743681 + 0.668535i \(0.766922\pi\)
\(398\) 472.596 + 518.627i 1.18743 + 1.30308i
\(399\) 0 0
\(400\) −338.595 212.964i −0.846486 0.532410i
\(401\) 23.2038i 0.0578647i −0.999581 0.0289324i \(-0.990789\pi\)
0.999581 0.0289324i \(-0.00921074\pi\)
\(402\) 0 0
\(403\) 386.539 + 386.539i 0.959153 + 0.959153i
\(404\) 539.988 + 50.2615i 1.33660 + 0.124410i
\(405\) 0 0
\(406\) 316.094 + 14.6791i 0.778556 + 0.0361554i
\(407\) 208.645 + 208.645i 0.512641 + 0.512641i
\(408\) 0 0
\(409\) 725.927i 1.77488i −0.460920 0.887442i \(-0.652480\pi\)
0.460920 0.887442i \(-0.347520\pi\)
\(410\) 40.2833 24.7579i 0.0982520 0.0603851i
\(411\) 0 0
\(412\) −45.1785 + 37.4843i −0.109656 + 0.0909813i
\(413\) −316.025 316.025i −0.765194 0.765194i
\(414\) 0 0
\(415\) −462.650 + 314.812i −1.11482 + 0.758583i
\(416\) −698.717 165.096i −1.67961 0.396865i
\(417\) 0 0
\(418\) −410.097 450.041i −0.981094 1.07665i
\(419\) 635.614i 1.51698i 0.651685 + 0.758489i \(0.274062\pi\)
−0.651685 + 0.758489i \(0.725938\pi\)
\(420\) 0 0
\(421\) −572.425 −1.35968 −0.679839 0.733361i \(-0.737950\pi\)
−0.679839 + 0.733361i \(0.737950\pi\)
\(422\) 80.6611 73.5019i 0.191140 0.174175i
\(423\) 0 0
\(424\) 537.223 + 75.2776i 1.26704 + 0.177542i
\(425\) 67.7166 29.3976i 0.159333 0.0691708i
\(426\) 0 0
\(427\) 184.729 184.729i 0.432621 0.432621i
\(428\) −366.482 + 304.068i −0.856267 + 0.710440i
\(429\) 0 0
\(430\) 97.4066 408.068i 0.226527 0.948996i
\(431\) 105.968 0.245866 0.122933 0.992415i \(-0.460770\pi\)
0.122933 + 0.992415i \(0.460770\pi\)
\(432\) 0 0
\(433\) 10.8467 10.8467i 0.0250502 0.0250502i −0.694471 0.719521i \(-0.744361\pi\)
0.719521 + 0.694471i \(0.244361\pi\)
\(434\) −22.0924 + 475.730i −0.0509042 + 1.09615i
\(435\) 0 0
\(436\) −438.887 40.8511i −1.00662 0.0936951i
\(437\) 430.823 430.823i 0.985865 0.985865i
\(438\) 0 0
\(439\) 425.479 0.969201 0.484601 0.874736i \(-0.338965\pi\)
0.484601 + 0.874736i \(0.338965\pi\)
\(440\) 422.301 208.319i 0.959774 0.473453i
\(441\) 0 0
\(442\) 97.9396 89.2469i 0.221583 0.201916i
\(443\) 140.068 140.068i 0.316181 0.316181i −0.531117 0.847298i \(-0.678228\pi\)
0.847298 + 0.531117i \(0.178228\pi\)
\(444\) 0 0
\(445\) 428.570 + 81.4947i 0.963079 + 0.183134i
\(446\) −13.9755 + 300.943i −0.0313353 + 0.674761i
\(447\) 0 0
\(448\) −303.690 546.815i −0.677879 1.22057i
\(449\) 211.838 0.471799 0.235899 0.971777i \(-0.424196\pi\)
0.235899 + 0.971777i \(0.424196\pi\)
\(450\) 0 0
\(451\) 55.6626i 0.123420i
\(452\) −360.558 + 299.152i −0.797694 + 0.661842i
\(453\) 0 0
\(454\) 18.4549 397.400i 0.0406495 0.875330i
\(455\) 204.810 1077.07i 0.450132 2.36719i
\(456\) 0 0
\(457\) −201.239 201.239i −0.440348 0.440348i 0.451781 0.892129i \(-0.350789\pi\)
−0.892129 + 0.451781i \(0.850789\pi\)
\(458\) 439.337 400.343i 0.959251 0.874111i
\(459\) 0 0
\(460\) 227.839 + 412.460i 0.495301 + 0.896653i
\(461\) 779.493i 1.69087i 0.534075 + 0.845437i \(0.320660\pi\)
−0.534075 + 0.845437i \(0.679340\pi\)
\(462\) 0 0
\(463\) 291.584 + 291.584i 0.629770 + 0.629770i 0.948010 0.318240i \(-0.103092\pi\)
−0.318240 + 0.948010i \(0.603092\pi\)
\(464\) 254.572 + 47.8047i 0.548646 + 0.103027i
\(465\) 0 0
\(466\) 11.0080 237.041i 0.0236222 0.508672i
\(467\) −384.406 384.406i −0.823140 0.823140i 0.163418 0.986557i \(-0.447748\pi\)
−0.986557 + 0.163418i \(0.947748\pi\)
\(468\) 0 0
\(469\) 576.414i 1.22903i
\(470\) −33.2921 + 139.472i −0.0708342 + 0.296748i
\(471\) 0 0
