Properties

Label 1800.2.k.g.901.1
Level $1800$
Weight $2$
Character 1800.901
Analytic conductor $14.373$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(901,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1800.901
Dual form 1800.2.k.g.901.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} -2.00000 q^{7} +(-2.00000 - 2.00000i) q^{8} -4.00000i q^{11} +(-2.00000 + 2.00000i) q^{14} -4.00000 q^{16} -6.00000 q^{17} +4.00000i q^{19} +(-4.00000 - 4.00000i) q^{22} -4.00000 q^{23} +4.00000i q^{28} +6.00000i q^{29} +10.0000 q^{31} +(-4.00000 + 4.00000i) q^{32} +(-6.00000 + 6.00000i) q^{34} -4.00000i q^{37} +(4.00000 + 4.00000i) q^{38} -10.0000 q^{41} +4.00000i q^{43} -8.00000 q^{44} +(-4.00000 + 4.00000i) q^{46} -4.00000 q^{47} -3.00000 q^{49} -10.0000i q^{53} +(4.00000 + 4.00000i) q^{56} +(6.00000 + 6.00000i) q^{58} -8.00000i q^{59} -8.00000i q^{61} +(10.0000 - 10.0000i) q^{62} +8.00000i q^{64} +12.0000i q^{67} +12.0000i q^{68} +4.00000 q^{71} -10.0000 q^{73} +(-4.00000 - 4.00000i) q^{74} +8.00000 q^{76} +8.00000i q^{77} -14.0000 q^{79} +(-10.0000 + 10.0000i) q^{82} +(4.00000 + 4.00000i) q^{86} +(-8.00000 + 8.00000i) q^{88} -14.0000 q^{89} +8.00000i q^{92} +(-4.00000 + 4.00000i) q^{94} +10.0000 q^{97} +(-3.00000 + 3.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{7} - 4 q^{8} - 4 q^{14} - 8 q^{16} - 12 q^{17} - 8 q^{22} - 8 q^{23} + 20 q^{31} - 8 q^{32} - 12 q^{34} + 8 q^{38} - 20 q^{41} - 16 q^{44} - 8 q^{46} - 8 q^{47} - 6 q^{49} + 8 q^{56}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −2.00000 + 2.00000i −0.534522 + 0.534522i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 4.00000i −0.852803 0.852803i
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) −6.00000 + 6.00000i −1.02899 + 1.02899i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 4.00000 + 4.00000i 0.648886 + 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) −8.00000 −1.20605
\(45\) 0 0
\(46\) −4.00000 + 4.00000i −0.589768 + 0.589768i
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.0000i 1.37361i −0.726844 0.686803i \(-0.759014\pi\)
0.726844 0.686803i \(-0.240986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.00000 + 4.00000i 0.534522 + 0.534522i
\(57\) 0 0
\(58\) 6.00000 + 6.00000i 0.787839 + 0.787839i
\(59\) 8.00000i 1.04151i −0.853706 0.520756i \(-0.825650\pi\)
0.853706 0.520756i \(-0.174350\pi\)
\(60\) 0 0
\(61\) 8.00000i 1.02430i −0.858898 0.512148i \(-0.828850\pi\)
0.858898 0.512148i \(-0.171150\pi\)
\(62\) 10.0000 10.0000i 1.27000 1.27000i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) 12.0000i 1.45521i
\(69\) 0 0
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −4.00000 4.00000i −0.464991 0.464991i
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −10.0000 + 10.0000i −1.10432 + 1.10432i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 + 4.00000i 0.431331 + 0.431331i
\(87\) 0 0
\(88\) −8.00000 + 8.00000i −0.852803 + 0.852803i
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 8.00000i 0.834058i
\(93\) 0 0
\(94\) −4.00000 + 4.00000i −0.412568 + 0.412568i
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −3.00000 + 3.00000i −0.303046 + 0.303046i
\(99\) 0 0
\(100\) 0 0
\(101\) 14.0000i 1.39305i −0.717532 0.696526i \(-0.754728\pi\)
0.717532 0.696526i \(-0.245272\pi\)
\(102\) 0 0
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −10.0000 10.0000i −0.971286 0.971286i
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.00000 0.755929
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0000 1.11417
\(117\) 0 0
\(118\) −8.00000 8.00000i −0.736460 0.736460i
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) −8.00000 8.00000i −0.724286 0.724286i
