Properties

Label 1800.1.bk.d.1051.1
Level 18001800
Weight 11
Character 1800.1051
Analytic conductor 0.8980.898
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(1051,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1051");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1800.bk (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8983170227390.898317022739
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 72)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.648.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

Embedding invariants

Embedding label 1051.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 1800.1051
Dual form 1800.1.bk.d.1651.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.5000000.866025i)q3+(0.5000000.866025i)q4+(0.5000000.866025i)q61.00000q8+(0.5000000.866025i)q9+(0.5000000.866025i)q111.00000q12+(0.500000+0.866025i)q16+1.00000q171.00000q181.00000q19+(0.5000000.866025i)q22+(0.500000+0.866025i)q241.00000q27+(0.500000+0.866025i)q32+(0.5000000.866025i)q33+(0.5000000.866025i)q34+(0.500000+0.866025i)q36+(0.500000+0.866025i)q38+(0.500000+0.866025i)q41+(0.500000+0.866025i)q431.00000q44+(0.500000+0.866025i)q48+(0.5000000.866025i)q49+(0.5000000.866025i)q51+(0.500000+0.866025i)q54+(0.500000+0.866025i)q57+(0.500000+0.866025i)q59+1.00000q641.00000q66+(0.5000000.866025i)q67+(0.5000000.866025i)q68+(0.500000+0.866025i)q72+1.00000q73+(0.500000+0.866025i)q76+(0.500000+0.866025i)q81+1.00000q82+(1.000001.73205i)q83+(0.500000+0.866025i)q86+(0.500000+0.866025i)q88+2.00000q89+1.00000q96+(0.500000+0.866025i)q971.00000q981.00000q99+O(q100)q+(0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{6} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.500000 - 0.866025i) q^{11} -1.00000 q^{12} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{17} -1.00000 q^{18} -1.00000 q^{19} +(-0.500000 - 0.866025i) q^{22} +(-0.500000 + 0.866025i) q^{24} -1.00000 q^{27} +(0.500000 + 0.866025i) q^{32} +(-0.500000 - 0.866025i) q^{33} +(0.500000 - 0.866025i) q^{34} +(-0.500000 + 0.866025i) q^{36} +(-0.500000 + 0.866025i) q^{38} +(0.500000 + 0.866025i) q^{41} +(-0.500000 + 0.866025i) q^{43} -1.00000 q^{44} +(0.500000 + 0.866025i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{51} +(-0.500000 + 0.866025i) q^{54} +(-0.500000 + 0.866025i) q^{57} +(0.500000 + 0.866025i) q^{59} +1.00000 q^{64} -1.00000 q^{66} +(-0.500000 - 0.866025i) q^{67} +(-0.500000 - 0.866025i) q^{68} +(0.500000 + 0.866025i) q^{72} +1.00000 q^{73} +(0.500000 + 0.866025i) q^{76} +(-0.500000 + 0.866025i) q^{81} +1.00000 q^{82} +(1.00000 - 1.73205i) q^{83} +(0.500000 + 0.866025i) q^{86} +(-0.500000 + 0.866025i) q^{88} +2.00000 q^{89} +1.00000 q^{96} +(-0.500000 + 0.866025i) q^{97} -1.00000 q^{98} -1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2+q3q4q62q8q9+q112q12q16+2q172q182q19q22q242q27+q32q33+q34q36q38+2q99+O(q100) 2 q + q^{2} + q^{3} - q^{4} - q^{6} - 2 q^{8} - q^{9} + q^{11} - 2 q^{12} - q^{16} + 2 q^{17} - 2 q^{18} - 2 q^{19} - q^{22} - q^{24} - 2 q^{27} + q^{32} - q^{33} + q^{34} - q^{36} - q^{38}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) 11 1-1 e(23)e\left(\frac{2}{3}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 0.866025i 0.500000 0.866025i
33 0.500000 0.866025i 0.500000 0.866025i
44 −0.500000 0.866025i −0.500000 0.866025i
55 0 0
66 −0.500000 0.866025i −0.500000 0.866025i
77 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 −1.00000 −1.00000
99 −0.500000 0.866025i −0.500000 0.866025i
1010 0 0
1111 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1212 −1.00000 −1.00000
1313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1414 0 0
1515 0 0
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1818 −1.00000 −1.00000
1919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0 0
2121 0 0
2222 −0.500000 0.866025i −0.500000 0.866025i
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 −0.500000 + 0.866025i −0.500000 + 0.866025i
2525 0 0
2626 0 0
2727 −1.00000 −1.00000
2828 0 0
