Properties

Label 1800.1.cr.a.397.1
Level 18001800
Weight 11
Character 1800.397
Analytic conductor 0.8980.898
Analytic rank 00
Dimension 1616
Projective image D20D_{20}
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(37,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 10, 0, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.37");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1800.cr (of order 2020, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8983170227390.898317022739
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ20)\Q(\zeta_{20})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

Embedding invariants

Embedding label 397.1
Root 0.453990+0.891007i-0.453990 + 0.891007i of defining polynomial
Character χ\chi == 1800.397
Dual form 1800.1.cr.a.1333.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.4539900.891007i)q2+(0.587785+0.809017i)q4+(0.8910070.453990i)q5+(1.39680+1.39680i)q7+(0.987688+0.156434i)q8+(0.8090170.587785i)q10+(0.8635410.280582i)q11+(0.6104251.87869i)q14+(0.3090170.951057i)q16+(0.156434+0.987688i)q20+(0.142040+0.896802i)q22+(0.5877850.809017i)q25+(1.95106+0.309017i)q28+(1.14412+0.831254i)q29+(0.951057+0.690983i)q31+(0.707107+0.707107i)q32+(1.87869+0.610425i)q35+(0.9510570.309017i)q40+(0.7345720.533698i)q44+2.90211iq49+(0.9876880.156434i)q50+(0.2975561.87869i)q53+(0.896802+0.142040i)q55+(1.16110+1.59811i)q56+(0.2212321.39680i)q58+(0.550672+1.69480i)q59+(1.04744+0.533698i)q62+(0.951057+0.309017i)q64+(0.3090171.95106i)q70+(0.6420401.26007i)q73+(0.8142791.59811i)q77+(1.118031.53884i)q79+(0.7071070.707107i)q80+(1.598110.253116i)q83+(0.8090170.412215i)q88+(0.04894350.309017i)q97+(2.585801.31753i)q98+O(q100)q+(-0.453990 - 0.891007i) q^{2} +(-0.587785 + 0.809017i) q^{4} +(0.891007 - 0.453990i) q^{5} +(1.39680 + 1.39680i) q^{7} +(0.987688 + 0.156434i) q^{8} +(-0.809017 - 0.587785i) q^{10} +(-0.863541 - 0.280582i) q^{11} +(0.610425 - 1.87869i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(-0.156434 + 0.987688i) q^{20} +(0.142040 + 0.896802i) q^{22} +(0.587785 - 0.809017i) q^{25} +(-1.95106 + 0.309017i) q^{28} +(1.14412 + 0.831254i) q^{29} +(-0.951057 + 0.690983i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(1.87869 + 0.610425i) q^{35} +(0.951057 - 0.309017i) q^{40} +(0.734572 - 0.533698i) q^{44} +2.90211i q^{49} +(-0.987688 - 0.156434i) q^{50} +(-0.297556 - 1.87869i) q^{53} +(-0.896802 + 0.142040i) q^{55} +(1.16110 + 1.59811i) q^{56} +(0.221232 - 1.39680i) q^{58} +(0.550672 + 1.69480i) q^{59} +(1.04744 + 0.533698i) q^{62} +(0.951057 + 0.309017i) q^{64} +(-0.309017 - 1.95106i) q^{70} +(-0.642040 - 1.26007i) q^{73} +(-0.814279 - 1.59811i) q^{77} +(1.11803 - 1.53884i) q^{79} +(-0.707107 - 0.707107i) q^{80} +(-1.59811 - 0.253116i) q^{83} +(-0.809017 - 0.412215i) q^{88} +(-0.0489435 - 0.309017i) q^{97} +(2.58580 - 1.31753i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+4q74q10+4q164q2216q28+4q55+4q58+4q704q734q8816q97+O(q100) 16 q + 4 q^{7} - 4 q^{10} + 4 q^{16} - 4 q^{22} - 16 q^{28} + 4 q^{55} + 4 q^{58} + 4 q^{70} - 4 q^{73} - 4 q^{88} - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) e(1720)e\left(\frac{17}{20}\right) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.453990 0.891007i −0.453990 0.891007i
33 0 0
44 −0.587785 + 0.809017i −0.587785 + 0.809017i
55 0.891007 0.453990i 0.891007 0.453990i
66 0 0
77 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i 0.200000π0.200000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
88 0.987688 + 0.156434i 0.987688 + 0.156434i
99 0 0
1010 −0.809017 0.587785i −0.809017 0.587785i
1111 −0.863541 0.280582i −0.863541 0.280582i −0.156434 0.987688i 0.550000π-0.550000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1212 0 0
1313 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
1414 0.610425 1.87869i 0.610425 1.87869i
1515 0 0
1616 −0.309017 0.951057i −0.309017 0.951057i
1717 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
1818 0 0
1919 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
2020 −0.156434 + 0.987688i −0.156434 + 0.987688i
