Properties

Label 1800.1.r.a.1043.1
Level 18001800
Weight 11
Character 1800.1043
Analytic conductor 0.8980.898
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -40
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,1,Mod(107,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.107");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1800=233252 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1800.r (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8983170227390.898317022739
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.5400.1

Embedding invariants

Embedding label 1043.1
Root 0.707107+0.707107i0.707107 + 0.707107i of defining polynomial
Character χ\chi == 1800.1043
Dual form 1800.1.r.a.107.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+0.707107i)q21.00000iq4+(1.000001.00000i)q7+(0.707107+0.707107i)q8+1.41421iq11+(1.00000+1.00000i)q13+1.41421q141.00000q16+(1.000001.00000i)q221.41421iq26+(1.00000+1.00000i)q28+(0.7071070.707107i)q32+(1.00000+1.00000i)q37+1.41421iq41+1.41421q44+(1.41421+1.41421i)q47+1.00000iq49+(1.00000+1.00000i)q52+(1.41421+1.41421i)q531.41421iq561.41421q59+1.00000iq641.41421q74+(1.414211.41421i)q77+(1.000001.00000i)q82+(1.00000+1.00000i)q881.41421q89+2.00000q912.00000iq94+(0.7071070.707107i)q98+O(q100)q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-1.00000 - 1.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.41421i q^{11} +(-1.00000 + 1.00000i) q^{13} +1.41421 q^{14} -1.00000 q^{16} +(-1.00000 - 1.00000i) q^{22} -1.41421i q^{26} +(-1.00000 + 1.00000i) q^{28} +(0.707107 - 0.707107i) q^{32} +(1.00000 + 1.00000i) q^{37} +1.41421i q^{41} +1.41421 q^{44} +(-1.41421 + 1.41421i) q^{47} +1.00000i q^{49} +(1.00000 + 1.00000i) q^{52} +(1.41421 + 1.41421i) q^{53} -1.41421i q^{56} -1.41421 q^{59} +1.00000i q^{64} -1.41421 q^{74} +(1.41421 - 1.41421i) q^{77} +(-1.00000 - 1.00000i) q^{82} +(-1.00000 + 1.00000i) q^{88} -1.41421 q^{89} +2.00000 q^{91} -2.00000i q^{94} +(-0.707107 - 0.707107i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q74q134q164q224q28+4q37+4q524q824q88+8q91+O(q100) 4 q - 4 q^{7} - 4 q^{13} - 4 q^{16} - 4 q^{22} - 4 q^{28} + 4 q^{37} + 4 q^{52} - 4 q^{82} - 4 q^{88} + 8 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1800Z)×\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times.

nn 577577 901901 10011001 13511351
χ(n)\chi(n) e(34)e\left(\frac{3}{4}\right) 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.707107 + 0.707107i −0.707107 + 0.707107i
33 0 0
44 1.00000i 1.00000i
55 0 0
66 0 0
77 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
88 0.707107 + 0.707107i 0.707107 + 0.707107i
99 0 0
1010 0 0
1111 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1212 0 0
1313 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
1414 1.41421 1.41421
1515 0 0
1616 −1.00000 −1.00000
1717 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 −1.00000 1.00000i −1.00000 1.00000i
2323 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
2424 0 0
2525 0 0
2626 1.41421i 1.41421i
2727 0 0
2828 −1.00000 + 1.00000i −1.00000 + 1.00000i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0.707107 0.707107i 0.707107 0.707107i
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4242 0 0
4343 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4444 1.41421 1.41421
4545 0 0
4646 0 0
4747 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 1.00000 + 1.00000i 1.00000 + 1.00000i
5353 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
5454 0 0
5555 0 0
5656 1.41421i 1.41421i
5757 0 0
5858 0 0
5959 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7474 −1.41421 −1.41421
7575 0 0
7676 0 0
7777 1.41421 1.41421i 1.41421 1.41421i
7878 0 0
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 0 0
8181 0 0
8282 −1.00000 1.00000i −1.00000 1.00000i
8383 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −1.00000 + 1.00000i −1.00000 + 1.00000i
8989 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9090 0 0
9191 2.00000 2.00000
9292 0 0
9393 0 0
9494 2.00000i 2.00000i
9595 0 0
9696 0 0
9797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9898 −0.707107 0.707107i −0.707107 0.707107i
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