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 0 0
3131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0.500000 + 0.866025i 0.500000 + 0.866025i
3333 −0.500000 0.866025i −0.500000 0.866025i
3434 0.500000 0.866025i 0.500000 0.866025i
3535 0 0
3636 −0.500000 + 0.866025i −0.500000 + 0.866025i
3737 0 0 1.00000 00
−1.00000 π\pi
3838 −0.500000 + 0.866025i −0.500000 + 0.866025i
3939 0 0
4040 0 0
4141 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 0 0
4343 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4444 −1.00000 −1.00000
4545 0 0
4646 0 0
4747 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 0.500000 + 0.866025i 0.500000 + 0.866025i
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0 0
5151 0.500000 0.866025i 0.500000 0.866025i
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0 0
5656 0 0
5757 −0.500000 + 0.866025i −0.500000 + 0.866025i
5858 0 0
5959 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 −1.00000 −1.00000
6767 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6868 −0.500000 0.866025i −0.500000 0.866025i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0.500000 + 0.866025i 0.500000 + 0.866025i
7373 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 0 0
7676 0.500000 + 0.866025i 0.500000 + 0.866025i
7777 0 0
7878 0 0
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 0 0
8181 −0.500000 + 0.866025i −0.500000 + 0.866025i
8282 1.00000 1.00000
8383 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
8484 0 0
8585 0 0
8686 0.500000 + 0.866025i 0.500000 + 0.866025i
8787 0 0
8888 −0.500000 + 0.866025i −0.500000 + 0.866025i
8989 2.00000 2.00000 1.00000 00
1.00000 00
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 1.00000 1.00000
9797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
9898 −1.00000 −1.00000
9999 −1.00000 −1.00000
100100 0 0
101101 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 −0.500000 0.866025i −0.500000 0.866025i
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0 0
105105 0 0
106106 0 0
107107 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 0.500000 + 0.866025i 0.500000 + 0.866025i
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
114114 0.500000 + 0.866025i 0.500000 + 0.866025i
115115 0 0
116116 0 0
117117 0 0
118118 1.00000 1.00000
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 1.00000 1.00000
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.500000 0.866025i 0.500000 0.866025i
129129 0.500000 + 0.866025i 0.500000 + 0.866025i
130130 0 0
131131 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
132132 −0.500000 + 0.866025i −0.500000 + 0.866025i
133133 0 0
134134 −1.00000 −1.00000
135135 0 0
136136 −1.00000 −1.00000
137137 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
138138 0 0
139139 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 1.00000 1.00000
145145 0 0
146146 0.500000 0.866025i 0.500000 0.866025i
147147 −1.00000 −1.00000
148148 0 0
149149 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0 0
151151 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 1.00000 1.00000
153153 −0.500000 0.866025i −0.500000 0.866025i
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0.500000 + 0.866025i 0.500000 + 0.866025i
163163 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
164164 0.500000 0.866025i 0.500000 0.866025i
165165 0 0
166166 −1.00000 1.73205i −1.00000 1.73205i
167167 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0 0
169169 −0.500000 + 0.866025i −0.500000 + 0.866025i
170170 0 0
171171 0.500000 + 0.866025i 0.500000 + 0.866025i
172172 1.00000 1.00000
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 0 0
175175 0 0
176176 0.500000 + 0.866025i 0.500000 + 0.866025i
177177 1.00000 1.00000
178178 1.00000 1.73205i 1.00000 1.73205i
179179 2.00000 2.00000 1.00000 00
1.00000 00
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0.500000 0.866025i 0.500000 0.866025i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0.500000 0.866025i 0.500000 0.866025i
