Properties

Label 1800.4.a.bc
Level $1800$
Weight $4$
Character orbit 1800.a
Self dual yes
Analytic conductor $106.203$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,4,Mod(1,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(106.203438010\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 360)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 18 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 18 q^{7} - 34 q^{11} - 12 q^{13} - 102 q^{17} + 164 q^{19} + 48 q^{23} - 146 q^{29} + 100 q^{31} - 328 q^{37} + 288 q^{41} - 120 q^{43} + 16 q^{47} - 19 q^{49} - 126 q^{53} - 642 q^{59} + 602 q^{61} - 436 q^{67} - 652 q^{71} - 1062 q^{73} - 612 q^{77} + 388 q^{79} - 444 q^{83} + 820 q^{89} - 216 q^{91} + 766 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 0 0 18.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.4.a.bc 1
3.b odd 2 1 1800.4.a.be 1
5.b even 2 1 360.4.a.a 1
5.c odd 4 2 1800.4.f.e 2
15.d odd 2 1 360.4.a.j yes 1
15.e even 4 2 1800.4.f.s 2
20.d odd 2 1 720.4.a.m 1
60.h even 2 1 720.4.a.z 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.4.a.a 1 5.b even 2 1
360.4.a.j yes 1 15.d odd 2 1
720.4.a.m 1 20.d odd 2 1
720.4.a.z 1 60.h even 2 1
1800.4.a.bc 1 1.a even 1 1 trivial
1800.4.a.be 1 3.b odd 2 1
1800.4.f.e 2 5.c odd 4 2
1800.4.f.s 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1800))\):

\( T_{7} - 18 \) Copy content Toggle raw display
\( T_{11} + 34 \) Copy content Toggle raw display
\( T_{17} + 102 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 18 \) Copy content Toggle raw display
$11$ \( T + 34 \) Copy content Toggle raw display
$13$ \( T + 12 \) Copy content Toggle raw display
$17$ \( T + 102 \) Copy content Toggle raw display
$19$ \( T - 164 \) Copy content Toggle raw display
$23$ \( T - 48 \) Copy content Toggle raw display
$29$ \( T + 146 \) Copy content Toggle raw display
$31$ \( T - 100 \) Copy content Toggle raw display
$37$ \( T + 328 \) Copy content Toggle raw display
$41$ \( T - 288 \) Copy content Toggle raw display
$43$ \( T + 120 \) Copy content Toggle raw display
$47$ \( T - 16 \) Copy content Toggle raw display
$53$ \( T + 126 \) Copy content Toggle raw display
$59$ \( T + 642 \) Copy content Toggle raw display
$61$ \( T - 602 \) Copy content Toggle raw display
$67$ \( T + 436 \) Copy content Toggle raw display
$71$ \( T + 652 \) Copy content Toggle raw display
$73$ \( T + 1062 \) Copy content Toggle raw display
$79$ \( T - 388 \) Copy content Toggle raw display
$83$ \( T + 444 \) Copy content Toggle raw display
$89$ \( T - 820 \) Copy content Toggle raw display
$97$ \( T - 766 \) Copy content Toggle raw display
show more
show less