\(472\) −220.286 292.081i −0.466708 0.618815i
\(473\) 349.227 + 349.227i 0.738324 + 0.738324i
\(474\) 0 0
\(475\) −601.386 237.293i −1.26608 0.499564i
\(476\) 114.941 + 10.6986i 0.241472 + 0.0224760i
\(477\) 0 0
\(478\) 362.204 330.056i 0.757749 0.690494i
\(479\) 386.754i 0.807420i −0.914887 0.403710i \(-0.867720\pi\)
0.914887 0.403710i \(-0.132280\pi\)
\(480\) 0 0
\(481\) 562.360 1.16915
\(482\) −101.467 111.350i −0.210512 0.231017i
\(483\) 0 0
\(484\) −6.51871 + 70.0343i −0.0134684 + 0.144699i
\(485\) 90.0871 + 132.393i 0.185747 + 0.272974i
\(486\) 0 0
\(487\) −461.061 + 461.061i −0.946738 + 0.946738i −0.998652 0.0519138i \(-0.983468\pi\)
0.0519138 + 0.998652i \(0.483468\pi\)
\(488\) 170.733 128.766i 0.349862 0.263864i
\(489\) 0 0
\(490\) 396.299 243.563i 0.808773 0.497067i
\(491\) 114.698 0.233601 0.116800 0.993155i \(-0.462736\pi\)
0.116800 + 0.993155i \(0.462736\pi\)
\(492\) 0 0
\(493\) −33.8025 + 33.8025i −0.0685650 + 0.0685650i
\(494\) −1159.16 53.8305i −2.34649 0.108969i
\(495\) 0 0
\(496\) −71.9472 + 383.137i −0.145055 + 0.772454i
\(497\) −469.967 + 469.967i −0.945607 + 0.945607i
\(498\) 0 0
\(499\) 478.364 0.958646 0.479323 0.877639i \(-0.340882\pi\)
0.479323 + 0.877639i \(0.340882\pi\)
\(500\) 305.192 396.053i 0.610384 0.792106i
\(501\) 0 0
\(502\) 477.157 + 523.633i 0.950512 + 1.04309i
\(503\) −202.334 + 202.334i −0.402254 + 0.402254i −0.879026 0.476773i \(-0.841806\pi\)
0.476773 + 0.879026i \(0.341806\pi\)
\(504\) 0 0
\(505\) −126.637 + 665.969i −0.250767 + 1.31875i
\(506\) −554.114 25.7325i −1.09509 0.0508548i
\(507\) 0 0
\(508\) −124.455 150.001i −0.244990 0.295278i
\(509\) 547.761 1.07615 0.538076 0.842896i \(-0.319151\pi\)
0.538076 + 0.842896i \(0.319151\pi\)
\(510\) 0 0
\(511\) 314.272i 0.615014i
\(512\) −184.071 477.768i −0.359514 0.933140i
\(513\) 0 0
\(514\) 230.476 + 10.7031i 0.448396 + 0.0208231i
\(515\) −41.2812 60.6671i −0.0801576 0.117800i
\(516\) 0 0
\(517\) −119.361 119.361i −0.230871 0.230871i
\(518\) 329.989 + 362.131i 0.637045 + 0.699094i
\(519\) 0 0
\(520\) 288.372 849.854i 0.554562 1.63433i
\(521\) 954.085i 1.83126i −0.402024 0.915629i \(-0.631693\pi\)
0.402024 0.915629i \(-0.368307\pi\)
\(522\) 0 0
\(523\) 344.965 + 344.965i 0.659590 + 0.659590i 0.955283 0.295693i \(-0.0955506\pi\)
−0.295693 + 0.955283i \(0.595551\pi\)
\(524\) −9.91728 + 106.547i −0.0189261 + 0.203334i
\(525\) 0 0
\(526\) 468.914 + 21.7759i 0.891471 + 0.0413991i
\(527\) −50.8737 50.8737i −0.0965345 0.0965345i
\(528\) 0 0
\(529\) 26.0849i 0.0493098i
\(530\) −157.438 + 659.559i −0.297053 + 1.24445i
\(531\) 0 0
\(532\) −645.526 778.029i −1.21340 1.46246i
\(533\) 75.0136 + 75.0136i 0.140739 + 0.140739i
\(534\) 0 0
\(535\) −334.868 492.124i −0.625921 0.919859i
\(536\) 65.4750 467.266i 0.122155 0.871765i
\(537\) 0 0
\(538\) 74.0081 + 81.2166i 0.137562 + 0.150960i
\(539\) 547.597i 1.01595i
\(540\) 0 0
\(541\) 930.699 1.72033 0.860166 0.510015i \(-0.170360\pi\)
0.860166 + 0.510015i \(0.170360\pi\)
\(542\) −279.157 + 254.380i −0.515049 + 0.469335i
\(543\) 0 0
\(544\) 91.9606 + 21.7288i 0.169045 + 0.0399427i
\(545\) 102.927 541.281i 0.188857 0.993176i
\(546\) 0 0
\(547\) −217.652 + 217.652i −0.397901 + 0.397901i −0.877492 0.479591i \(-0.840785\pi\)
0.479591 + 0.877492i \(0.340785\pi\)
\(548\) 117.583 + 141.719i 0.214568 + 0.258611i
\(549\) 0 0
\(550\) 209.097 + 550.217i 0.380176 + 1.00040i
\(551\) 418.649 0.759798
\(552\) 0 0