2121 0 0
2222 0.142040 + 0.896802i 0.142040 + 0.896802i
2323 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
2424 0 0
2525 0.587785 0.809017i 0.587785 0.809017i
2626 0 0
2727 0 0
2828 −1.95106 + 0.309017i −1.95106 + 0.309017i
2929 1.14412 + 0.831254i 1.14412 + 0.831254i 0.987688 0.156434i 0.0500000π-0.0500000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
3030 0 0
3131 −0.951057 + 0.690983i −0.951057 + 0.690983i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π0.5\pi
3232 −0.707107 + 0.707107i −0.707107 + 0.707107i
3333 0 0
3434 0 0
3535 1.87869 + 0.610425i 1.87869 + 0.610425i
3636 0 0
3737 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
3838 0 0
3939 0 0
4040 0.951057 0.309017i 0.951057 0.309017i
4141 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
4242 0 0
4343 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 0.734572 0.533698i 0.734572 0.533698i
4545 0 0
4646 0 0
4747 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
4848 0 0
4949 2.90211i 2.90211i
5050 −0.987688 0.156434i −0.987688 0.156434i
5151 0 0
5252 0 0
5353 −0.297556 1.87869i −0.297556 1.87869i −0.453990 0.891007i 0.650000π-0.650000\pi
0.156434 0.987688i 0.450000π-0.450000\pi
5454 0 0
5555 −0.896802 + 0.142040i −0.896802 + 0.142040i
5656 1.16110 + 1.59811i 1.16110 + 1.59811i
5757 0 0
5858 0.221232 1.39680i 0.221232 1.39680i
5959 0.550672 + 1.69480i 0.550672 + 1.69480i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
6060 0 0
6161 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
6262 1.04744 + 0.533698i 1.04744 + 0.533698i
6363 0 0
6464 0.951057 + 0.309017i 0.951057 + 0.309017i
6565 0 0
6666 0 0
6767 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
6868 0 0
6969 0 0
7070 −0.309017 1.95106i −0.309017 1.95106i
7171 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
7272 0 0
7373 −0.642040 1.26007i −0.642040 1.26007i −0.951057 0.309017i 0.900000π-0.900000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
7474 0 0
7575 0 0
7676 0 0
7777 −0.814279 1.59811i −0.814279 1.59811i
7878 0 0
7979 1.11803 1.53884i 1.11803 1.53884i 0.309017 0.951057i 0.400000π-0.400000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
8080 −0.707107 0.707107i −0.707107 0.707107i
8181 0 0
8282 0 0
8383 −1.59811 0.253116i −1.59811 0.253116i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −0.809017 0.412215i −0.809017 0.412215i
8989 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −0.0489435 0.309017i −0.0489435 0.309017i 0.951057 0.309017i 0.100000π-0.100000\pi
−1.00000 π\pi
9898 2.58580 1.31753i 2.58580 1.31753i
9999 0 0
100100 0.309017 + 0.951057i 0.309017 + 0.951057i
101101 1.78201i 1.78201i −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 0.891007i 0.350000π-0.350000\pi
102102 0 0
103103 0.309017 0.0489435i 0.309017 0.0489435i 1.00000i 0.5π-0.5\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
104104 0 0
105105 0 0
106106 −1.53884 + 1.11803i −1.53884 + 1.11803i
107107 −0.437016 + 0.437016i −0.437016 + 0.437016i −0.891007 0.453990i 0.850000π-0.850000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
108108 0 0
109109 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
110110 0.533698 + 0.734572i 0.533698 + 0.734572i
111111 0 0
112112 0.896802 1.76007i 0.896802 1.76007i
113113 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
114114 0 0
115115 0 0
116116 −1.34500 + 0.437016i −1.34500 + 0.437016i
117117 0 0
118118 1.26007 1.26007i 1.26007 1.26007i
119119 0 0
120120 0 0
121121 −0.142040 0.103198i −0.142040 0.103198i
122122 0 0
123123 0 0
124124 1.17557i 1.17557i
125125 0.156434 0.987688i 0.156434 0.987688i
126126 0 0
127127 1.58779 0.809017i 1.58779 0.809017i 0.587785 0.809017i 0.300000π-0.300000\pi
1.00000 00
128128 −0.156434 0.987688i −0.156434 0.987688i
129129 0 0
130130 0 0
131131 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
138138 0 0
139139 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
140140 −1.59811 + 1.16110i −1.59811 + 1.16110i
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 1.39680 + 0.221232i 1.39680 + 0.221232i