\(123\) 0 0
\(124\) 20.0000i 1.79605i
\(125\) 0 0
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 8.00000i 0.693688i
\(134\) 12.0000 + 12.0000i 1.03664 + 1.03664i
\(135\) 0 0
\(136\) 12.0000 + 12.0000i 1.02899 + 1.02899i
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i −0.985506 0.169638i \(-0.945740\pi\)
0.985506 0.169638i \(-0.0542598\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.00000 4.00000i 0.335673 0.335673i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −10.0000 + 10.0000i −0.827606 + 0.827606i
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) 6.00000i 0.491539i 0.969328 + 0.245770i \(0.0790407\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(150\) 0 0
\(151\) −2.00000 −0.162758 −0.0813788 0.996683i \(-0.525932\pi\)
−0.0813788 + 0.996683i \(0.525932\pi\)
\(152\) 8.00000 8.00000i 0.648886 0.648886i
\(153\) 0 0
\(154\) 8.00000 + 8.00000i 0.644658 + 0.644658i
\(155\) 0 0
\(156\) 0 0
\(157\) 20.0000i 1.59617i −0.602542 0.798087i \(-0.705846\pi\)
0.602542 0.798087i \(-0.294154\pi\)
\(158\) −14.0000 + 14.0000i −1.11378 + 1.11378i
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 20.0000i 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) 20.0000i 1.56174i
\(165\) 0 0
\(166\) 0 0
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) 10.0000i 0.760286i −0.924928 0.380143i \(-0.875875\pi\)
0.924928 0.380143i \(-0.124125\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 16.0000i 1.20605i
\(177\) 0 0
\(178\) −14.0000 + 14.0000i −1.04934 + 1.04934i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.00000 + 8.00000i 0.589768 + 0.589768i
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000i 1.75505i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 10.0000 10.0000i 0.717958 0.717958i
\(195\) 0 0
\(196\) 6.00000i 0.428571i
\(197\) 10.0000i 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −14.0000 14.0000i −0.985037 0.985037i
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000 2.00000i 0.139347 0.139347i
\(207\) 0 0
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) −20.0000 −1.37361
\(213\) 0 0
\(214\) 4.00000 + 4.00000i 0.273434 + 0.273434i
\(215\) 0 0
\(216\) 0 0
\(217\) −20.0000 −1.35769
\(218\) 4.00000 + 4.00000i 0.270914 + 0.270914i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 8.00000 8.00000i 0.534522 0.534522i
\(225\) 0 0
\(226\) 6.00000 6.00000i 0.399114 0.399114i
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i −0.991228 0.132164i \(-0.957808\pi\)
0.991228 0.132164i \(-0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 12.0000 12.0000i 0.787839 0.787839i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −16.0000 −1.04151
\(237\) 0 0
\(238\) 12.0000 12.0000i 0.777844 0.777844i
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −30.0000 −1.93247 −0.966235 0.257663i \(-0.917048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) −5.00000 + 5.00000i −0.321412 + 0.321412i
\(243\) 0 0
\(244\) −16.0000 −1.02430
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −20.0000 20.0000i −1.27000 1.27000i
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 6.00000 6.00000i 0.376473 0.376473i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 8.00000i 0.497096i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 8.00000i −0.490511 0.490511i
\(267\) 0 0
\(268\) 24.0000 1.46603
\(269\) 10.0000i 0.609711i −0.952399 0.304855i \(-0.901392\pi\)
0.952399 0.304855i \(-0.0986081\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 24.0000 1.45521
\(273\) 0 0
\(274\) −2.00000 + 2.00000i −0.120824 + 0.120824i
\(275\) 0 0
\(276\) 0 0
\(277\) 16.0000i 0.961347i 0.876900 + 0.480673i \(0.159608\pi\)