\(553\) −705.688 + 705.688i −1.27611 + 1.27611i
\(554\) 33.5688 722.857i 0.0605935 1.30480i
\(555\) 0 0
\(556\) −68.5815 + 736.811i −0.123348 + 1.32520i
\(557\) −605.625 + 605.625i −1.08730 + 1.08730i −0.0914918 + 0.995806i \(0.529164\pi\)
−0.995806 + 0.0914918i \(0.970836\pi\)
\(558\) 0 0
\(559\) 941.271 1.68385
\(560\) 716.477 312.992i 1.27942 0.558915i
\(561\) 0 0
\(562\) −434.851 + 396.255i −0.773757 + 0.705081i
\(563\) −364.086 + 364.086i −0.646689 + 0.646689i −0.952191 0.305503i \(-0.901176\pi\)
0.305503 + 0.952191i \(0.401176\pi\)
\(564\) 0 0
\(565\) −329.454 484.168i −0.583105 0.856935i
\(566\) −1.47192 + 31.6958i −0.00260057 + 0.0559997i
\(567\) 0 0
\(568\) −434.358 + 327.591i −0.764715 + 0.576745i
\(569\) −1036.61 −1.82182 −0.910909 0.412608i \(-0.864618\pi\)
−0.910909 + 0.412608i \(0.864618\pi\)
\(570\) 0 0
\(571\) 948.829i 1.66170i −0.556499 0.830848i \(-0.687856\pi\)
0.556499 0.830848i \(-0.312144\pi\)
\(572\) 674.601 + 813.072i 1.17937 + 1.42145i
\(573\) 0 0
\(574\) −4.28737 + 92.3224i −0.00746928 + 0.160840i
\(575\) −540.289 + 234.554i −0.939633 + 0.407920i
\(576\) 0 0
\(577\) −413.427 413.427i −0.716511 0.716511i 0.251378 0.967889i \(-0.419116\pi\)
−0.967889 + 0.251378i \(0.919116\pi\)
\(578\) 414.337 377.562i 0.716846 0.653222i
\(579\) 0 0
\(580\) −89.7024 + 311.103i −0.154659 + 0.536384i
\(581\) 1093.82i 1.88265i
\(582\) 0 0
\(583\) −564.454 564.454i −0.968189 0.968189i
\(584\) 35.6982 254.762i 0.0611270 0.436236i
\(585\) 0 0
\(586\) −47.8990 + 1031.44i −0.0817389 + 1.76013i
\(587\) −173.216 173.216i −0.295087 0.295087i 0.543999 0.839086i \(-0.316910\pi\)
−0.839086 + 0.543999i \(0.816910\pi\)
\(588\) 0 0
\(589\) 630.077i 1.06974i
\(590\) 389.598 239.445i 0.660336 0.405838i
\(591\) 0 0
\(592\) 226.369 + 331.042i 0.382380 + 0.559192i
\(593\) 304.478 + 304.478i 0.513453 + 0.513453i 0.915583 0.402130i \(-0.131730\pi\)
−0.402130 + 0.915583i \(0.631730\pi\)
\(594\) 0 0
\(595\) −26.9557 + 141.757i −0.0453038 + 0.238247i
\(596\) 12.7988 137.505i 0.0214745 0.230714i
\(597\) 0 0
\(598\) −781.429 + 712.072i −1.30674 + 1.19076i
\(599\) 805.100i 1.34407i 0.740518 + 0.672037i \(0.234580\pi\)
−0.740518 + 0.672037i \(0.765420\pi\)
\(600\) 0 0
\(601\) −878.614 −1.46192 −0.730960 0.682420i \(-0.760927\pi\)
−0.730960 + 0.682420i \(0.760927\pi\)
\(602\) 552.332 + 606.130i 0.917495 + 1.00686i
\(603\) 0 0
\(604\) −1011.85 94.1823i −1.67526 0.155931i
\(605\) −86.3735 16.4243i −0.142766 0.0271477i
\(606\) 0 0
\(607\) −586.644 + 586.644i −0.966464 + 0.966464i −0.999456 0.0329916i \(-0.989497\pi\)
0.0329916 + 0.999456i \(0.489497\pi\)
\(608\) −434.915 704.029i −0.715320 1.15794i
\(609\) 0 0
\(610\) 139.965 + 227.735i 0.229451 + 0.373337i
\(611\) −321.712 −0.526534
\(612\) 0 0
\(613\) 304.685 304.685i 0.497039 0.497039i −0.413476 0.910515i \(-0.635686\pi\)
0.910515 + 0.413476i \(0.135686\pi\)
\(614\) 478.341 + 22.2137i 0.779057 + 0.0361787i
\(615\) 0 0
\(616\) −127.725 + 911.513i −0.207345 + 1.47973i
\(617\) −376.724 + 376.724i −0.610574 + 0.610574i −0.943096 0.332522i \(-0.892100\pi\)
0.332522 + 0.943096i \(0.392100\pi\)
\(618\) 0 0
\(619\) −105.200 −0.169952 −0.0849761 0.996383i \(-0.527081\pi\)
−0.0849761 + 0.996383i \(0.527081\pi\)
\(620\) −468.217 135.004i −0.755189 0.217749i
\(621\) 0 0
\(622\) −346.011 379.713i −0.556288 0.610471i
\(623\) −602.960 + 602.960i −0.967834 + 0.967834i
\(624\) 0 0