104104 −1.41421 −1.41421
105105 0 0
106106 −2.00000 −2.00000
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 1.00000 + 1.00000i 1.00000 + 1.00000i
113113 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 1.00000 1.00000i 1.00000 1.00000i
119119 0 0
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
128128 −0.707107 0.707107i −0.707107 0.707107i
129129 0 0
130130 0 0
131131 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
138138 0 0
139139 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 −1.41421 1.41421i −1.41421 1.41421i
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 1.00000 1.00000i 1.00000 1.00000i
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 2.00000i 2.00000i
155155 0 0
156156 0 0
157157 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
164164 1.41421 1.41421
165165 0 0
166166 0 0
167167 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
168168 0 0
169169 1.00000i 1.00000i
170170 0 0
171171 0 0
172172 0 0
173173 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
174174 0 0
175175 0 0
176176 1.41421i 1.41421i
177177 0 0
178178 1.00000 1.00000i 1.00000 1.00000i
179179 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 −1.41421 + 1.41421i −1.41421 + 1.41421i
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 1.41421 + 1.41421i 1.41421 + 1.41421i
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
198198 0 0
199199 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 1.41421i 1.41421i
207207 0 0
208208 1.00000 1.00000i 1.00000 1.00000i
209209 0 0
210210 0 0
211211 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
212212 1.41421 1.41421i 1.41421 1.41421i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
224224 −1.41421 −1.41421
225225 0 0
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
234234 0 0
235235 0 0
236236 1.41421i 1.41421i
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
242242 0.707107 0.707107i 0.707107 0.707107i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
252252 0 0
253253 0 0
254254 1.41421 1.41421
255255 0 0
256256 1.00000 1.00000
257257 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
258258 0 0
259259 2.00000i 2.00000i
260260 0 0
261261 0 0
262262 1.00000 + 1.00000i 1.00000 + 1.00000i
263263 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
278278 −1.41421 1.41421i −1.41421 1.41421i
279279 0 0
280280 0 0
281281 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
282282 0 0
283283 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
284284 0 0
285285 0 0
286286 2.00000 2.00000
287287 1.41421 1.41421i 1.41421 1.41421i
288288 0 0
289289 1.00000i 1.00000i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
294294 0 0
295295 0 0
296296 1.41421i 1.41421i
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 −1.41421 1.41421i −1.41421 1.41421i
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
314314 −1.41421 −1.41421
315315 0 0
316316 0 0
317317 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 −1.00000 + 1.00000i −1.00000 + 1.00000i
329329 2.82843 2.82843
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
338338 0.707107 + 0.707107i 0.707107 + 0.707107i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 2.00000 2.00000
347347 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 1.00000 + 1.00000i 1.00000 + 1.00000i
353353 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
354354 0 0
355355 0 0
356356 1.41421i 1.41421i
357357 0 0
358358 −1.00000 + 1.00000i −1.00000 + 1.00000i
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 2.00000i 2.00000i
365365 0 0
366366 0 0
367367 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 0 0
371371 2.82843i 2.82843i
372372 0 0
373373 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
374374 0 0
375375 0 0
376376 −2.00000 −2.00000
377377 0 0
378378 0 0
379379 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
380380 0 0
381381 0 0
382382 0 0
383383 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 −0.707107 + 0.707107i −0.707107 + 0.707107i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
398398 0 0
399399 0 0
400400 0 0
401401 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 −1.41421 + 1.41421i −1.41421 + 1.41421i