−0.876900 + 0.480673i \(0.840392\pi\)
\(278\) −4.00000 4.00000i −0.239904 0.239904i
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 8.00000i 0.474713i
\(285\) 0 0
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 20.0000i 1.17041i
\(293\) 2.00000i 0.116841i −0.998292 0.0584206i \(-0.981394\pi\)
0.998292 0.0584206i \(-0.0186065\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 + 8.00000i −0.464991 + 0.464991i
\(297\) 0 0
\(298\) 6.00000 + 6.00000i 0.347571 + 0.347571i
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000i 0.461112i
\(302\) −2.00000 + 2.00000i −0.115087 + 0.115087i
\(303\) 0 0
\(304\) 16.0000i 0.917663i
\(305\) 0 0
\(306\) 0 0
\(307\) 28.0000i 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 16.0000 0.911685
\(309\) 0 0
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −20.0000 20.0000i −1.12867 1.12867i
\(315\) 0 0
\(316\) 28.0000i 1.57512i
\(317\) 18.0000i 1.01098i 0.862832 + 0.505490i \(0.168688\pi\)
−0.862832 + 0.505490i \(0.831312\pi\)
\(318\) 0 0
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 8.00000 8.00000i 0.445823 0.445823i
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 0 0
\(326\) −20.0000 20.0000i −1.10770 1.10770i
\(327\) 0 0
\(328\) 20.0000 + 20.0000i 1.10432 + 1.10432i
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 4.00000i 0.219860i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.993939 + 0.109930i \(0.964937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 24.0000 24.0000i 1.31322 1.31322i
\(335\) 0 0
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 13.0000 13.0000i 0.707107 0.707107i
\(339\) 0 0
\(340\) 0 0
\(341\) 40.0000i 2.16612i
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 8.00000 8.00000i 0.431331 0.431331i
\(345\) 0 0
\(346\) −10.0000 10.0000i −0.537603 0.537603i
\(347\) 16.0000i 0.858925i 0.903085 + 0.429463i \(0.141297\pi\)
−0.903085 + 0.429463i \(0.858703\pi\)
\(348\) 0 0
\(349\) 8.00000i 0.428230i 0.976808 + 0.214115i \(0.0686868\pi\)
−0.976808 + 0.214115i \(0.931313\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 16.0000 + 16.0000i 0.852803 + 0.852803i
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 28.0000i 1.48400i
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −20.0000 20.0000i −1.05118 1.05118i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 16.0000 0.834058
\(369\) 0 0
\(370\) 0 0
\(371\) 20.0000i 1.03835i
\(372\) 0 0
\(373\) 20.0000i 1.03556i −0.855514 0.517780i \(-0.826758\pi\)
0.855514 0.517780i \(-0.173242\pi\)
\(374\) 24.0000 + 24.0000i 1.24101 + 1.24101i
\(375\) 0 0
\(376\) 8.00000 + 8.00000i 0.412568 + 0.412568i
\(377\) 0 0
\(378\) 0 0
\(379\) 36.0000i 1.84920i −0.380945 0.924598i \(-0.624401\pi\)
0.380945 0.924598i \(-0.375599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.00000 8.00000i 0.409316 0.409316i
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 14.0000i 0.712581 0.712581i
\(387\) 0 0
\(388\) 20.0000i 1.01535i
\(389\) 10.0000i 0.507020i −0.967333 0.253510i \(-0.918415\pi\)
0.967333 0.253510i \(-0.0815851\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 6.00000 + 6.00000i 0.303046 + 0.303046i
\(393\) 0 0
\(394\) −10.0000 10.0000i −0.503793 0.503793i
\(395\) 0 0
\(396\) 0 0
\(397\) 20.0000i 1.00377i −0.864934 0.501886i \(-0.832640\pi\)
0.864934 0.501886i \(-0.167360\pi\)
\(398\) −6.00000 + 6.00000i −0.300753 + 0.300753i
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −28.0000 −1.39305
\(405\) 0 0
\(406\) −12.0000 12.0000i −0.595550 0.595550i
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000i 0.197066i
\(413\) 16.0000i 0.787309i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 16.0000 16.0000i 0.782586 0.782586i