\(625\) 456.604 + 426.776i 0.730566 + 0.682842i
\(626\) −264.661 12.2906i −0.422780 0.0196335i
\(627\) 0 0
\(628\) −290.829 + 241.299i −0.463103 + 0.384234i
\(629\) −74.0141 −0.117669
\(630\) 0 0
\(631\) 478.074i 0.757646i −0.925469 0.378823i \(-0.876329\pi\)
0.925469 0.378823i \(-0.123671\pi\)
\(632\) −652.219 + 491.901i −1.03199 + 0.778324i
\(633\) 0 0
\(634\) 200.268 + 9.30027i 0.315881 + 0.0146692i
\(635\) 201.426 137.061i 0.317207 0.215845i
\(636\) 0 0
\(637\) 737.968 + 737.968i 1.15851 + 1.15851i
\(638\) −256.725 281.730i −0.402390 0.441584i
\(639\) 0 0
\(640\) 616.359 172.340i 0.963062 0.269281i
\(641\) 772.513i 1.20517i 0.798055 + 0.602584i \(0.205862\pi\)
−0.798055 + 0.602584i \(0.794138\pi\)
\(642\) 0 0
\(643\) −134.656 134.656i −0.209419 0.209419i 0.594601 0.804021i \(-0.297310\pi\)
−0.804021 + 0.594601i \(0.797310\pi\)
\(644\) −917.075 85.3603i −1.42403 0.132547i
\(645\) 0 0
\(646\) 152.562 + 7.08482i 0.236163 + 0.0109672i
\(647\) 17.3600 + 17.3600i 0.0268316 + 0.0268316i 0.720395 0.693564i \(-0.243960\pi\)
−0.693564 + 0.720395i \(0.743960\pi\)
\(648\) 0 0
\(649\) 538.338i 0.829489i
\(650\) 1023.29 + 459.710i 1.57429 + 0.707247i
\(651\) 0 0
\(652\) 849.019 704.426i 1.30218 1.08041i
\(653\) 334.887 + 334.887i 0.512844 + 0.512844i 0.915397 0.402553i \(-0.131877\pi\)
−0.402553 + 0.915397i \(0.631877\pi\)
\(654\) 0 0
\(655\) −131.405 24.9873i −0.200618 0.0381485i
\(656\) −13.9624 + 74.3535i −0.0212842 + 0.113344i
\(657\) 0 0
\(658\) −188.779 207.166i −0.286898 0.314842i
\(659\) 470.785i 0.714392i 0.934029 + 0.357196i \(0.116267\pi\)
−0.934029 + 0.357196i \(0.883733\pi\)
\(660\) 0 0
\(661\) −463.127 −0.700645 −0.350323 0.936629i \(-0.613928\pi\)
−0.350323 + 0.936629i \(0.613928\pi\)
\(662\) −192.285 + 175.218i −0.290460 + 0.264680i
\(663\) 0 0
\(664\) 124.247 886.696i 0.187119 1.33539i
\(665\) 1044.76 710.913i 1.57107 1.06904i
\(666\) 0 0
\(667\) 269.700 269.700i 0.404347 0.404347i
\(668\) 474.578 393.755i 0.710446 0.589453i
\(669\) 0 0
\(670\) 573.671 + 136.936i 0.856226 + 0.204383i
\(671\) −314.680 −0.468972
\(672\) 0 0
\(673\) −182.313 + 182.313i −0.270896 + 0.270896i −0.829461 0.558565i \(-0.811352\pi\)
0.558565 + 0.829461i \(0.311352\pi\)
\(674\) 16.7053 359.726i 0.0247853 0.533718i
\(675\) 0 0
\(676\) 1331.77 + 123.960i 1.97007 + 0.183372i
\(677\) 527.583 527.583i 0.779296 0.779296i −0.200415 0.979711i \(-0.564229\pi\)
0.979711 + 0.200415i \(0.0642291\pi\)
\(678\) 0 0
\(679\) −313.009 −0.460985
\(680\) −37.9536 + 111.852i −0.0558142 + 0.164489i
\(681\) 0 0
\(682\) 424.011 386.378i 0.621718 0.566536i
\(683\) 211.561 211.561i 0.309752 0.309752i −0.535061 0.844813i \(-0.679712\pi\)
0.844813 + 0.535061i \(0.179712\pi\)
\(684\) 0 0
\(685\) −190.305 + 129.494i −0.277817 + 0.189042i
\(686\) 2.25219 48.4978i 0.00328308 0.0706966i
\(687\) 0 0
\(688\) 378.893 + 554.094i 0.550717 + 0.805369i
\(689\) −1521.37 −2.20809
\(690\) 0 0
\(691\) 745.870i 1.07941i −0.841855 0.539703i \(-0.818536\pi\)
0.841855 0.539703i \(-0.181464\pi\)
\(692\) 819.232 679.712i 1.18386 0.982243i
\(693\) 0 0
\(694\) −2.45779 + 52.9251i −0.00354148 + 0.0762609i
\(695\) −908.711 172.796i −1.30750 0.248627i
\(696\) 0 0
\(697\) −9.87280 9.87280i −0.0141647 0.0141647i
\(698\) 692.237 630.797i 0.991744 0.903720i
\(699\) 0 0
\(700\) 304.430 + 928.700i 0.434900 + 1.32671i
\(701\) 245.533i 0.350260i −0.984545 0.175130i \(-0.943965\pi\)
0.984545 0.175130i \(-0.0560346\pi\)