193193 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
194194 0.500000 + 0.866025i 0.500000 + 0.866025i
195195 0 0
196196 −0.500000 + 0.866025i −0.500000 + 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −0.500000 + 0.866025i −0.500000 + 0.866025i
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 −1.00000 −1.00000
202202 0 0
203203 0 0
204204 −1.00000 −1.00000
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −0.500000 + 0.866025i −0.500000 + 0.866025i
210210 0 0
211211 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
212212 0 0
213213 0 0
214214 0.500000 0.866025i 0.500000 0.866025i
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 0 0
219219 0.500000 0.866025i 0.500000 0.866025i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 0 0
226226 2.00000 2.00000
227227 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
228228 1.00000 1.00000
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 0 0
236236 0.500000 0.866025i 0.500000 0.866025i
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
242242 0 0
243243 0.500000 + 0.866025i 0.500000 + 0.866025i
244244 0 0
245245 0 0
246246 0.500000 0.866025i 0.500000 0.866025i
247247 0 0
248248 0 0
249249 −1.00000 1.73205i −1.00000 1.73205i
250250 0 0
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
258258 1.00000 1.00000
259259 0 0
260260 0 0
261261 0 0
262262 −2.00000 −2.00000
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0.500000 + 0.866025i 0.500000 + 0.866025i
265265 0 0
266266 0 0
267267 1.00000 1.73205i 1.00000 1.73205i
268268 −0.500000 + 0.866025i −0.500000 + 0.866025i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 −0.500000 + 0.866025i −0.500000 + 0.866025i
273273 0 0
274274 0.500000 + 0.866025i 0.500000 + 0.866025i
275275 0 0
276276 0 0
277277 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 1.00000 1.00000
279279 0 0
280280 0 0
281281 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0.500000 0.866025i 0.500000 0.866025i
289289 0 0
290290 0 0
291291 0.500000 + 0.866025i 0.500000 + 0.866025i
292292 −0.500000 0.866025i −0.500000 0.866025i
293293 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 −0.500000 + 0.866025i −0.500000 + 0.866025i
295295 0 0
296296 0 0
297297 −0.500000 + 0.866025i −0.500000 + 0.866025i
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0.500000 0.866025i 0.500000 0.866025i
305305 0 0
306306 −1.00000 −1.00000
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 0 0
313313 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 0 0
321321 0.500000 0.866025i 0.500000 0.866025i
322322 0 0
323323 −1.00000 −1.00000
324324 1.00000 1.00000
325325 0 0
326326 −1.00000 + 1.73205i −1.00000 + 1.73205i
327327 0 0
328328 −0.500000 0.866025i −0.500000 0.866025i
329329 0 0
330330 0 0
331331 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 −2.00000 −2.00000
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
338338 0.500000 + 0.866025i 0.500000 + 0.866025i
339339 2.00000 2.00000
340340 0 0
341341 0 0
342342 1.00000 1.00000
343343 0 0
344344 0.500000 0.866025i 0.500000 0.866025i
345345 0 0
346346 0 0
347347 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 1.00000 1.00000
353353 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
354354 0.500000 0.866025i 0.500000 0.866025i
355355 0 0
356356 −1.00000 1.73205i −1.00000 1.73205i
357357 0 0
358358 1.00000 1.73205i 1.00000 1.73205i
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 0 0
369369 0.500000 0.866025i 0.500000 0.866025i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
374374 −0.500000 0.866025i −0.500000 0.866025i
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
384384 −0.500000 0.866025i −0.500000 0.866025i
385385 0 0
386386 −1.00000 −1.00000
387387 1.00000 1.00000
388388 1.00000 1.00000
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 0.500000 + 0.866025i 0.500000 + 0.866025i
393393 −2.00000 −2.00000
394394 0 0
395395 0 0
396396 0.500000 + 0.866025i 0.500000 + 0.866025i
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 −0.500000 + 0.866025i −0.500000 + 0.866025i