\(419\) 4.00000i 0.195413i 0.995215 + 0.0977064i \(0.0311506\pi\)
−0.995215 + 0.0977064i \(0.968849\pi\)
\(420\) 0 0
\(421\) 20.0000i 0.974740i 0.873195 + 0.487370i \(0.162044\pi\)
−0.873195 + 0.487370i \(0.837956\pi\)
\(422\) 12.0000 + 12.0000i 0.584151 + 0.584151i
\(423\) 0 0
\(424\) −20.0000 + 20.0000i −0.971286 + 0.971286i
\(425\) 0 0
\(426\) 0 0
\(427\) 16.0000i 0.774294i
\(428\) 8.00000 0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) −20.0000 + 20.0000i −0.960031 + 0.960031i
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.0000i 0.760183i 0.924949 + 0.380091i \(0.124107\pi\)
−0.924949 + 0.380091i \(0.875893\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −10.0000 + 10.0000i −0.473514 + 0.473514i
\(447\) 0 0
\(448\) 16.0000i 0.755929i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 40.0000i 1.88353i
\(452\) 12.0000i 0.564433i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −4.00000 4.00000i −0.186908 0.186908i
\(459\) 0 0
\(460\) 0 0
\(461\) 34.0000i 1.58354i 0.610821 + 0.791769i \(0.290840\pi\)
−0.610821 + 0.791769i \(0.709160\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) −6.00000 + 6.00000i −0.277945 + 0.277945i
\(467\) 8.00000i 0.370196i −0.982720 0.185098i \(-0.940740\pi\)
0.982720 0.185098i \(-0.0592602\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 0 0
\(472\) −16.0000 + 16.0000i −0.736460 + 0.736460i
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 0 0
\(476\) 24.0000i 1.10004i
\(477\) 0 0
\(478\) −16.0000 + 16.0000i −0.731823 + 0.731823i
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −30.0000 + 30.0000i −1.36646 + 1.36646i
\(483\) 0 0
\(484\) 10.0000i 0.454545i
\(485\) 0 0
\(486\) 0 0
\(487\) 30.0000 1.35943 0.679715 0.733476i \(-0.262104\pi\)
0.679715 + 0.733476i \(0.262104\pi\)
\(488\) −16.0000 + 16.0000i −0.724286 + 0.724286i
\(489\) 0 0
\(490\) 0 0
\(491\) 40.0000i 1.80517i 0.430507 + 0.902587i \(0.358335\pi\)
−0.430507 + 0.902587i \(0.641665\pi\)
\(492\) 0 0
\(493\) 36.0000i 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) −40.0000 −1.79605
\(497\) −8.00000 −0.358849
\(498\) 0 0
\(499\) 20.0000i 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0000 12.0000i −0.535586 0.535586i
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 16.0000 + 16.0000i 0.711287 + 0.711287i
\(507\) 0 0
\(508\) 12.0000i 0.532414i
\(509\) 18.0000i 0.797836i −0.916987 0.398918i \(-0.869386\pi\)
0.916987 0.398918i \(-0.130614\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) −2.00000 + 2.00000i −0.0882162 + 0.0882162i
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 8.00000 + 8.00000i 0.351500 + 0.351500i
\(519\) 0 0
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i 0.899331 + 0.437269i \(0.144054\pi\)
−0.899331 + 0.437269i \(0.855946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −60.0000 −2.61364
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) −16.0000 −0.693688
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 24.0000 24.0000i 1.03664 1.03664i
\(537\) 0 0
\(538\) −10.0000 10.0000i −0.431131 0.431131i
\(539\) 12.0000i 0.516877i
\(540\) 0 0
\(541\) 44.0000i 1.89171i −0.324593 0.945854i \(-0.605227\pi\)
0.324593 0.945854i \(-0.394773\pi\)
\(542\) −2.00000 + 2.00000i −0.0859074 + 0.0859074i
\(543\) 0 0
\(544\) 24.0000 24.0000i 1.02899 1.02899i
\(545\) 0 0
\(546\) 0 0
\(547\) 4.00000i 0.171028i 0.996337 + 0.0855138i \(0.0272532\pi\)
−0.996337 + 0.0855138i \(0.972747\pi\)
\(548\) 4.00000i 0.170872i
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 28.0000 1.19068
\(554\) 16.0000 + 16.0000i 0.679775 + 0.679775i
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 10.0000i 0.421825 0.421825i