408408 0 0
409409 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
410410 0 0
411411 0 0
412412 −1.00000 1.00000i −1.00000 1.00000i
413413 1.41421 + 1.41421i 1.41421 + 1.41421i
414414 0 0
415415 0 0
416416 1.41421i 1.41421i
417417 0 0
418418 0 0
419419 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 1.41421 1.41421i 1.41421 1.41421i
423423 0 0
424424 2.00000i 2.00000i
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
444444 0 0
445445 0 0
446446 1.41421i 1.41421i
447447 0 0
448448 1.00000 1.00000i 1.00000 1.00000i
449449 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
450450 0 0
451451 −2.00000 −2.00000
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −1.00000 1.00000i −1.00000 1.00000i
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 −2.00000 −2.00000
482482 0 0
483483 0 0
484484 1.00000i 1.00000i
485485 0 0
486486 0 0
487487 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 −1.00000 1.00000i −1.00000 1.00000i
503503 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 −1.00000 + 1.00000i −1.00000 + 1.00000i
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −0.707107 + 0.707107i −0.707107 + 0.707107i
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 −2.00000 2.00000i −2.00000 2.00000i
518518 1.41421 + 1.41421i 1.41421 + 1.41421i
519519 0 0
520520 0 0
521521 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
522522 0 0
523523 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
524524 −1.41421 −1.41421
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.00000i 1.00000i
530530 0 0
531531 0 0
532532 0 0
533533 −1.41421 1.41421i −1.41421 1.41421i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 −1.41421 −1.41421
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −1.41421 −1.41421
555555 0 0
556556 2.00000 2.00000
557557 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 1.00000 + 1.00000i 1.00000 + 1.00000i
563563 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 −1.41421 + 1.41421i −1.41421 + 1.41421i
573573 0 0
574574 2.00000i 2.00000i
575575 0 0
576576 0 0
577577 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
578578 0.707107 + 0.707107i 0.707107 + 0.707107i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 −2.00000 + 2.00000i −2.00000 + 2.00000i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 −1.00000 1.00000i −1.00000 1.00000i
593593 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 2.82843i 2.82843i
612612 0 0
613613 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 2.00000 2.00000
617617 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
618618 0 0
619619 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 1.41421 + 1.41421i 1.41421 + 1.41421i
624624 0 0
625625 0 0
626626 0 0
627627 0 0
628628 1.00000 1.00000i 1.00000 1.00000i
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −1.00000 1.00000i −1.00000 1.00000i
638638 0 0
639639 0 0
640640 0 0
641641 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
642642 0 0
643643 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
644644 0 0
645645 0 0
646646 0 0
647647 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
648648 0 0
649649 2.00000i 2.00000i
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
654654 0 0
655655 0 0
656656 1.41421i 1.41421i
657657 0 0
658658 −2.00000 + 2.00000i −2.00000 + 2.00000i
659659 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
674674 0 0
675675 0 0
676676 −1.00000 −1.00000
677677 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 −2.82843 −2.82843
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 −1.41421 + 1.41421i −1.41421 + 1.41421i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 −1.41421 −1.41421
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 −1.00000 1.00000i −1.00000 1.00000i
713713 0 0
714714 0 0
715715 0 0
716716 1.41421i 1.41421i
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 −2.00000 −2.00000
722722 −0.707107 + 0.707107i −0.707107 + 0.707107i
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
728728 1.41421 + 1.41421i 1.41421 + 1.41421i
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
734734 −1.41421 −1.41421