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 −0.500000 + 0.866025i −0.500000 + 0.866025i
409409 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0.500000 + 0.866025i 0.500000 + 0.866025i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 1.00000 1.00000
418418 0.500000 + 0.866025i 0.500000 + 0.866025i
419419 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
420420 0 0
421421 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 −2.00000 −2.00000
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 −0.500000 0.866025i −0.500000 0.866025i
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0.500000 0.866025i 0.500000 0.866025i
433433 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 −0.500000 0.866025i −0.500000 0.866025i
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −0.500000 + 0.866025i −0.500000 + 0.866025i
442442 0 0
443443 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 1.00000 1.00000
452452 1.00000 1.73205i 1.00000 1.73205i
453453 0 0
454454 0.500000 + 0.866025i 0.500000 + 0.866025i
455455 0 0
456456 0.500000 0.866025i 0.500000 0.866025i
457457 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
458458 0 0
459459 −1.00000 −1.00000
460460 0 0
461461 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 0 0
466466 0.500000 0.866025i 0.500000 0.866025i
467467 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −0.500000 0.866025i −0.500000 0.866025i
473473 0.500000 + 0.866025i 0.500000 + 0.866025i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 0 0
482482 −0.500000 0.866025i −0.500000 0.866025i
483483 0 0
484484 0 0
485485 0 0
486486 1.00000 1.00000
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 −1.00000 + 1.73205i −1.00000 + 1.73205i
490490 0 0
491491 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 −0.500000 0.866025i −0.500000 0.866025i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −2.00000 −2.00000
499499 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 0 0
502502 −0.500000 + 0.866025i −0.500000 + 0.866025i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0.500000 + 0.866025i 0.500000 + 0.866025i
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 1.00000 1.00000
514514 −1.00000 −1.00000
515515 0 0
516516 0.500000 0.866025i 0.500000 0.866025i
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
524524 −1.00000 + 1.73205i −1.00000 + 1.73205i
525525 0 0
526526 0 0
527527 0 0
528528 1.00000 1.00000
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0 0
531531 0.500000 0.866025i 0.500000 0.866025i
532532 0 0
533533 0 0
534534 −1.00000 1.73205i −1.00000 1.73205i
535535 0 0
536536 0.500000 + 0.866025i 0.500000 + 0.866025i
537537 1.00000 1.73205i 1.00000 1.73205i
538538 0 0
539539 −1.00000 −1.00000
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0.500000 + 0.866025i 0.500000 + 0.866025i
545545 0 0
546546 0 0
547547 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
548548 1.00000 1.00000
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.500000 0.866025i 0.500000 0.866025i
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 −0.500000 0.866025i −0.500000 0.866025i
562562 1.00000 + 1.73205i 1.00000 + 1.73205i
563563 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
564564 0 0
565565 0 0
566566 2.00000 2.00000
567567 0 0
568568 0 0
569569 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
570570 0 0
571571 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 −0.500000 0.866025i −0.500000 0.866025i
577577 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 0 0
579579 −1.00000 −1.00000
580580 0 0
581581 0 0
582582 1.00000 1.00000
583583 0 0
584584 −1.00000 −1.00000
585585 0 0
586586 0 0
587587 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
588588 0.500000 + 0.866025i 0.500000 + 0.866025i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
594594 0.500000 + 0.866025i 0.500000 + 0.866025i
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 0 0