\(702\) 0 0
\(703\) 458.337 + 458.337i 0.651973 + 0.651973i
\(704\) −207.078 + 724.403i −0.294145 + 1.02898i
\(705\) 0 0
\(706\) 25.8478 556.595i 0.0366116 0.788378i
\(707\) −936.960 936.960i −1.32526 1.32526i
\(708\) 0 0
\(709\) 764.942i 1.07890i −0.842017 0.539451i \(-0.818632\pi\)
0.842017 0.539451i \(-0.181368\pi\)
\(710\) −356.082 579.378i −0.501524 0.816026i
\(711\) 0 0
\(712\) −557.275 + 420.295i −0.782690 + 0.590302i
\(713\) 405.905 + 405.905i 0.569291 + 0.569291i
\(714\) 0 0
\(715\) −1091.82 + 742.933i −1.52702 + 1.03907i
\(716\) 467.553 + 43.5193i 0.653007 + 0.0607812i
\(717\) 0 0
\(718\) −51.3021 + 46.7487i −0.0714514 + 0.0651096i
\(719\) 419.847i 0.583932i −0.956429 0.291966i \(-0.905691\pi\)
0.956429 0.291966i \(-0.0943093\pi\)
\(720\) 0 0
\(721\) 143.432 0.198935
\(722\) −414.576 454.956i −0.574205 0.630133i
\(723\) 0 0
\(724\) 1.21325 13.0346i 0.00167576 0.0180036i
\(725\) −376.474 148.548i −0.519274 0.204894i
\(726\) 0 0
\(727\) 822.560 822.560i 1.13144 1.13144i 0.141508 0.989937i \(-0.454805\pi\)
0.989937 0.141508i \(-0.0451950\pi\)
\(728\) 1056.27 + 1400.53i 1.45092 + 1.92380i
\(729\) 0 0
\(730\) 312.776 + 74.6603i 0.428461 + 0.102274i
\(731\) −123.884 −0.169472
\(732\) 0 0
\(733\) 556.245 556.245i 0.758861 0.758861i −0.217254 0.976115i \(-0.569710\pi\)
0.976115 + 0.217254i \(0.0697100\pi\)
\(734\) 486.461 + 22.5908i 0.662754 + 0.0307777i
\(735\) 0 0
\(736\) −733.724 173.367i −0.996907 0.235553i
\(737\) −490.951 + 490.951i −0.666148 + 0.666148i
\(738\) 0 0
\(739\) −478.496 −0.647492 −0.323746 0.946144i \(-0.604942\pi\)
−0.323746 + 0.946144i \(0.604942\pi\)
\(740\) −438.802 + 242.389i −0.592975 + 0.327553i
\(741\) 0 0
\(742\) −892.732 979.685i −1.20314 1.32033i
\(743\) −455.930 + 455.930i −0.613635 + 0.613635i −0.943891 0.330257i \(-0.892865\pi\)
0.330257 + 0.943891i \(0.392865\pi\)
\(744\) 0 0
\(745\) 169.586 + 32.2475i 0.227632 + 0.0432853i
\(746\) 181.761 + 8.44080i 0.243647 + 0.0113147i
\(747\) 0 0
\(748\) −88.7865 107.011i −0.118699 0.143063i
\(749\) 1163.50 1.55341
\(750\) 0 0
\(751\) 414.547i 0.551993i −0.961159 0.275996i \(-0.910992\pi\)
0.961159 0.275996i \(-0.0890078\pi\)
\(752\) −129.500 189.381i −0.172207 0.251836i
\(753\) 0 0
\(754\) −725.648 33.6984i −0.962399 0.0446929i
\(755\) 237.299 1247.92i 0.314303 1.65288i
\(756\) 0 0
\(757\) −883.323 883.323i −1.16687 1.16687i −0.982938 0.183935i \(-0.941116\pi\)
−0.183935 0.982938i \(-0.558884\pi\)
\(758\) 138.936 + 152.468i 0.183292 + 0.201145i
\(759\) 0 0
\(760\) 927.682 457.621i 1.22063 0.602134i
\(761\) 631.882i 0.830331i 0.909746 + 0.415166i \(0.136276\pi\)
−0.909746 + 0.415166i \(0.863724\pi\)
\(762\) 0 0
\(763\) 761.534 + 761.534i 0.998078 + 0.998078i
\(764\) 114.708 1232.37i 0.150141 1.61305i
\(765\) 0 0
\(766\) −785.644 36.4846i −1.02565 0.0476300i
\(767\) 725.491 + 725.491i 0.945881 + 0.945881i
\(768\) 0 0
\(769\) 1160.04i 1.50851i −0.656582 0.754255i \(-0.727998\pi\)
0.656582 0.754255i \(-0.272002\pi\)
\(770\) −1119.08 267.127i −1.45335 0.346918i
\(771\) 0 0
\(772\) 478.049 + 576.176i 0.619235 + 0.746341i
\(773\) −27.8223 27.8223i −0.0359926 0.0359926i 0.688881 0.724874i \(-0.258102\pi\)
−0.724874 + 0.688881i \(0.758102\pi\)
\(774\) 0 0
\(775\) 223.568 566.603i 0.288475 0.731100i
\(776\) −253.738 35.5547i −0.326982 0.0458180i
\(777\) 0 0
\(778\) 320.362 + 351.565i 0.411776 + 0.451884i
\(779\) 122.276i 0.156965i
\(780\) 0 0