146146 −0.831254 + 1.14412i −0.831254 + 1.14412i
147147 0 0
148148 0 0
149149 −1.78201 −1.78201 −0.891007 0.453990i 0.850000π-0.850000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
150150 0 0
151151 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
152152 0 0
153153 0 0
154154 −1.05425 + 1.45106i −1.05425 + 1.45106i
155155 −0.533698 + 1.04744i −0.533698 + 1.04744i
156156 0 0
157157 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
158158 −1.87869 0.297556i −1.87869 0.297556i
159159 0 0
160160 −0.309017 + 0.951057i −0.309017 + 0.951057i
161161 0 0
162162 0 0
163163 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
164164 0 0
165165 0 0
166166 0.500000 + 1.53884i 0.500000 + 1.53884i
167167 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
168168 0 0
169169 0.587785 + 0.809017i 0.587785 + 0.809017i
170170 0 0
171171 0 0
172172 0 0
173173 −1.44168 + 0.734572i −1.44168 + 0.734572i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
174174 0 0
175175 1.95106 0.309017i 1.95106 0.309017i
176176 0.907981i 0.907981i
177177 0 0
178178 0 0
179179 0.253116 + 0.183900i 0.253116 + 0.183900i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
180180 0 0
181181 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
192192 0 0
193193 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i 0.700000π-0.700000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
194194 −0.253116 + 0.183900i −0.253116 + 0.183900i
195195 0 0
196196 −2.34786 1.70582i −2.34786 1.70582i
197197 −1.16110 + 0.183900i −1.16110 + 0.183900i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
198198 0 0
199199 0.618034i 0.618034i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
200200 0.707107 0.707107i 0.707107 0.707107i
201201 0 0
202202 −1.58779 + 0.809017i −1.58779 + 0.809017i
203203 0.437016 + 2.75921i 0.437016 + 2.75921i
204204 0 0
205205 0 0
206206 −0.183900 0.253116i −0.183900 0.253116i
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
212212 1.69480 + 0.863541i 1.69480 + 0.863541i
213213 0 0
214214 0.587785 + 0.190983i 0.587785 + 0.190983i
215215 0 0
216216 0 0
217217 −2.29360 0.363271i −2.29360 0.363271i
218218 0 0
219219 0 0
220220 0.412215 0.809017i 0.412215 0.809017i
221221 0 0
222222 0 0
223223 −0.412215 0.809017i −0.412215 0.809017i 0.587785 0.809017i 0.300000π-0.300000\pi
−1.00000 π\pi
224224 −1.97538 −1.97538
225225 0 0
226226 0 0
227227 −0.863541 1.69480i −0.863541 1.69480i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.156434 0.987688i 0.550000π-0.550000\pi
228228 0 0
229229 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
230230 0 0
231231 0 0
232232 1.00000 + 1.00000i 1.00000 + 1.00000i
233233 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
234234 0 0
235235 0 0
236236 −1.69480 0.550672i −1.69480 0.550672i
237237 0 0
238238 0 0
239239 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
240240 0 0
241241 0.363271 + 1.11803i 0.363271 + 1.11803i 0.951057 + 0.309017i 0.100000π0.100000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
242242 −0.0274653 + 0.173409i −0.0274653 + 0.173409i
243243 0 0
244244 0 0
245245 1.31753 + 2.58580i 1.31753 + 2.58580i
246246 0 0
247247 0 0
248248 −1.04744 + 0.533698i −1.04744 + 0.533698i
249249 0 0
250250 −0.951057 + 0.309017i −0.951057 + 0.309017i
251251 0.312869i 0.312869i −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
252252 0 0
253253 0 0
254254 −1.44168 1.04744i −1.44168 1.04744i
255255 0 0
256256 −0.809017 + 0.587785i −0.809017 + 0.587785i
257257 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0.642040 1.26007i 0.642040 1.26007i
263263 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
264264 0 0
265265 −1.11803 1.53884i −1.11803 1.53884i
266266 0 0
267267 0 0
268268 0 0
269269 1.59811 1.16110i 1.59811 1.16110i 0.707107 0.707107i 0.250000π-0.250000\pi
0.891007 0.453990i 0.150000π-0.150000\pi
270270 0 0
271271 −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i 0.600000π-0.600000\pi