603603 −0.500000 + 0.866025i −0.500000 + 0.866025i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 −0.500000 0.866025i −0.500000 0.866025i
609609 0 0
610610 0 0
611611 0 0
612612 −0.500000 + 0.866025i −0.500000 + 0.866025i
613613 0 0 1.00000 00
−1.00000 π\pi
614614 0.500000 0.866025i 0.500000 0.866025i
615615 0 0
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0 0
619619 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 0.500000 + 0.866025i 0.500000 + 0.866025i
627627 0.500000 + 0.866025i 0.500000 + 0.866025i
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 −2.00000 −2.00000
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
642642 −0.500000 0.866025i −0.500000 0.866025i
643643 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
644644 0 0
645645 0 0
646646 −0.500000 + 0.866025i −0.500000 + 0.866025i
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0.500000 0.866025i 0.500000 0.866025i
649649 1.00000 1.00000
650650 0 0
651651 0 0
652652 1.00000 + 1.73205i 1.00000 + 1.73205i
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 0 0
656656 −1.00000 −1.00000
657657 −0.500000 0.866025i −0.500000 0.866025i
658658 0 0
659659 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 1.00000 + 1.73205i 1.00000 + 1.73205i
663663 0 0
664664 −1.00000 + 1.73205i −1.00000 + 1.73205i
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
674674 −1.00000 −1.00000
675675 0 0
676676 1.00000 1.00000
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 1.00000 1.73205i 1.00000 1.73205i
679679 0 0
680680 0 0
681681 0.500000 + 0.866025i 0.500000 + 0.866025i
682682 0 0
683683 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
684684 0.500000 0.866025i 0.500000 0.866025i
685685 0 0
686686 0 0
687687 0 0
688688 −0.500000 0.866025i −0.500000 0.866025i
689689 0 0
690690 0 0
691691 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −1.00000 −1.00000
695695 0 0
696696 0 0
697697 0.500000 + 0.866025i 0.500000 + 0.866025i
698698 0 0
699699 0.500000 0.866025i 0.500000 0.866025i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0.500000 0.866025i 0.500000 0.866025i
705705 0 0
706706 0.500000 + 0.866025i 0.500000 + 0.866025i
707707 0 0
708708 −0.500000 0.866025i −0.500000 0.866025i
709709 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 0 0
711711 0 0
712712 −2.00000 −2.00000
713713 0 0
714714 0 0
715715 0 0
716716 −1.00000 1.73205i −1.00000 1.73205i
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 −0.500000 0.866025i −0.500000 0.866025i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 −0.500000 + 0.866025i −0.500000 + 0.866025i
732732 0 0
733733 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 0 0
735735 0 0
736736 0 0
737737 −1.00000 −1.00000
738738 −0.500000 0.866025i −0.500000 0.866025i
739739 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
744744 0 0
745745 0 0
746746 0 0
747747 −2.00000 −2.00000
748748 −1.00000 −1.00000
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 0 0
753753 −0.500000 + 0.866025i −0.500000 + 0.866025i
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −0.500000 + 0.866025i −0.500000 + 0.866025i
759759 0 0
760760 0 0
761761 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 −1.00000 −1.00000
769769 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
770770 0 0
771771 −1.00000 −1.00000
772772 −0.500000 + 0.866025i −0.500000 + 0.866025i
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0.500000 0.866025i 0.500000 0.866025i
775775 0 0
776776 0.500000 0.866025i 0.500000 0.866025i
777777 0 0
778778 0 0
779779 −0.500000 0.866025i −0.500000 0.866025i
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 0 0
786786 −1.00000 + 1.73205i −1.00000 + 1.73205i
787787 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 1.00000 1.00000
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 0 0
800800 0 0
801801 −1.00000 1.73205i −1.00000 1.73205i
802802 1.00000 1.00000
803803 0.500000 0.866025i 0.500000 0.866025i
804804 0.500000 + 0.866025i 0.500000 + 0.866025i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 0 0