\(781\) 800.572 1.02506
\(782\) 102.847 93.7182i 0.131517 0.119844i
\(783\) 0 0
\(784\) −137.359 + 731.473i −0.175203 + 0.933002i
\(785\) −265.740 390.534i −0.338523 0.497496i
\(786\) 0 0
\(787\) −215.803 + 215.803i −0.274209 + 0.274209i −0.830792 0.556583i \(-0.812112\pi\)
0.556583 + 0.830792i \(0.312112\pi\)
\(788\) 556.834 + 671.131i 0.706642 + 0.851690i
\(789\) 0 0
\(790\) −534.682 869.977i −0.676813 1.10124i
\(791\) 1144.69 1.44715
\(792\) 0 0
\(793\) −424.078 + 424.078i −0.534777 + 0.534777i
\(794\) −3.91432 + 84.2894i −0.00492988 + 0.106158i
\(795\) 0 0
\(796\) 130.057 1397.27i 0.163388 1.75537i
\(797\) 583.750 583.750i 0.732434 0.732434i −0.238667 0.971101i \(-0.576711\pi\)
0.971101 + 0.238667i \(0.0767106\pi\)
\(798\) 0 0
\(799\) 42.3416 0.0529933
\(800\) 141.293 + 787.424i 0.176616 + 0.984280i
\(801\) 0 0
\(802\) −34.3020 + 31.2575i −0.0427706 + 0.0389744i
\(803\) −267.676 + 267.676i −0.333345 + 0.333345i
\(804\) 0 0
\(805\) 215.071 1131.03i 0.267169 1.40501i
\(806\) 50.7170 1092.12i 0.0629243 1.35499i
\(807\) 0 0
\(808\) −653.110 865.969i −0.808304 1.07174i
\(809\) 185.805 0.229673 0.114836 0.993384i \(-0.463366\pi\)
0.114836 + 0.993384i \(0.463366\pi\)
\(810\) 0 0
\(811\) 202.958i 0.250257i −0.992141 0.125128i \(-0.960066\pi\)
0.992141 0.125128i \(-0.0399343\pi\)
\(812\) −404.106 487.054i −0.497667 0.599820i
\(813\) 0 0
\(814\) 27.3759 589.501i 0.0336313 0.724203i
\(815\) 775.779 + 1140.09i 0.951877 + 1.39888i
\(816\) 0 0
\(817\) 767.159 + 767.159i 0.938995 + 0.938995i
\(818\) −1073.14 + 977.888i −1.31190 + 1.19546i
\(819\) 0 0
\(820\) −90.8646 26.1996i −0.110810 0.0319508i
\(821\) 71.5435i 0.0871419i 0.999050 + 0.0435710i \(0.0138735\pi\)
−0.999050 + 0.0435710i \(0.986127\pi\)
\(822\) 0 0
\(823\) 556.952 + 556.952i 0.676734 + 0.676734i 0.959260 0.282526i \(-0.0911723\pi\)
−0.282526 + 0.959260i \(0.591172\pi\)
\(824\) 116.272 + 16.2925i 0.141107 + 0.0197724i
\(825\) 0 0
\(826\) −41.4651 + 892.892i −0.0501998 + 1.08098i
\(827\) 993.891 + 993.891i 1.20180 + 1.20180i 0.973618 + 0.228185i \(0.0732791\pi\)
0.228185 + 0.973618i \(0.426721\pi\)
\(828\) 0 0
\(829\) 62.8289i 0.0757887i 0.999282 + 0.0378944i \(0.0120650\pi\)
−0.999282 + 0.0378944i \(0.987935\pi\)
\(830\) 1088.61 + 259.854i 1.31158 + 0.313077i
\(831\) 0 0
\(832\) 697.173 + 1255.31i 0.837948 + 1.50878i
\(833\) −97.1265 97.1265i −0.116598 0.116598i
\(834\) 0 0
\(835\) 433.639 + 637.279i 0.519328 + 0.763208i
\(836\) −112.857 + 1212.49i −0.134997 + 1.45035i
\(837\) 0 0
\(838\) 939.625 856.227i 1.12127 1.02175i
\(839\) 1639.90i 1.95459i −0.211882 0.977295i \(-0.567959\pi\)
0.211882 0.977295i \(-0.432041\pi\)
\(840\) 0 0
\(841\) −578.922 −0.688373
\(842\) 771.106 + 846.213i 0.915803 + 1.00500i
\(843\) 0 0
\(844\) −217.315 20.2274i −0.257482 0.0239662i
\(845\) −312.325 + 1642.48i −0.369615 + 1.94376i
\(846\) 0 0
\(847\) 121.520 121.520i 0.143471 0.143471i
\(848\) −612.404 895.580i −0.722174 1.05611i
\(849\) 0 0
\(850\) −134.679 60.5041i −0.158445 0.0711812i
\(851\) 590.535 0.693930
\(852\) 0 0
\(853\) 107.337 107.337i 0.125835 0.125835i −0.641384 0.767220i \(-0.721640\pi\)
0.767220 + 0.641384i \(0.221640\pi\)
\(854\) −521.931 24.2380i −0.611160 0.0283817i
\(855\) 0 0
\(856\) 943.186 + 132.163i 1.10185 + 0.154396i
\(857\) 554.853 554.853i 0.647436 0.647436i −0.304936 0.952373i \(-0.598635\pi\)
0.952373 + 0.304936i \(0.0986352\pi\)
\(858\) 0 0