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 −0.734572 + 0.533698i −0.734572 + 0.533698i
276276 0 0
277277 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
278278 0 0
279279 0 0
280280 1.76007 + 0.896802i 1.76007 + 0.896802i
281281 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
282282 0 0
283283 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.951057 0.309017i −0.951057 0.309017i
290290 −0.437016 1.34500i −0.437016 1.34500i
291291 0 0
292292 1.39680 + 0.221232i 1.39680 + 0.221232i
293293 1.34500 + 1.34500i 1.34500 + 1.34500i 0.891007 + 0.453990i 0.150000π0.150000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
294294 0 0
295295 1.26007 + 1.26007i 1.26007 + 1.26007i
296296 0 0
297297 0 0
298298 0.809017 + 1.58779i 0.809017 + 1.58779i
299299 0 0
300300 0 0
301301 0 0
302302 0.734572 + 1.44168i 0.734572 + 1.44168i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 1.77152 + 0.280582i 1.77152 + 0.280582i
309309 0 0
310310 1.17557 1.17557
311311 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
312312 0 0
313313 0.809017 + 0.412215i 0.809017 + 0.412215i 0.809017 0.587785i 0.200000π-0.200000\pi
1.00000i 0.5π0.5\pi
314314 0 0
315315 0 0
316316 0.587785 + 1.80902i 0.587785 + 1.80902i
317317 0.0966818 0.610425i 0.0966818 0.610425i −0.891007 0.453990i 0.850000π-0.850000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
318318 0 0
319319 −0.754763 1.03884i −0.754763 1.03884i
320320 0.987688 0.156434i 0.987688 0.156434i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
332332 1.14412 1.14412i 1.14412 1.14412i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.142040 0.278768i 0.142040 0.278768i −0.809017 0.587785i 0.800000π-0.800000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
338338 0.453990 0.891007i 0.453990 0.891007i
339339 0 0
340340 0 0
341341 1.01515 0.329843i 1.01515 0.329843i
342342 0 0
343343 −2.65688 + 2.65688i −2.65688 + 2.65688i
344344 0 0
345345 0 0
346346 1.30902 + 0.951057i 1.30902 + 0.951057i
347347 −1.87869 + 0.297556i −1.87869 + 0.297556i −0.987688 0.156434i 0.950000π-0.950000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 −1.16110 1.59811i −1.16110 1.59811i
351351 0 0
352352 0.809017 0.412215i 0.809017 0.412215i
353353 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0.0489435 0.309017i 0.0489435 0.309017i
359359 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
360360 0 0
361361 −0.309017 + 0.951057i −0.309017 + 0.951057i
362362 0 0
363363 0 0
364364 0 0
365365 −1.14412 0.831254i −1.14412 0.831254i
366366 0 0
367367 0.309017 + 0.0489435i 0.309017 + 0.0489435i 0.309017 0.951057i 0.400000π-0.400000\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 2.20854 3.03979i 2.20854 3.03979i
372372 0 0
373373 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
384384 0 0
385385 −1.45106 1.05425i −1.45106 1.05425i
386386 −0.297556 0.0966818i −0.297556 0.0966818i
387387 0 0
388388 0.278768 + 0.142040i 0.278768 + 0.142040i
389389 −0.280582 + 0.863541i −0.280582 + 0.863541i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
390390 0 0
391391 0 0
392392 −0.453990 + 2.86638i −0.453990 + 2.86638i
393393 0 0
394394 0.690983 + 0.951057i 0.690983 + 0.951057i
395395 0.297556 1.87869i 0.297556 1.87869i
396396 0 0
397397 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
398398 0.550672 0.280582i 0.550672 0.280582i
399399 0 0
400400 −0.951057 0.309017i −0.951057 0.309017i
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 1.44168 + 1.04744i 1.44168 + 1.04744i
405405 0 0
406406 2.26007 1.64204i 2.26007 1.64204i
407407 0 0
408408 0 0
409409 −1.80902 + 0.587785i −1.80902 + 0.587785i −0.809017 + 0.587785i 0.800000π0.800000\pi
−1.00000 π\pi
410410 0 0
411411 0 0
412412 −0.142040 + 0.278768i −0.142040 + 0.278768i
413413 −1.59811 + 3.13647i −1.59811 + 3.13647i
414414 0 0
415415 −1.53884 + 0.500000i −1.53884 + 0.500000i
416416 0 0
417417 0 0
418418 0 0
419419 −1.59811 + 1.16110i −1.59811 + 1.16110i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
420420 0 0
421421 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