811811 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0.500000 + 0.866025i 0.500000 + 0.866025i
817817 0.500000 0.866025i 0.500000 0.866025i
818818 1.00000 1.00000
819819 0 0
820820 0 0
821821 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 1.00000 1.00000
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.500000 0.866025i −0.500000 0.866025i
834834 0.500000 0.866025i 0.500000 0.866025i
835835 0 0
836836 1.00000 1.00000
837837 0 0
838838 −2.00000 −2.00000
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 0 0
843843 1.00000 + 1.73205i 1.00000 + 1.73205i
844844 −1.00000 + 1.73205i −1.00000 + 1.73205i
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 2.00000 2.00000
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 −1.00000 −1.00000
857857 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
858858 0 0
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 −0.500000 0.866025i −0.500000 0.866025i
865865 0 0
866866 0.500000 0.866025i 0.500000 0.866025i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 1.00000 1.00000
874874 0 0
875875 0 0
876876 −1.00000 −1.00000
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 0 0
879879 0 0
880880 0 0
881881 2.00000 2.00000 1.00000 00
1.00000 00
882882 0.500000 + 0.866025i 0.500000 + 0.866025i
883883 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
884884 0 0
885885 0 0
886886 0.500000 + 0.866025i 0.500000 + 0.866025i
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0.500000 + 0.866025i 0.500000 + 0.866025i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −0.500000 + 0.866025i −0.500000 + 0.866025i
899899 0 0
900900 0 0
901901 0 0
902902 0.500000 0.866025i 0.500000 0.866025i
903903 0 0
904904 −1.00000 1.73205i −1.00000 1.73205i
905905 0 0
906906 0 0
907907 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
908908 1.00000 1.00000
909909 0 0
910910 0 0
911911 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 −0.500000 0.866025i −0.500000 0.866025i
913913 −1.00000 1.73205i −1.00000 1.73205i
914914 0.500000 + 0.866025i 0.500000 + 0.866025i
915915 0 0
916916 0 0
917917 0 0
918918 −0.500000 + 0.866025i −0.500000 + 0.866025i
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0.500000 0.866025i 0.500000 0.866025i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 0.500000 + 0.866025i 0.500000 + 0.866025i
932932 −0.500000 0.866025i −0.500000 0.866025i
933933 0 0
934934 0.500000 0.866025i 0.500000 0.866025i
935935 0 0
936936 0 0
937937 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
938938 0 0
939939 0.500000 + 0.866025i 0.500000 + 0.866025i
940940 0 0
941941 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
942942 0 0
943943 0 0
944944 −1.00000 −1.00000
945945 0 0
946946 1.00000 1.00000
947947 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 0 0
963963 −0.500000 0.866025i −0.500000 0.866025i
964964 −1.00000 −1.00000
965965 0 0
966966 0 0
967967 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0 0
969969 −0.500000 + 0.866025i −0.500000 + 0.866025i
970970 0 0
971971 2.00000 2.00000 1.00000 00
1.00000 00
972972 0.500000 0.866025i 0.500000 0.866025i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
978978 1.00000 + 1.73205i 1.00000 + 1.73205i
979979 1.00000 1.73205i 1.00000 1.73205i
980980 0 0
981981 0 0
982982 1.00000 1.00000
983983 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 −1.00000 −1.00000
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 1.00000 + 1.73205i 1.00000 + 1.73205i
994994 0 0
995995 0 0
996996 −1.00000 + 1.73205i −1.00000 + 1.73205i
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 1.00000 1.00000
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.1.bk.d.1051.1 2
5.2 odd 4 1800.1.ba.b.1699.2 4
5.3 odd 4 1800.1.ba.b.1699.1 4
5.4 even 2 72.1.p.a.43.1 2
8.3 odd 2 CM 1800.1.bk.d.1051.1 2
9.4 even 3 inner 1800.1.bk.d.1651.1 2
15.14 odd 2 216.1.p.a.19.1 2
20.19 odd 2 288.1.t.a.79.1 2
35.4 even 6 3528.1.ba.b.1843.1 2
35.9 even 6 3528.1.ce.a.2419.1 2