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 + 4.00000i 0.168133 + 0.168133i
\(567\) 0 0
\(568\) −8.00000 8.00000i −0.335673 0.335673i
\(569\) −2.00000 −0.0838444 −0.0419222 0.999121i \(-0.513348\pi\)
−0.0419222 + 0.999121i \(0.513348\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i −0.908223 0.418487i \(-0.862561\pi\)
0.908223 0.418487i \(-0.137439\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 20.0000 20.0000i 0.834784 0.834784i
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 19.0000 19.0000i 0.790296 0.790296i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −40.0000 −1.65663
\(584\) 20.0000 + 20.0000i 0.827606 + 0.827606i
\(585\) 0 0
\(586\) −2.00000 2.00000i −0.0826192 0.0826192i
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) 40.0000i 1.64817i
\(590\) 0 0
\(591\) 0 0
\(592\) 16.0000i 0.657596i
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 0.491539
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) −8.00000 8.00000i −0.326056 0.326056i
\(603\) 0 0
\(604\) 4.00000i 0.162758i
\(605\) 0 0
\(606\) 0 0
\(607\) −2.00000 −0.0811775 −0.0405887 0.999176i \(-0.512923\pi\)
−0.0405887 + 0.999176i \(0.512923\pi\)
\(608\) −16.0000 16.0000i −0.648886 0.648886i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 20.0000i 0.807792i 0.914805 + 0.403896i \(0.132344\pi\)
−0.914805 + 0.403896i \(0.867656\pi\)
\(614\) −28.0000 28.0000i −1.12999 1.12999i
\(615\) 0 0
\(616\) 16.0000 16.0000i 0.644658 0.644658i
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 20.0000i 0.803868i 0.915669 + 0.401934i \(0.131662\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −8.00000 + 8.00000i −0.320771 + 0.320771i
\(623\) 28.0000 1.12180
\(624\) 0 0
\(625\) 0 0
\(626\) −6.00000 + 6.00000i −0.239808 + 0.239808i
\(627\) 0 0
\(628\) −40.0000 −1.59617
\(629\) 24.0000i 0.956943i
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) 28.0000 + 28.0000i 1.11378 + 1.11378i
\(633\) 0 0
\(634\) 18.0000 + 18.0000i 0.714871 + 0.714871i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 24.0000 24.0000i 0.950169 0.950169i
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0000 −0.552967 −0.276483 0.961019i \(-0.589169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(642\) 0 0
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) 16.0000i 0.630488i
\(645\) 0 0
\(646\) −24.0000 24.0000i −0.944267 0.944267i
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −32.0000 −1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) −40.0000 −1.56652
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 40.0000 1.56174
\(657\) 0 0
\(658\) 8.00000 8.00000i 0.311872 0.311872i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i 0.782757 + 0.622328i \(0.213813\pi\)
−0.782757 + 0.622328i \(0.786187\pi\)
\(662\) 4.00000 + 4.00000i 0.155464 + 0.155464i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000i 0.929284i
\(668\) 48.0000i 1.85718i
\(669\) 0 0
\(670\) 0 0
\(671\) −32.0000 −1.23535
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) −30.0000 + 30.0000i −1.15556 + 1.15556i
\(675\) 0 0
\(676\) 26.0000i 1.00000i
\(677\) 38.0000i 1.46046i −0.683202 0.730229i \(-0.739413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) −40.0000 40.0000i −1.53168 1.53168i
\(683\) 48.0000i 1.83667i 0.395805 + 0.918334i \(0.370466\pi\)
−0.395805 + 0.918334i \(0.629534\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 20.0000i 0.763604 0.763604i
\(687\) 0 0
\(688\) 16.0000i 0.609994i
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000i 0.456502i 0.973602 + 0.228251i \(0.0733006\pi\)
−0.973602 + 0.228251i \(0.926699\pi\)