422422 0 0
423423 0 0
424424 1.90211i 1.90211i
425425 0 0
426426 0 0
427427 0 0
428428 −0.0966818 0.610425i −0.0966818 0.610425i
429429 0 0
430430 0 0
431431 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
432432 0 0
433433 0.142040 0.896802i 0.142040 0.896802i −0.809017 0.587785i 0.800000π-0.800000\pi
0.951057 0.309017i 0.100000π-0.100000\pi
434434 0.717598 + 2.20854i 0.717598 + 2.20854i
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −0.587785 0.190983i −0.587785 0.190983i 1.00000i 0.5π-0.5\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
440440 −0.907981 −0.907981
441441 0 0
442442 0 0
443443 −0.831254 0.831254i −0.831254 0.831254i 0.156434 0.987688i 0.450000π-0.450000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
444444 0 0
445445 0 0
446446 −0.533698 + 0.734572i −0.533698 + 0.734572i
447447 0 0
448448 0.896802 + 1.76007i 0.896802 + 1.76007i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 −1.11803 + 1.53884i −1.11803 + 1.53884i
455455 0 0
456456 0 0
457457 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i 0.100000π0.100000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
458458 0 0
459459 0 0
460460 0 0
461461 1.87869 + 0.610425i 1.87869 + 0.610425i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
462462 0 0
463463 −1.26007 0.642040i −1.26007 0.642040i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
464464 0.437016 1.34500i 0.437016 1.34500i
465465 0 0
466466 0 0
467467 −0.0966818 + 0.610425i −0.0966818 + 0.610425i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0.278768 + 1.76007i 0.278768 + 1.76007i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
480480 0 0
481481 0 0
482482 0.831254 0.831254i 0.831254 0.831254i
483483 0 0
484484 0.166977 0.0542543i 0.166977 0.0542543i
485485 −0.183900 0.253116i −0.183900 0.253116i
486486 0 0
487487 0.809017 1.58779i 0.809017 1.58779i 1.00000i 0.5π-0.5\pi
0.809017 0.587785i 0.200000π-0.200000\pi
488488 0 0
489489 0 0
490490 1.70582 2.34786i 1.70582 2.34786i
491491 −0.297556 + 0.0966818i −0.297556 + 0.0966818i −0.453990 0.891007i 0.650000π-0.650000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0.951057 + 0.690983i 0.951057 + 0.690983i
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0.707107 + 0.707107i 0.707107 + 0.707107i
501501 0 0
502502 −0.278768 + 0.142040i −0.278768 + 0.142040i
503503 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
504504 0 0
505505 −0.809017 1.58779i −0.809017 1.58779i
506506 0 0
507507 0 0
508508 −0.278768 + 1.76007i −0.278768 + 1.76007i
509509 0.280582 + 0.863541i 0.280582 + 0.863541i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
510510 0 0
511511 0.863271 2.65688i 0.863271 2.65688i
512512 0.891007 + 0.453990i 0.891007 + 0.453990i
513513 0 0
514514 0 0
515515 0.253116 0.183900i 0.253116 0.183900i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
522522 0 0
523523 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
524524 −1.41421 −1.41421
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.587785 0.809017i 0.587785 0.809017i
530530 −0.863541 + 1.69480i −0.863541 + 1.69480i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 −0.190983 + 0.587785i −0.190983 + 0.587785i
536536 0 0
537537 0 0
538538 −1.76007 0.896802i −1.76007 0.896802i
539539 0.814279 2.50609i 0.814279 2.50609i
540540 0 0
541541 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 −0.253116 + 1.59811i −0.253116 + 1.59811i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
548548 0 0
549549 0 0
550550 0.809017 + 0.412215i 0.809017 + 0.412215i
551551 0 0
552552 0 0
553553 3.71113 0.587785i 3.71113 0.587785i
554554 0 0
555555 0 0
556556 0 0
557557 0.831254 0.831254i 0.831254 0.831254i −0.156434 0.987688i 0.550000π-0.550000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
558558 0 0
559559 0 0
560560 1.97538i 1.97538i
561561 0 0
562562 0 0
563563 0.533698 1.04744i 0.533698 1.04744i −0.453990 0.891007i 0.650000π-0.650000\pi
0.987688 0.156434i 0.0500000π-0.0500000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