\(859\) −339.135 −0.394802 −0.197401 0.980323i \(-0.563250\pi\)
−0.197401 + 0.980323i \(0.563250\pi\)
\(860\) −734.461 + 405.708i −0.854024 + 0.471753i
\(861\) 0 0
\(862\) −142.748 156.652i −0.165601 0.181731i
\(863\) 649.664 649.664i 0.752797 0.752797i −0.222203 0.975000i \(-0.571325\pi\)
0.975000 + 0.222203i \(0.0713249\pi\)
\(864\) 0 0
\(865\) 748.562 + 1100.09i 0.865389 + 1.27178i
\(866\) −30.6462 1.42318i −0.0353882 0.00164339i
\(867\) 0 0
\(868\) 733.029 608.190i 0.844504 0.700680i
\(869\) 1202.11 1.38333
\(870\) 0 0
\(871\) 1323.26i 1.51924i
\(872\) 530.829 + 703.834i 0.608749 + 0.807149i
\(873\) 0 0
\(874\) −1217.24 56.5275i −1.39272 0.0646767i
\(875\) −1191.76 + 268.585i −1.36202 + 0.306954i
\(876\) 0 0
\(877\) −35.1088 35.1088i −0.0400328 0.0400328i 0.686807 0.726840i \(-0.259012\pi\)
−0.726840 + 0.686807i \(0.759012\pi\)
\(878\) −573.158 628.984i −0.652799 0.716383i
\(879\) 0 0
\(880\) −876.833 343.661i −0.996401 0.390524i
\(881\) 622.062i 0.706086i −0.935607 0.353043i \(-0.885147\pi\)
0.935607 0.353043i \(-0.114853\pi\)
\(882\) 0 0
\(883\) −1041.39 1041.39i −1.17938 1.17938i −0.979903 0.199472i \(-0.936077\pi\)
−0.199472 0.979903i \(-0.563923\pi\)
\(884\) −263.866 24.5604i −0.298491 0.0277832i
\(885\) 0 0
\(886\) −395.746 18.3781i −0.446666 0.0207427i
\(887\) −501.698 501.698i −0.565612 0.565612i 0.365284 0.930896i \(-0.380972\pi\)
−0.930896 + 0.365284i \(0.880972\pi\)
\(888\) 0 0
\(889\) 476.222i 0.535683i
\(890\) −456.848 743.334i −0.513313 0.835207i
\(891\) 0 0
\(892\) 463.709 384.737i 0.519853 0.431319i
\(893\) −262.203 262.203i −0.293621 0.293621i
\(894\) 0 0
\(895\) −109.650 + 576.635i −0.122514 + 0.644285i
\(896\) −399.257 + 1185.55i −0.445600 + 1.32316i
\(897\) 0 0
\(898\) −285.364 313.159i −0.317777 0.348729i
\(899\) 394.435i 0.438748i
\(900\) 0 0
\(901\) 200.233 0.222234
\(902\) 82.2858 74.9824i 0.0912259 0.0831290i
\(903\) 0 0
\(904\) 927.938 + 130.026i 1.02648 + 0.143834i
\(905\) 16.0757 + 3.05686i 0.0177632 + 0.00337775i
\(906\) 0 0
\(907\) −387.039 + 387.039i −0.426725 + 0.426725i −0.887511 0.460786i \(-0.847567\pi\)
0.460786 + 0.887511i \(0.347567\pi\)
\(908\) −612.335 + 508.050i −0.674377 + 0.559527i
\(909\) 0 0
\(910\) −1868.12 + 1148.14i −2.05288 + 1.26169i
\(911\) 1306.68 1.43434 0.717168 0.696900i \(-0.245438\pi\)
0.717168 + 0.696900i \(0.245438\pi\)
\(912\) 0 0
\(913\) −931.642 + 931.642i −1.02042 + 1.02042i
\(914\) −26.4042 + 568.577i −0.0288886 + 0.622075i
\(915\) 0 0
\(916\) −1183.65 110.173i −1.29219 0.120276i
\(917\) 184.875 184.875i 0.201608 0.201608i
\(918\) 0 0
\(919\) 166.211 0.180860 0.0904302 0.995903i \(-0.471176\pi\)
0.0904302 + 0.995903i \(0.471176\pi\)
\(920\) 302.820 892.433i 0.329152 0.970035i
\(921\) 0 0
\(922\) 1152.32 1050.04i 1.24981 1.13888i
\(923\) 1078.89 1078.89i 1.16889 1.16889i
\(924\) 0 0
\(925\) −249.533 574.794i −0.269766 0.621399i
\(926\) 38.2581 823.835i 0.0413155 0.889671i
\(927\) 0 0
\(928\) −272.261 440.729i −0.293385 0.474924i
\(929\) −1196.27 −1.28769 −0.643847 0.765155i \(-0.722662\pi\)
−0.643847 + 0.765155i \(0.722662\pi\)
\(930\) 0 0
\(931\) 1202.92i 1.29208i
\(932\) −365.245 + 303.042i −0.391894 + 0.325152i
\(933\) 0 0
\(934\) −50.4372 + 1086.09i −0.0540013 + 1.16284i
\(935\) 143.698 97.7799i 0.153688 0.104577i
\(936\) 0 0
\(937\) −1083.03 1083.03i −1.15585 1.15585i −0.985360 0.170488i \(-0.945466\pi\)
−0.170488 0.985360i \(-0.554534\pi\)