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 2.00000 + 2.00000i 2.00000 + 2.00000i
743743 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
744744 0 0
745745 0 0
746746 1.41421i 1.41421i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 1.41421 1.41421i 1.41421 1.41421i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
758758 1.41421 + 1.41421i 1.41421 + 1.41421i
759759 0 0
760760 0 0
761761 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −2.00000 −2.00000
767767 1.41421 1.41421i 1.41421 1.41421i
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 1.00000i 1.00000i
785785 0 0
786786 0 0
787787 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 1.41421 1.41421
795795 0 0
796796 0 0
797797 −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i 0.750000π0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 1.00000 + 1.00000i 1.00000 + 1.00000i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
810810 0 0
811811 2.00000 2.00000 1.00000 00
1.00000 00
812812 0 0
813813 0 0
814814 2.00000i 2.00000i
815815 0 0
816816 0 0
817817 0 0
818818 −1.41421 1.41421i −1.41421 1.41421i
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
824824 1.41421 1.41421
825825 0 0
826826 −2.00000 −2.00000
827827 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 −1.00000 1.00000i −1.00000 1.00000i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 −1.00000 + 1.00000i −1.00000 + 1.00000i
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 2.00000i 2.00000i
845845 0 0
846846 0 0
847847 1.00000 + 1.00000i 1.00000 + 1.00000i
848848 −1.41421 1.41421i −1.41421 1.41421i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
858858 0 0
859859 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
882882 0 0
883883 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
888888 0 0
889889 2.00000i 2.00000i
890890 0 0
891891 0 0
892892 −1.00000 1.00000i −1.00000 1.00000i
893893 0 0
894894 0 0
895895 0 0
896896 1.41421i 1.41421i
897897 0 0
898898 −1.00000 + 1.00000i −1.00000 + 1.00000i
899899 0 0
900900 0 0
901901 0 0
902902 1.41421 1.41421i 1.41421 1.41421i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 −1.41421 + 1.41421i −1.41421 + 1.41421i
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 1.41421i 1.41421i
927927 0 0
928928 0 0
929929 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 1.41421 1.41421
945945 0 0
946946 0 0
947947 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000 1.00000
962962 1.41421 1.41421i 1.41421 1.41421i
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
968968 −0.707107 0.707107i −0.707107 0.707107i
969969 0 0
970970 0 0
971971 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
972972 0 0
973973 2.00000 2.00000i 2.00000 2.00000i
974974 −1.41421 −1.41421
975975 0 0
976976 0 0
977977 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 2.00000i 2.00000i
980980 0 0
981981 0 0
982982 −1.00000 1.00000i −1.00000 1.00000i
983983 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.1.r.a.1043.1 yes 4
3.2 odd 2 inner 1800.1.r.a.1043.2 yes 4
5.2 odd 4 1800.1.r.b.107.1 yes 4
5.3 odd 4 inner 1800.1.r.a.107.2 yes 4
5.4 even 2 1800.1.r.b.1043.2 yes 4
8.3 odd 2 1800.1.r.b.1043.2 yes 4
15.2 even 4 1800.1.r.b.107.2 yes 4
15.8 even 4 inner 1800.1.r.a.107.1 4
15.14 odd 2 1800.1.r.b.1043.1 yes 4
24.11 even 2 1800.1.r.b.1043.1 yes 4
40.3 even 4 1800.1.r.b.107.1 yes 4
40.19 odd 2 CM 1800.1.r.a.1043.1 yes 4
40.27 even 4 inner 1800.1.r.a.107.2 yes 4
120.59 even 2 inner 1800.1.r.a.1043.2 yes 4
120.83 odd 4 1800.1.r.b.107.2 yes 4
120.107 odd 4 inner 1800.1.r.a.107.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1800.1.r.a.107.1 4 15.8 even 4 inner
1800.1.r.a.107.1 4 120.107 odd 4 inner
1800.1.r.a.107.2 yes 4 5.3 odd 4 inner
1800.1.r.a.107.2 yes 4 40.27 even 4 inner
1800.1.r.a.1043.1 yes 4 1.1 even 1 trivial
1800.1.r.a.1043.1 yes 4 40.19 odd 2 CM
1800.1.r.a.1043.2 yes 4 3.2 odd 2 inner
1800.1.r.a.1043.2 yes 4 120.59 even 2 inner
1800.1.r.b.107.1 yes 4 5.2 odd 4
1800.1.r.b.107.1 yes 4 40.3 even 4
1800.1.r.b.107.2 yes 4 15.2 even 4
1800.1.r.b.107.2 yes 4 120.83 odd 4
1800.1.r.b.1043.1 yes 4 15.14 odd 2
1800.1.r.b.1043.1 yes 4 24.11 even 2
1800.1.r.b.1043.2 yes 4 5.4 even 2
1800.1.r.b.1043.2 yes 4 8.3 odd 2