570570 0 0
571571 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1.76007 + 0.896802i −1.76007 + 0.896802i −0.809017 + 0.587785i 0.800000π0.800000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
578578 0.156434 + 0.987688i 0.156434 + 0.987688i
579579 0 0
580580 −1.00000 + 1.00000i −1.00000 + 1.00000i
581581 −1.87869 2.58580i −1.87869 2.58580i
582582 0 0
583583 −0.270175 + 1.70582i −0.270175 + 1.70582i
584584 −0.437016 1.34500i −0.437016 1.34500i
585585 0 0
586586 0.587785 1.80902i 0.587785 1.80902i
587587 0.550672 + 0.280582i 0.550672 + 0.280582i 0.707107 0.707107i 0.250000π-0.250000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
588588 0 0
589589 0 0
590590 0.550672 1.69480i 0.550672 1.69480i
591591 0 0
592592 0 0
593593 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
594594 0 0
595595 0 0
596596 1.04744 1.44168i 1.04744 1.44168i
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
602602 0 0
603603 0 0
604604 0.951057 1.30902i 0.951057 1.30902i
605605 −0.173409 0.0274653i −0.173409 0.0274653i
606606 0 0
607607 −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
614614 0 0
615615 0 0
616616 −0.554254 1.70582i −0.554254 1.70582i
617617 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
618618 0 0
619619 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
620620 −0.533698 1.04744i −0.533698 1.04744i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.309017 0.951057i −0.309017 0.951057i
626626 0.907981i 0.907981i
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
632632 1.34500 1.34500i 1.34500 1.34500i
633633 0 0
634634 −0.587785 + 0.190983i −0.587785 + 0.190983i
635635 1.04744 1.44168i 1.04744 1.44168i
636636 0 0
637637 0 0
638638 −0.582960 + 1.14412i −0.582960 + 1.14412i
639639 0 0
640640 −0.587785 0.809017i −0.587785 0.809017i
641641 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
648648 0 0
649649 1.61803i 1.61803i
650650 0 0
651651 0 0
652652 0 0
653653 −0.253116 1.59811i −0.253116 1.59811i −0.707107 0.707107i 0.750000π-0.750000\pi
0.453990 0.891007i 0.350000π-0.350000\pi
654654 0 0
655655 1.26007 + 0.642040i 1.26007 + 0.642040i
656656 0 0
657657 0 0
658658 0 0
659659 0.610425 + 1.87869i 0.610425 + 1.87869i 0.453990 + 0.891007i 0.350000π0.350000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
660660 0 0
661661 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
662662 0 0
663663 0 0
664664 −1.53884 0.500000i −1.53884 0.500000i
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.896802 1.76007i −0.896802 1.76007i −0.587785 0.809017i 0.700000π-0.700000\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
674674 −0.312869 −0.312869
675675 0 0
676676 −1.00000 −1.00000
677677 0.734572 + 1.44168i 0.734572 + 1.44168i 0.891007 + 0.453990i 0.150000π0.150000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
678678 0 0
679679 0.363271 0.500000i 0.363271 0.500000i
680680 0 0
681681 0 0
682682 −0.754763 0.754763i −0.754763 0.754763i
683683 0.610425 + 0.0966818i 0.610425 + 0.0966818i 0.453990 0.891007i 0.350000π-0.350000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
684684 0 0
685685 0 0
686686 3.57349 + 1.16110i 3.57349 + 1.16110i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
692692 0.253116 1.59811i 0.253116 1.59811i
693693 0 0
694694 1.11803 + 1.53884i 1.11803 + 1.53884i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −0.896802 + 1.76007i −0.896802 + 1.76007i
701701 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
702702 0 0
703703 0 0
704704 −0.734572 0.533698i −0.734572 0.533698i
705705 0 0
706706 0 0
707707 2.48912 2.48912i 2.48912 2.48912i
708708 0 0
709709 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −0.297556 + 0.0966818i −0.297556 + 0.0966818i
717717 0 0
718718 0 0
719719 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
720720 0 0
721721 0.500000 + 0.363271i 0.500000 + 0.363271i
722722 0.987688 0.156434i 0.987688 0.156434i
723723 0 0
724724 0 0
725725 1.34500 0.437016i 1.34500 0.437016i
726726 0 0