\(938\) −852.110 + 776.480i −0.908433 + 0.827804i
\(939\) 0 0
\(940\) 251.027 138.665i 0.267051 0.147516i
\(941\) 1346.48i 1.43090i 0.698664 + 0.715450i \(0.253778\pi\)
−0.698664 + 0.715450i \(0.746222\pi\)
\(942\) 0 0
\(943\) 78.7719 + 78.7719i 0.0835333 + 0.0835333i
\(944\) −135.037 + 719.106i −0.143048 + 0.761765i
\(945\) 0 0
\(946\) 45.8214 986.700i 0.0484370 1.04302i
\(947\) 720.862 + 720.862i 0.761206 + 0.761206i 0.976540 0.215334i \(-0.0690841\pi\)
−0.215334 + 0.976540i \(0.569084\pi\)
\(948\) 0 0
\(949\) 721.466i 0.760238i
\(950\) 459.330 + 1208.68i 0.483506 + 1.27230i
\(951\) 0 0
\(952\) −139.020 184.328i −0.146029 0.193622i
\(953\) −1252.57 1252.57i −1.31434 1.31434i −0.918179 0.396165i \(-0.870341\pi\)
−0.396165 0.918179i \(-0.629659\pi\)
\(954\) 0 0
\(955\) 1519.89 + 289.014i 1.59151 + 0.302632i
\(956\) −975.840 90.8301i −1.02075 0.0950106i
\(957\) 0 0
\(958\) −571.737 + 520.992i −0.596803 + 0.543833i
\(959\) 449.928i 0.469164i
\(960\) 0 0
\(961\) 367.366 0.382274
\(962\) −757.548 831.334i −0.787471 0.864172i
\(963\) 0 0
\(964\) −27.9233 + 299.996i −0.0289661 + 0.311199i
\(965\) −773.707 + 526.472i −0.801769 + 0.545567i
\(966\) 0 0
\(967\) −1073.52 + 1073.52i −1.11016 + 1.11016i −0.117031 + 0.993128i \(0.537338\pi\)
−0.993128 + 0.117031i \(0.962662\pi\)
\(968\) 112.313 84.7057i 0.116025 0.0875059i
\(969\) 0 0
\(970\) 74.3603 311.520i 0.0766601 0.321154i
\(971\) −1157.66 −1.19223 −0.596117 0.802897i \(-0.703291\pi\)
−0.596117 + 0.802897i \(0.703291\pi\)
\(972\) 0 0
\(973\) 1278.48 1278.48i 1.31395 1.31395i
\(974\) 1302.67 + 60.4950i 1.33745 + 0.0621098i
\(975\) 0 0
\(976\) −420.346 78.9345i −0.430682 0.0808755i
\(977\) −813.236 + 813.236i −0.832381 + 0.832381i −0.987842 0.155461i \(-0.950314\pi\)
0.155461 + 0.987842i \(0.450314\pi\)
\(978\) 0 0
\(979\) 1027.12 1.04915
\(980\) −893.906 257.746i −0.912149 0.263006i
\(981\) 0 0
\(982\) −154.508 169.558i −0.157340 0.172666i
\(983\) 343.132 343.132i 0.349066 0.349066i −0.510696 0.859762i \(-0.670612\pi\)
0.859762 + 0.510696i \(0.170612\pi\)
\(984\) 0 0
\(985\) −901.217 + 613.237i −0.914941 + 0.622575i
\(986\) 95.5051 + 4.43517i 0.0968611 + 0.00449814i
\(987\) 0 0
\(988\) 1481.92 + 1786.10i 1.49992 + 1.80779i
\(989\) 988.429 0.999423
\(990\) 0 0
\(991\) 473.847i 0.478150i −0.971001 0.239075i \(-0.923156\pi\)
0.971001 0.239075i \(-0.0768442\pi\)
\(992\) 663.309 409.760i 0.668658 0.413064i
\(993\) 0 0
\(994\) 1327.84 + 61.6634i 1.33585 + 0.0620356i
\(995\) 1723.26 + 327.686i 1.73192 + 0.329333i
\(996\) 0 0
\(997\) 199.018 + 199.018i 0.199617 + 0.199617i 0.799836 0.600219i \(-0.204920\pi\)
−0.600219 + 0.799836i \(0.704920\pi\)
\(998\) −644.398 707.164i −0.645690 0.708581i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 180.3.m.c.107.6 yes 40
3.2 odd 2 inner 180.3.m.c.107.15 yes 40
4.3 odd 2 inner 180.3.m.c.107.16 yes 40
5.3 odd 4 inner 180.3.m.c.143.5 yes 40
12.11 even 2 inner 180.3.m.c.107.5 40
15.8 even 4 inner 180.3.m.c.143.16 yes 40
20.3 even 4 inner 180.3.m.c.143.15 yes 40
60.23 odd 4 inner 180.3.m.c.143.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.3.m.c.107.5 40 12.11 even 2 inner
180.3.m.c.107.6 yes 40 1.1 even 1 trivial
180.3.m.c.107.15 yes 40 3.2 odd 2 inner
180.3.m.c.107.16 yes 40 4.3 odd 2 inner
180.3.m.c.143.5 yes 40 5.3 odd 4 inner
180.3.m.c.143.6 yes 40 60.23 odd 4 inner
180.3.m.c.143.15 yes 40 20.3 even 4 inner
180.3.m.c.143.16 yes 40 15.8 even 4 inner