Properties

Label 1800.2.k.h
Level $1800$
Weight $2$
Character orbit 1800.k
Analytic conductor $14.373$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(901,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (i + 1) q^{2} + 2 i q^{4} - 2 q^{7} + (2 i - 2) q^{8} - 5 i q^{11} + 6 i q^{13} + ( - 2 i - 2) q^{14} - 4 q^{16} - 3 q^{17} - i q^{19} + ( - 5 i + 5) q^{22} - 4 q^{23} + (6 i - 6) q^{26} - 4 i q^{28} + \cdots + ( - 3 i - 3) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 4 q^{7} - 4 q^{8} - 4 q^{14} - 8 q^{16} - 6 q^{17} + 10 q^{22} - 8 q^{23} - 12 q^{26} - 16 q^{31} - 8 q^{32} - 6 q^{34} + 2 q^{38} - 14 q^{41} + 20 q^{44} - 8 q^{46} + 4 q^{47} - 6 q^{49}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
1.00000i
1.00000i
1.00000 1.00000i 0 2.00000i 0 0 −2.00000 −2.00000 2.00000i 0 0
901.2 1.00000 + 1.00000i 0 2.00000i 0 0 −2.00000 −2.00000 + 2.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.k.h 2
3.b odd 2 1 200.2.d.a 2
4.b odd 2 1 7200.2.k.g 2
5.b even 2 1 1800.2.k.b 2
5.c odd 4 1 1800.2.d.d 2
5.c odd 4 1 1800.2.d.f 2
8.b even 2 1 inner 1800.2.k.h 2
8.d odd 2 1 7200.2.k.g 2
12.b even 2 1 800.2.d.c 2
15.d odd 2 1 200.2.d.d yes 2
15.e even 4 1 200.2.f.a 2
15.e even 4 1 200.2.f.b 2
20.d odd 2 1 7200.2.k.e 2
20.e even 4 1 7200.2.d.c 2
20.e even 4 1 7200.2.d.j 2
24.f even 2 1 800.2.d.c 2
24.h odd 2 1 200.2.d.a 2
40.e odd 2 1 7200.2.k.e 2
40.f even 2 1 1800.2.k.b 2
40.i odd 4 1 1800.2.d.d 2
40.i odd 4 1 1800.2.d.f 2
40.k even 4 1 7200.2.d.c 2
40.k even 4 1 7200.2.d.j 2
48.i odd 4 1 6400.2.a.g 1
48.i odd 4 1 6400.2.a.t 1
48.k even 4 1 6400.2.a.e 1
48.k even 4 1 6400.2.a.r 1
60.h even 2 1 800.2.d.b 2
60.l odd 4 1 800.2.f.a 2
60.l odd 4 1 800.2.f.b 2
120.i odd 2 1 200.2.d.d yes 2
120.m even 2 1 800.2.d.b 2
120.q odd 4 1 800.2.f.a 2
120.q odd 4 1 800.2.f.b 2
120.w even 4 1 200.2.f.a 2
120.w even 4 1 200.2.f.b 2
240.t even 4 1 6400.2.a.f 1
240.t even 4 1 6400.2.a.u 1
240.bm odd 4 1 6400.2.a.d 1
240.bm odd 4 1 6400.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.d.a 2 3.b odd 2 1
200.2.d.a 2 24.h odd 2 1
200.2.d.d yes 2 15.d odd 2 1
200.2.d.d yes 2 120.i odd 2 1
200.2.f.a 2 15.e even 4 1
200.2.f.a 2 120.w even 4 1
200.2.f.b 2 15.e even 4 1
200.2.f.b 2 120.w even 4 1
800.2.d.b 2 60.h even 2 1
800.2.d.b 2 120.m even 2 1
800.2.d.c 2 12.b even 2 1
800.2.d.c 2 24.f even 2 1
800.2.f.a 2 60.l odd 4 1
800.2.f.a 2 120.q odd 4 1
800.2.f.b 2 60.l odd 4 1
800.2.f.b 2 120.q odd 4 1
1800.2.d.d 2 5.c odd 4 1
1800.2.d.d 2 40.i odd 4 1
1800.2.d.f 2 5.c odd 4 1
1800.2.d.f 2 40.i odd 4 1
1800.2.k.b 2 5.b even 2 1
1800.2.k.b 2 40.f even 2 1
1800.2.k.h 2 1.a even 1 1 trivial
1800.2.k.h 2 8.b even 2 1 inner
6400.2.a.d 1 240.bm odd 4 1
6400.2.a.e 1 48.k even 4 1
6400.2.a.f 1 240.t even 4 1
6400.2.a.g 1 48.i odd 4 1
6400.2.a.r 1 48.k even 4 1
6400.2.a.s 1 240.bm odd 4 1
6400.2.a.t 1 48.i odd 4 1
6400.2.a.u 1 240.t even 4 1
7200.2.d.c 2 20.e even 4 1
7200.2.d.c 2 40.k even 4 1
7200.2.d.j 2 20.e even 4 1
7200.2.d.j 2 40.k even 4 1
7200.2.k.e 2 20.d odd 2 1
7200.2.k.e 2 40.e odd 2 1
7200.2.k.g 2 4.b odd 2 1
7200.2.k.g 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{2} + 25 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 25 \) Copy content Toggle raw display
$13$ \( T^{2} + 36 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 1 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 8)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 7)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T - 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 16 \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 9 \) Copy content Toggle raw display
$71$ \( (T + 2)^{2} \) Copy content Toggle raw display
$73$ \( (T + 1)^{2} \) Copy content Toggle raw display
$79$ \( (T - 10)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 81 \) Copy content Toggle raw display
$89$ \( (T + 5)^{2} \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less