727727 −1.26007 + 0.642040i −1.26007 + 0.642040i −0.951057 0.309017i 0.900000π-0.900000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
728728 0 0
729729 0 0
730730 −0.221232 + 1.39680i −0.221232 + 1.39680i
731731 0 0
732732 0 0
733733 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
734734 −0.0966818 0.297556i −0.0966818 0.297556i
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
740740 0 0
741741 0 0
742742 −3.71113 0.587785i −3.71113 0.587785i
743743 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 −1.58779 + 0.809017i −1.58779 + 0.809017i
746746 0 0
747747 0 0
748748 0 0
749749 −1.22085 −1.22085
750750 0 0
751751 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
752752 0 0
753753 0 0
754754 0 0
755755 −1.44168 + 0.734572i −1.44168 + 0.734572i
756756 0 0
757757 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i 0.900000π-0.900000\pi
1.00000i 0.5π-0.5\pi
770770 −0.280582 + 1.77152i −0.280582 + 1.77152i
771771 0 0
772772 0.0489435 + 0.309017i 0.0489435 + 0.309017i
773773 0.550672 0.280582i 0.550672 0.280582i −0.156434 0.987688i 0.550000π-0.550000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
774774 0 0
775775 1.17557i 1.17557i
776776 0.312869i 0.312869i
777777 0 0
778778 0.896802 0.142040i 0.896802 0.142040i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 2.76007 0.896802i 2.76007 0.896802i
785785 0 0
786786 0 0
787787 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
788788 0.533698 1.04744i 0.533698 1.04744i
789789 0 0
790790 −1.80902 + 0.587785i −1.80902 + 0.587785i
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.500000 0.363271i −0.500000 0.363271i
797797 0.610425 0.0966818i 0.610425 0.0966818i 0.156434 0.987688i 0.450000π-0.450000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
798798 0 0
799799 0 0
800800 0.156434 + 0.987688i 0.156434 + 0.987688i
801801 0 0
802802 0 0
803803 0.200874 + 1.26827i 0.200874 + 1.26827i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0.278768 1.76007i 0.278768 1.76007i
809809 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
810810 0 0
811811 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
812812 −2.48912 1.26827i −2.48912 1.26827i
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 1.34500 + 1.34500i 1.34500 + 1.34500i
819819 0 0
820820 0 0
821821 −1.16110 + 1.59811i −1.16110 + 1.59811i −0.453990 + 0.891007i 0.650000π0.650000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 −0.809017 1.58779i −0.809017 1.58779i −0.809017 0.587785i 0.800000π-0.800000\pi
1.00000i 0.5π-0.5\pi
824824 0.312869 0.312869
825825 0 0
826826 3.52015 3.52015
827827 0.533698 + 1.04744i 0.533698 + 1.04744i 0.987688 + 0.156434i 0.0500000π0.0500000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
828828 0 0
829829 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
830830 1.14412 + 1.14412i 1.14412 + 1.14412i
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 1.76007 + 0.896802i 1.76007 + 0.896802i
839839 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
840840 0 0
841841 0.309017 + 0.951057i 0.309017 + 0.951057i
842842 0 0
843843 0 0
844844 0 0
845845 0.891007 + 0.453990i 0.891007 + 0.453990i
846846 0 0
847847 −0.0542543 0.342548i −0.0542543 0.342548i
848848 −1.69480 + 0.863541i −1.69480 + 0.863541i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.987688 0.156434i 0.0500000π-0.0500000\pi
−0.987688 + 0.156434i 0.950000π0.950000\pi
854854 0 0
855855 0 0
856856 −0.500000 + 0.363271i −0.500000 + 0.363271i
857857 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
858858 0 0
859859 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.453990 0.891007i 0.350000π-0.350000\pi
−0.453990 + 0.891007i 0.650000π0.650000\pi
864864 0 0
865865 −0.951057 + 1.30902i −0.951057 + 1.30902i
866866 −0.863541 + 0.280582i −0.863541 + 0.280582i
867867 0 0
868868 1.64204 1.64204i 1.64204 1.64204i
869869 −1.39724 + 1.01515i −1.39724 + 1.01515i
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 1.59811 1.16110i 1.59811 1.16110i
876876 0 0
877877 0 0 0.891007 0.453990i 0.150000π-0.150000\pi
−0.891007 + 0.453990i 0.850000π0.850000\pi