35.19 odd 6 3528.1.ce.b.2419.1 2
35.24 odd 6 3528.1.ba.a.1843.1 2
35.34 odd 2 3528.1.cg.a.2059.1 2
40.3 even 4 1800.1.ba.b.1699.1 4
40.19 odd 2 72.1.p.a.43.1 2
40.27 even 4 1800.1.ba.b.1699.2 4
40.29 even 2 288.1.t.a.79.1 2
45.4 even 6 72.1.p.a.67.1 yes 2
45.13 odd 12 1800.1.ba.b.499.2 4
45.14 odd 6 216.1.p.a.91.1 2
45.22 odd 12 1800.1.ba.b.499.1 4
45.29 odd 6 648.1.b.a.163.1 1
45.34 even 6 648.1.b.b.163.1 1
60.59 even 2 864.1.t.a.559.1 2
72.67 odd 6 inner 1800.1.bk.d.1651.1 2
80.19 odd 4 2304.1.o.c.511.2 4
80.29 even 4 2304.1.o.c.511.1 4
80.59 odd 4 2304.1.o.c.511.1 4
80.69 even 4 2304.1.o.c.511.2 4
120.29 odd 2 864.1.t.a.559.1 2
120.59 even 2 216.1.p.a.19.1 2
180.59 even 6 864.1.t.a.847.1 2
180.79 odd 6 2592.1.b.b.1135.1 1
180.119 even 6 2592.1.b.a.1135.1 1
180.139 odd 6 288.1.t.a.175.1 2
280.19 even 6 3528.1.ce.b.2419.1 2
280.59 even 6 3528.1.ba.a.1843.1 2
280.139 even 2 3528.1.cg.a.2059.1 2
280.179 odd 6 3528.1.ba.b.1843.1 2
280.219 odd 6 3528.1.ce.a.2419.1 2
315.4 even 6 3528.1.ce.a.3019.1 2
315.94 odd 6 3528.1.ce.b.3019.1 2
315.139 odd 6 3528.1.cg.a.3235.1 2
315.184 even 6 3528.1.ba.b.67.1 2
315.229 odd 6 3528.1.ba.a.67.1 2
360.29 odd 6 2592.1.b.a.1135.1 1
360.59 even 6 216.1.p.a.91.1 2
360.67 even 12 1800.1.ba.b.499.1 4
360.139 odd 6 72.1.p.a.67.1 yes 2
360.149 odd 6 864.1.t.a.847.1 2
360.229 even 6 288.1.t.a.175.1 2
360.259 odd 6 648.1.b.b.163.1 1
360.283 even 12 1800.1.ba.b.499.2 4
360.299 even 6 648.1.b.a.163.1 1
360.349 even 6 2592.1.b.b.1135.1 1
720.139 odd 12 2304.1.o.c.2047.2 4
720.229 even 12 2304.1.o.c.2047.1 4
720.499 odd 12 2304.1.o.c.2047.1 4
720.589 even 12 2304.1.o.c.2047.2 4
2520.139 even 6 3528.1.cg.a.3235.1 2
2520.499 odd 6 3528.1.ba.b.67.1 2
2520.859 even 6 3528.1.ba.a.67.1 2
2520.1579 odd 6 3528.1.ce.a.3019.1 2
2520.2299 even 6 3528.1.ce.b.3019.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.1.p.a.43.1 2 5.4 even 2
72.1.p.a.43.1 2 40.19 odd 2
72.1.p.a.67.1 yes 2 45.4 even 6
72.1.p.a.67.1 yes 2 360.139 odd 6
216.1.p.a.19.1 2 15.14 odd 2
216.1.p.a.19.1 2 120.59 even 2
216.1.p.a.91.1 2 45.14 odd 6
216.1.p.a.91.1 2 360.59 even 6
288.1.t.a.79.1 2 20.19 odd 2
288.1.t.a.79.1 2 40.29 even 2
288.1.t.a.175.1 2 180.139 odd 6
288.1.t.a.175.1 2 360.229 even 6
648.1.b.a.163.1 1 45.29 odd 6
648.1.b.a.163.1 1 360.299 even 6
648.1.b.b.163.1 1 45.34 even 6
648.1.b.b.163.1 1 360.259 odd 6
864.1.t.a.559.1 2 60.59 even 2
864.1.t.a.559.1 2 120.29 odd 2
864.1.t.a.847.1 2 180.59 even 6
864.1.t.a.847.1 2 360.149 odd 6
1800.1.ba.b.499.1 4 45.22 odd 12
1800.1.ba.b.499.1 4 360.67 even 12
1800.1.ba.b.499.2 4 45.13 odd 12
1800.1.ba.b.499.2 4 360.283 even 12
1800.1.ba.b.1699.1 4 5.3 odd 4
1800.1.ba.b.1699.1 4 40.3 even 4
1800.1.ba.b.1699.2 4 5.2 odd 4
1800.1.ba.b.1699.2 4 40.27 even 4
1800.1.bk.d.1051.1 2 1.1 even 1 trivial
1800.1.bk.d.1051.1 2 8.3 odd 2 CM
1800.1.bk.d.1651.1 2 9.4 even 3 inner
1800.1.bk.d.1651.1 2 72.67 odd 6 inner
2304.1.o.c.511.1 4 80.29 even 4
2304.1.o.c.511.1 4 80.59 odd 4
2304.1.o.c.511.2 4 80.19 odd 4
2304.1.o.c.511.2 4 80.69 even 4
2304.1.o.c.2047.1 4 720.229 even 12
2304.1.o.c.2047.1 4 720.499 odd 12
2304.1.o.c.2047.2 4 720.139 odd 12
2304.1.o.c.2047.2 4 720.589 even 12
2592.1.b.a.1135.1 1 180.119 even 6
2592.1.b.a.1135.1 1 360.29 odd 6
2592.1.b.b.1135.1 1 180.79 odd 6
2592.1.b.b.1135.1 1 360.349 even 6
3528.1.ba.a.67.1 2 315.229 odd 6
3528.1.ba.a.67.1 2 2520.859 even 6
3528.1.ba.a.1843.1 2 35.24 odd 6
3528.1.ba.a.1843.1 2 280.59 even 6
3528.1.ba.b.67.1 2 315.184 even 6
3528.1.ba.b.67.1 2 2520.499 odd 6
3528.1.ba.b.1843.1 2 35.4 even 6
3528.1.ba.b.1843.1 2 280.179 odd 6
3528.1.ce.a.2419.1 2 35.9 even 6
3528.1.ce.a.2419.1 2 280.219 odd 6
3528.1.ce.a.3019.1 2 315.4 even 6
3528.1.ce.a.3019.1 2 2520.1579 odd 6
3528.1.ce.b.2419.1 2 35.19 odd 6
3528.1.ce.b.2419.1 2 280.19 even 6
3528.1.ce.b.3019.1 2 315.94 odd 6
3528.1.ce.b.3019.1 2 2520.2299 even 6
3528.1.cg.a.2059.1 2 35.34 odd 2
3528.1.cg.a.2059.1 2 280.139 even 2
3528.1.cg.a.3235.1 2 315.139 odd 6
3528.1.cg.a.3235.1 2 2520.139 even 6