\(692\) −20.0000 −0.760286
\(693\) 0 0
\(694\) 16.0000 + 16.0000i 0.607352 + 0.607352i
\(695\) 0 0
\(696\) 0 0
\(697\) 60.0000 2.27266
\(698\) 8.00000 + 8.00000i 0.302804 + 0.302804i
\(699\) 0 0
\(700\) 0 0
\(701\) 22.0000i 0.830929i 0.909610 + 0.415464i \(0.136381\pi\)
−0.909610 + 0.415464i \(0.863619\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 32.0000 1.20605
\(705\) 0 0
\(706\) −18.0000 + 18.0000i −0.677439 + 0.677439i
\(707\) 28.0000i 1.05305i
\(708\) 0 0
\(709\) 44.0000i 1.65245i 0.563337 + 0.826227i \(0.309517\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 28.0000 + 28.0000i 1.04934 + 1.04934i
\(713\) −40.0000 −1.49801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −12.0000 + 12.0000i −0.447836 + 0.447836i
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 3.00000 3.00000i 0.111648 0.111648i
\(723\) 0 0
\(724\) −40.0000 −1.48659
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.0000i 0.887672i
\(732\) 0 0
\(733\) 24.0000i 0.886460i 0.896408 + 0.443230i \(0.146168\pi\)
−0.896408 + 0.443230i \(0.853832\pi\)
\(734\) 18.0000 18.0000i 0.664392 0.664392i
\(735\) 0 0
\(736\) 16.0000 16.0000i 0.589768 0.589768i
\(737\) 48.0000 1.76810
\(738\) 0 0
\(739\) 12.0000i 0.441427i 0.975339 + 0.220714i \(0.0708386\pi\)
−0.975339 + 0.220714i \(0.929161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 20.0000 + 20.0000i 0.734223 + 0.734223i
\(743\) −48.0000 −1.76095 −0.880475 0.474093i \(-0.842776\pi\)
−0.880475 + 0.474093i \(0.842776\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20.0000 20.0000i −0.732252 0.732252i
\(747\) 0 0
\(748\) 48.0000 1.75505
\(749\) 8.00000i 0.292314i
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) 16.0000 0.583460
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.00000i 0.290765i 0.989376 + 0.145382i \(0.0464413\pi\)
−0.989376 + 0.145382i \(0.953559\pi\)
\(758\) −36.0000 36.0000i −1.30758 1.30758i
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 8.00000i 0.289619i
\(764\) 16.0000i 0.578860i
\(765\) 0 0
\(766\) 24.0000 24.0000i 0.867155 0.867155i
\(767\) 0 0
\(768\) 0 0
\(769\) −6.00000 −0.216366 −0.108183 0.994131i \(-0.534503\pi\)
−0.108183 + 0.994131i \(0.534503\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 28.0000i 1.00774i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −20.0000 20.0000i −0.717958 0.717958i
\(777\) 0 0
\(778\) −10.0000 10.0000i −0.358517 0.358517i
\(779\) 40.0000i 1.43315i
\(780\) 0 0
\(781\) 16.0000i 0.572525i
\(782\) 24.0000 24.0000i 0.858238 0.858238i
\(783\) 0 0
\(784\) 12.0000 0.428571
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000i 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) −20.0000 −0.712470
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) −20.0000 20.0000i −0.709773 0.709773i
\(795\) 0 0
\(796\) 12.0000i 0.425329i
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 0 0
\(801\) 0 0
\(802\) −30.0000 + 30.0000i −1.05934 + 1.05934i
\(803\) 40.0000i 1.41157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −28.0000 + 28.0000i −0.985037 + 0.985037i
\(809\) −10.0000 −0.351581 −0.175791 0.984428i \(-0.556248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 0 0
\(811\) 4.00000i 0.140459i −0.997531 0.0702295i \(-0.977627\pi\)
0.997531 0.0702295i \(-0.0223732\pi\)
\(812\) −24.0000 −0.842235
\(813\) 0 0
\(814\) −16.0000 + 16.0000i −0.560800 + 0.560800i
\(815\) 0 0
\(816\) 0 0
\(817\) −16.0000 −0.559769
\(818\) −6.00000 + 6.00000i −0.209785 + 0.209785i
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) −42.0000 −1.46403 −0.732014 0.681290i \(-0.761419\pi\)
−0.732014 + 0.681290i \(0.761419\pi\)
\(824\) −4.00000 4.00000i −0.139347 0.139347i
\(825\) 0 0