878878 0.0966818 + 0.610425i 0.0966818 + 0.610425i
879879 0 0
880880 0.412215 + 0.809017i 0.412215 + 0.809017i
881881 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
882882 0 0
883883 0 0 0.156434 0.987688i 0.450000π-0.450000\pi
−0.156434 + 0.987688i 0.550000π0.550000\pi
884884 0 0
885885 0 0
886886 −0.363271 + 1.11803i −0.363271 + 1.11803i
887887 0 0 −0.891007 0.453990i 0.850000π-0.850000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
888888 0 0
889889 3.34786 + 1.08779i 3.34786 + 1.08779i
890890 0 0
891891 0 0
892892 0.896802 + 0.142040i 0.896802 + 0.142040i
893893 0 0
894894 0 0
895895 0.309017 + 0.0489435i 0.309017 + 0.0489435i
896896 1.16110 1.59811i 1.16110 1.59811i
897897 0 0
898898 0 0
899899 −1.66251 −1.66251
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
908908 1.87869 + 0.297556i 1.87869 + 0.297556i
909909 0 0
910910 0 0
911911 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
912912 0 0
913913 1.30902 + 0.666977i 1.30902 + 0.666977i
914914 0.550672 1.69480i 0.550672 1.69480i
915915 0 0
916916 0 0
917917 −0.437016 + 2.75921i −0.437016 + 2.75921i
918918 0 0
919919 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
920920 0 0
921921 0 0
922922 −0.309017 1.95106i −0.309017 1.95106i
923923 0 0
924924 0 0
925925 0 0
926926 1.41421i 1.41421i
927927 0 0
928928 −1.39680 + 0.221232i −1.39680 + 0.221232i
929929 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0.587785 0.190983i 0.587785 0.190983i
935935 0 0
936936 0 0
937937 −0.896802 + 1.76007i −0.896802 + 1.76007i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.297556 0.0966818i 0.297556 0.0966818i −0.156434 0.987688i 0.550000π-0.550000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
942942 0 0
943943 0 0
944944 1.44168 1.04744i 1.44168 1.04744i
945945 0 0
946946 0 0
947947 1.16110 0.183900i 1.16110 0.183900i 0.453990 0.891007i 0.350000π-0.350000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0.118034 0.363271i 0.118034 0.363271i
962962 0 0
963963 0 0
964964 −1.11803 0.363271i −1.11803 0.363271i
965965 0.0966818 0.297556i 0.0966818 0.297556i
966966 0 0
967967 −0.309017 0.0489435i −0.309017 0.0489435i 1.00000i 0.5π-0.5\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
968968 −0.124147 0.124147i −0.124147 0.124147i
969969 0 0
970970 −0.142040 + 0.278768i −0.142040 + 0.278768i
971971 0.183900 0.253116i 0.183900 0.253116i −0.707107 0.707107i 0.750000π-0.750000\pi
0.891007 + 0.453990i 0.150000π0.150000\pi
972972 0 0
973973 0 0
974974 −1.78201 −1.78201
975975 0 0
976976 0 0
977977 0 0 −0.453990 0.891007i 0.650000π-0.650000\pi
0.453990 + 0.891007i 0.350000π0.350000\pi
978978 0 0
979979 0 0
980980 −2.86638 0.453990i −2.86638 0.453990i
981981 0 0
982982 0.221232 + 0.221232i 0.221232 + 0.221232i
983983 0 0 −0.987688 0.156434i 0.950000π-0.950000\pi
0.987688 + 0.156434i 0.0500000π0.0500000\pi
984984 0 0
985985 −0.951057 + 0.690983i −0.951057 + 0.690983i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i 0.800000π-0.800000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
992992 0.183900 1.16110i 0.183900 1.16110i
993993 0 0
994994 0 0
995995 0.280582 + 0.550672i 0.280582 + 0.550672i
996996 0 0
997997 0 0 −0.156434 0.987688i 0.550000π-0.550000\pi
0.156434 + 0.987688i 0.450000π0.450000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.1.cr.a.397.1 16
3.2 odd 2 inner 1800.1.cr.a.397.2 yes 16
8.5 even 2 inner 1800.1.cr.a.397.2 yes 16
24.5 odd 2 CM 1800.1.cr.a.397.1 16
25.8 odd 20 inner 1800.1.cr.a.1333.2 yes 16
75.8 even 20 inner 1800.1.cr.a.1333.1 yes 16
200.133 odd 20 inner 1800.1.cr.a.1333.1 yes 16
600.533 even 20 inner 1800.1.cr.a.1333.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1800.1.cr.a.397.1 16 1.1 even 1 trivial
1800.1.cr.a.397.1 16 24.5 odd 2 CM
1800.1.cr.a.397.2 yes 16 3.2 odd 2 inner
1800.1.cr.a.397.2 yes 16 8.5 even 2 inner
1800.1.cr.a.1333.1 yes 16 75.8 even 20 inner
1800.1.cr.a.1333.1 yes 16 200.133 odd 20 inner
1800.1.cr.a.1333.2 yes 16 25.8 odd 20 inner
1800.1.cr.a.1333.2 yes 16 600.533 even 20 inner