\(826\) 16.0000 + 16.0000i 0.556711 + 0.556711i
\(827\) 4.00000i 0.139094i −0.997579 0.0695468i \(-0.977845\pi\)
0.997579 0.0695468i \(-0.0221553\pi\)
\(828\) 0 0
\(829\) 44.0000i 1.52818i −0.645108 0.764092i \(-0.723188\pi\)
0.645108 0.764092i \(-0.276812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 32.0000i 1.10674i
\(837\) 0 0
\(838\) 4.00000 + 4.00000i 0.138178 + 0.138178i
\(839\) −4.00000 −0.138095 −0.0690477 0.997613i \(-0.521996\pi\)
−0.0690477 + 0.997613i \(0.521996\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 20.0000 + 20.0000i 0.689246 + 0.689246i
\(843\) 0 0
\(844\) 24.0000 0.826114
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 40.0000i 1.37361i
\(849\) 0 0
\(850\) 0 0
\(851\) 16.0000i 0.548473i
\(852\) 0 0
\(853\) 44.0000i 1.50653i 0.657716 + 0.753266i \(0.271523\pi\)
−0.657716 + 0.753266i \(0.728477\pi\)
\(854\) 16.0000 + 16.0000i 0.547509 + 0.547509i
\(855\) 0 0
\(856\) 8.00000 8.00000i 0.273434 0.273434i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 44.0000i 1.50126i −0.660722 0.750630i \(-0.729750\pi\)
0.660722 0.750630i \(-0.270250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 36.0000 36.0000i 1.22616 1.22616i
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −14.0000 + 14.0000i −0.475739 + 0.475739i
\(867\) 0 0
\(868\) 40.0000i 1.35769i
\(869\) 56.0000i 1.89967i
\(870\) 0 0
\(871\) 0 0
\(872\) 8.00000 8.00000i 0.270914 0.270914i
\(873\) 0 0
\(874\) −16.0000 16.0000i −0.541208 0.541208i
\(875\) 0 0
\(876\) 0 0
\(877\) 44.0000i 1.48577i −0.669417 0.742887i \(-0.733456\pi\)
0.669417 0.742887i \(-0.266544\pi\)
\(878\) 2.00000 2.00000i 0.0674967 0.0674967i
\(879\) 0 0
\(880\) 0 0
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 28.0000i 0.942275i 0.882060 + 0.471138i \(0.156156\pi\)
−0.882060 + 0.471138i \(0.843844\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 16.0000 + 16.0000i 0.537531 + 0.537531i
\(887\) 16.0000 0.537227 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(888\) 0 0
\(889\) −12.0000 −0.402467
\(890\) 0 0
\(891\) 0 0
\(892\) 20.0000i 0.669650i
\(893\) 16.0000i 0.535420i
\(894\) 0 0
\(895\) 0 0
\(896\) −16.0000 16.0000i −0.534522 0.534522i
\(897\) 0 0
\(898\) 18.0000 18.0000i 0.600668 0.600668i
\(899\) 60.0000i 2.00111i
\(900\) 0 0
\(901\) 60.0000i 1.99889i
\(902\) 40.0000 + 40.0000i 1.33185 + 1.33185i
\(903\) 0 0
\(904\) −12.0000 12.0000i −0.399114 0.399114i
\(905\) 0 0
\(906\) 0 0
\(907\) 52.0000i 1.72663i 0.504664 + 0.863316i \(0.331616\pi\)
−0.504664 + 0.863316i \(0.668384\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −18.0000 + 18.0000i −0.595387 + 0.595387i
\(915\) 0 0
\(916\) −8.00000 −0.264327
\(917\) 0 0
\(918\) 0 0
\(919\) −26.0000 −0.857661 −0.428830 0.903385i \(-0.641074\pi\)
−0.428830 + 0.903385i \(0.641074\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 34.0000 + 34.0000i 1.11973 + 1.11973i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 22.0000 22.0000i 0.722965 0.722965i
\(927\) 0 0
\(928\) −24.0000 24.0000i −0.787839 0.787839i
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) 12.0000i 0.393284i
\(932\) 12.0000i 0.393073i
\(933\) 0 0
\(934\) −8.00000 8.00000i −0.261768 0.261768i
\(935\) 0 0
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −24.0000 24.0000i −0.783628 0.783628i
\(939\) 0 0
\(940\) 0 0
\(941\) 26.0000i 0.847576i 0.905761 + 0.423788i \(0.139300\pi\)
−0.905761 + 0.423788i \(0.860700\pi\)
\(942\) 0 0
\(943\) 40.0000 1.30258
\(944\) 32.0000i 1.04151i
\(945\) 0 0
\(946\) 16.0000 16.0000i 0.520205 0.520205i
\(947\) 36.0000i 1.16984i −0.811090 0.584921i \(-0.801125\pi\)
0.811090 0.584921i \(-0.198875\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −24.0000 24.0000i −0.777844 0.777844i
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 32.0000i 1.03495i
\(957\) 0 0
\(958\) −4.00000 + 4.00000i −0.129234 + 0.129234i
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 0 0
\(964\) 60.0000i 1.93247i
\(965\) 0 0
\(966\) 0 0
\(967\) −46.0000 −1.47926 −0.739630 0.673014i \(-0.765000\pi\)
−0.739630 + 0.673014i \(0.765000\pi\)
\(968\) 10.0000 + 10.0000i 0.321412 + 0.321412i
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i −0.981287 0.192549i \(-0.938325\pi\)
0.981287 0.192549i \(-0.0616755\pi\)
\(972\) 0 0
\(973\) 8.00000i 0.256468i
\(974\) 30.0000 30.0000i 0.961262 0.961262i
\(975\) 0 0
\(976\) 32.0000i 1.02430i
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 56.0000i 1.78977i
\(980\) 0 0
\(981\) 0 0
\(982\) 40.0000 + 40.0000i 1.27645 + 1.27645i
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −36.0000 36.0000i −1.14647 1.14647i
\(987\) 0 0
\(988\) 0 0
\(989\) 16.0000i 0.508770i
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) −40.0000 + 40.0000i −1.27000 + 1.27000i
\(993\) 0 0
\(994\) −8.00000 + 8.00000i −0.253745 + 0.253745i
\(995\) 0 0
\(996\) 0 0
\(997\) 28.0000i 0.886769i 0.896332 + 0.443384i \(0.146222\pi\)
−0.896332 + 0.443384i \(0.853778\pi\)
\(998\) −20.0000 20.0000i −0.633089 0.633089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1800.2.k.g.901.1 2
3.2 odd 2 600.2.k.a.301.2 2
4.3 odd 2 7200.2.k.f.3601.2 2
5.2 odd 4 1800.2.d.h.1549.2 2
5.3 odd 4 1800.2.d.c.1549.1 2
5.4 even 2 360.2.k.b.181.2 2
8.3 odd 2 7200.2.k.f.3601.1 2
8.5 even 2 inner 1800.2.k.g.901.2 2
12.11 even 2 2400.2.k.b.1201.2 2
15.2 even 4 600.2.d.a.349.1 2
15.8 even 4 600.2.d.d.349.2 2
15.14 odd 2 120.2.k.a.61.1 2
20.3 even 4 7200.2.d.e.2449.1 2
20.7 even 4 7200.2.d.f.2449.2 2
20.19 odd 2 1440.2.k.a.721.2 2
24.5 odd 2 600.2.k.a.301.1 2
24.11 even 2 2400.2.k.b.1201.1 2
40.3 even 4 7200.2.d.f.2449.1 2
40.13 odd 4 1800.2.d.h.1549.1 2
40.19 odd 2 1440.2.k.a.721.1 2
40.27 even 4 7200.2.d.e.2449.2 2
40.29 even 2 360.2.k.b.181.1 2
40.37 odd 4 1800.2.d.c.1549.2 2
60.23 odd 4 2400.2.d.a.49.1 2
60.47 odd 4 2400.2.d.d.49.2 2
60.59 even 2 480.2.k.a.241.1 2
120.29 odd 2 120.2.k.a.61.2 yes 2
120.53 even 4 600.2.d.a.349.2 2
120.59 even 2 480.2.k.a.241.2 2
120.77 even 4 600.2.d.d.349.1 2
120.83 odd 4 2400.2.d.d.49.1 2
120.107 odd 4 2400.2.d.a.49.2 2
240.29 odd 4 3840.2.a.d.1.1 1
240.59 even 4 3840.2.a.m.1.1 1
240.149 odd 4 3840.2.a.w.1.1 1
240.179 even 4 3840.2.a.r.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.2.k.a.61.1 2 15.14 odd 2
120.2.k.a.61.2 yes 2 120.29 odd 2
360.2.k.b.181.1 2 40.29 even 2
360.2.k.b.181.2 2 5.4 even 2
480.2.k.a.241.1 2 60.59 even 2
480.2.k.a.241.2 2 120.59 even 2
600.2.d.a.349.1 2 15.2 even 4
600.2.d.a.349.2 2 120.53 even 4
600.2.d.d.349.1 2 120.77 even 4
600.2.d.d.349.2 2 15.8 even 4
600.2.k.a.301.1 2 24.5 odd 2
600.2.k.a.301.2 2 3.2 odd 2
1440.2.k.a.721.1 2 40.19 odd 2
1440.2.k.a.721.2 2 20.19 odd 2
1800.2.d.c.1549.1 2 5.3 odd 4
1800.2.d.c.1549.2 2 40.37 odd 4
1800.2.d.h.1549.1 2 40.13 odd 4
1800.2.d.h.1549.2 2 5.2 odd 4
1800.2.k.g.901.1 2 1.1 even 1 trivial
1800.2.k.g.901.2 2 8.5 even 2 inner
2400.2.d.a.49.1 2 60.23 odd 4
2400.2.d.a.49.2 2 120.107 odd 4
2400.2.d.d.49.1 2 120.83 odd 4
2400.2.d.d.49.2 2 60.47 odd 4
2400.2.k.b.1201.1 2 24.11 even 2
2400.2.k.b.1201.2 2 12.11 even 2
3840.2.a.d.1.1 1 240.29 odd 4
3840.2.a.m.1.1 1 240.59 even 4
3840.2.a.r.1.1 1 240.179 even 4
3840.2.a.w.1.1 1 240.149 odd 4
7200.2.d.e.2449.1 2 20.3 even 4
7200.2.d.e.2449.2 2 40.27 even 4
7200.2.d.f.2449.1 2 40.3 even 4
7200.2.d.f.2449.2 2 20.7 even 4
7200.2.k.f.3601.1 2 8.3 odd 2
7200.2.k.f.3601.2 2 4.3 odd 2